•

A Holistic View of Perception in Intel. Vehicles Part I: Perception and Autonomy

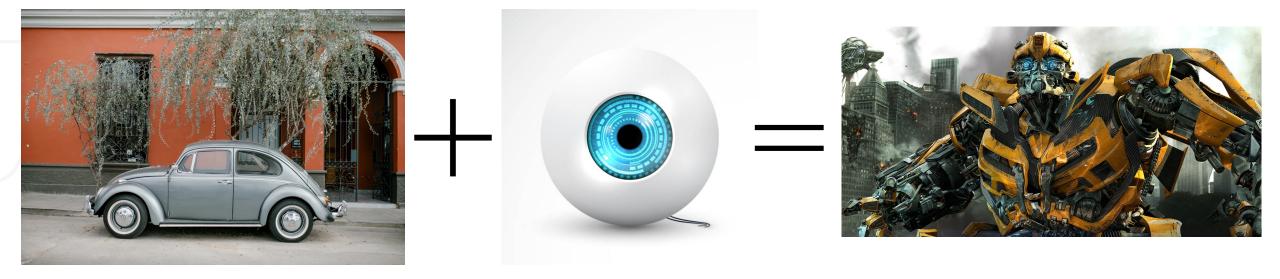
Objectives Objectives in Part I

- Summarize the progress of AVs over the years
- Discuss the role of perception in AVs and where it fits within the AV workflow
- Review well-known failures of AVs in providing safety to drivers and to others
- Discuss major technical challenges currently facing AV
- Motivate deep learning as a holistic solution to perception challenges

Perception What is Perception?

What is perception? See, process, understand.

3 of 184


[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

https://www.animalcognition.org/2015/04/15/list-of-animals-that-have-passed-the-mirror-test/

Perception Perception in AVs

Perception in AVs Tsubaka Mechanical Engineering Laboratory (1977)

First standalone "autonomous" vehicle

Automatically Operated Car

Technology demonstrated:

Two video cameras and an analog computer onboard for image processing, Detect street markings

5 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Tsubaka: Srinivas Rao, P., Gudla, R., Telidevulapalli, V. S., Kota, J. S., & Mandha, G. (2022). Review on selfdriving cars using neural network architectures.

Perception in AVs Eureka PROMETHEUS Project (1987 - 1995)

New technologies demonstrated:

Vision enhancement, Lane keeping support, visibility range monitoring, Driver status monitoring, Collision avoidance, Cooperative driving, Autonomous intelligent cruise control

6 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

PROMETHEUS: https://en.wikipedia.org/wiki/Eureka_Prometheus_Project

Perception in AVs DARPA Grand Challenge (2004 - 2005)

New technologies demonstrated:

Wide sensor suite including stereo vision, LIDAR, radar, and ultrasound sensors, sensor fusion, obstacle detection, off-road path following, path finding

7 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Urmson, Chris, Charlie Ragusa, David Ray, Joshua Anhalt, Daniel Bartz, Tugrul Galatali, Alexander Gutierrez et al. "A robust approach to high-speed navigation for unrehearsed desert terrain." *Journal of Field Robotics* 23, no. 8 (2006): 467-508.

Georgia Tech in DARPA Challenge Need for Failsafe in AVs

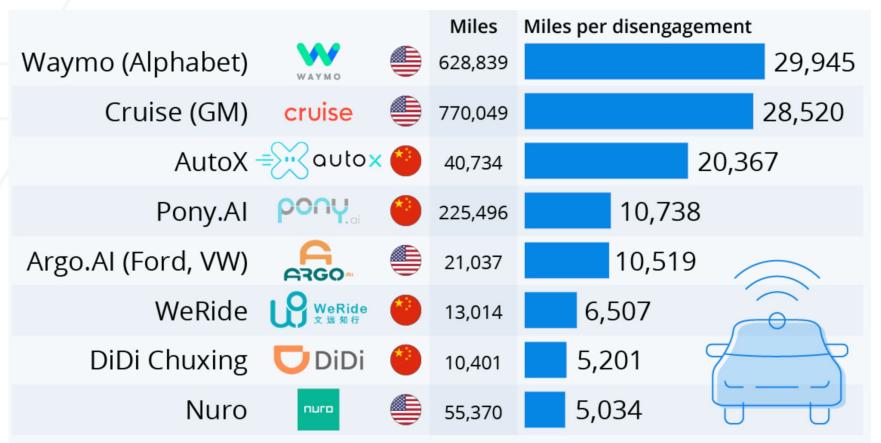
Video/News Articles

Remote Repositioning A driver in the Cloud Remotely Drives a Completely Equipped Vehicle

New technologies demonstrated:

Low latency failsafe mechanisms in connected cars

9 of 184


[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Perception in AVs A Leap in Progress

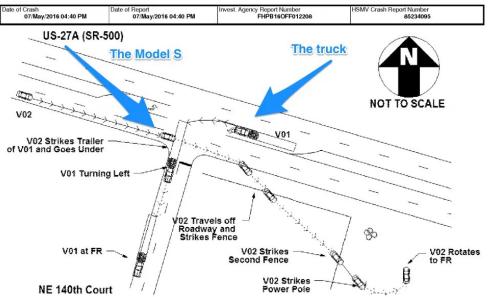
AV statistics in California (Dec 2019 – Nov 2020)

Disengagement: Cases where the car's software detects a failure or the driver perceived a failure, resulting in control being seized by the driver.

10 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Source: https://www.statista.com/chart/17144/test-miles-and-reportable-miles-per-disengagement/


Perception in AVs Setbacks and Challenges

Tesla driver dies in first fatal crash while using autopilot mode

The autopilot sensors on the Model S failed to distinguish a white tractor-trailer crossing the highway against a bright sky

Autopilot didn't detect the trailer as an obstacle (NHTSA investigation and Tesla statements)

- The National Highway Traffic Safety Administration (NHTSA) determined that a "lack of safeguards" contributed to the death
- 2. "Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied," Tesla said.

11 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

https://www.businessinsider.com/details-about-the-fatal-tesla-autopilot-accident-released-2017-6

Uber's self-driving SUV saw the pedestrian in fatal accident but didn't brake, officials say

PUBLISHED THU, MAY 24 2018-9:52 AM EDT | UPDATED THU, MAY 24 2018-10:43 AM EDT

Sensors on the fully autonomous Volvo XC-90 SUV spotted while the car was traveling 43 miles per hour and determined that braking was needed 1.3 seconds before impact, according to the report.

12 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

1. https://www.telegraph.co.uk/technology/2018/03/20/ubers-fatal-accident-end-driverless-cars/ 2. https://www.cnbc.com/2018/05/24/ubers-self-driving-suv-saw-the-pedestrian-in-fatal-accident-but-didnt-brakeofficials-say.html

Perception in AVs Technical Challenges

- Challenging weather
- Challenging sensing
- Challenging environments
- Context awareness
- Embedded perception
- V2X perception

Technical Challenges in Perception for AVs

Challenging Sensing and Weather

- Challenging weather
- Challenging sensing
- Challenging environments
- Context awareness
- Embedded perception
- V2X perception

14 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." *IEEE Transactions on Intelligent Transportation Systems* (2017).

Technical Challenges in Perception for AVs Challenging Environments

- Challenging weather
- Challenging sensing
- Challenging environments
- Context awareness
- Embedded perception
- V2X perception

15 of 184

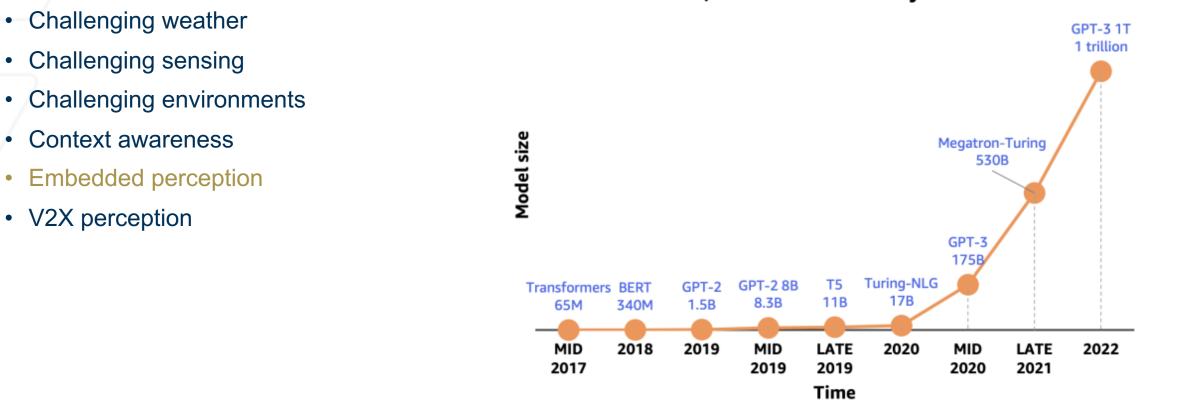
[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Dokania, S., Hafez, A. H., Subramanian, A., Chandraker, M., & Jawahar, C. V. (2023). IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision* (pp. 4482-4491).

Technical Challenges in Perception for AVs Context Awareness

Does the fire impede mobility?

- Challenging weather
- Challenging sensing
- Challenging environments
- Context awareness
- Embedded perception
- V2X perception



Technical Challenges in Perception for AVs Embedded Perception

On-board computational capabilities of modern deep learning algorithms is a challenge

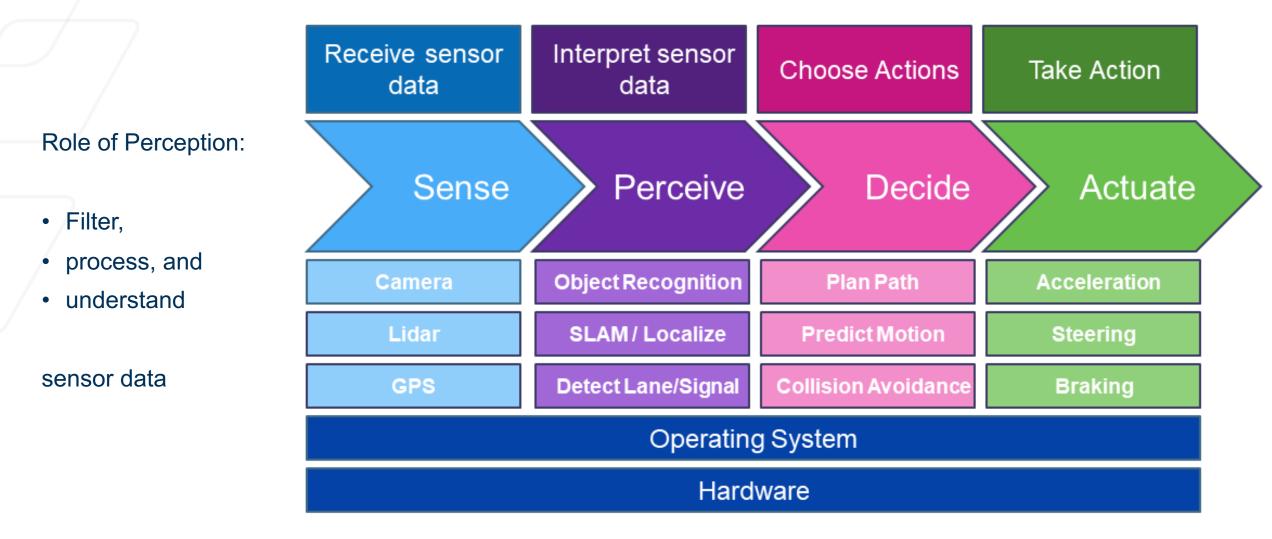
15,000x increase in 5 years

V2X perception

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Technical Challenges in Perception for AVs V2X Perception

Source: Fast and Furious 8!


- Challenging weather
- Challenging sensing
- Challenging environments
- Context awareness
- Embedded perception
- V2X perception

Role of Perception Role of Perception within AVs

19 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Wards Intelligence, Smarter Than Humans? Al for AVs: Sensing, Perception, Prediction and Planning

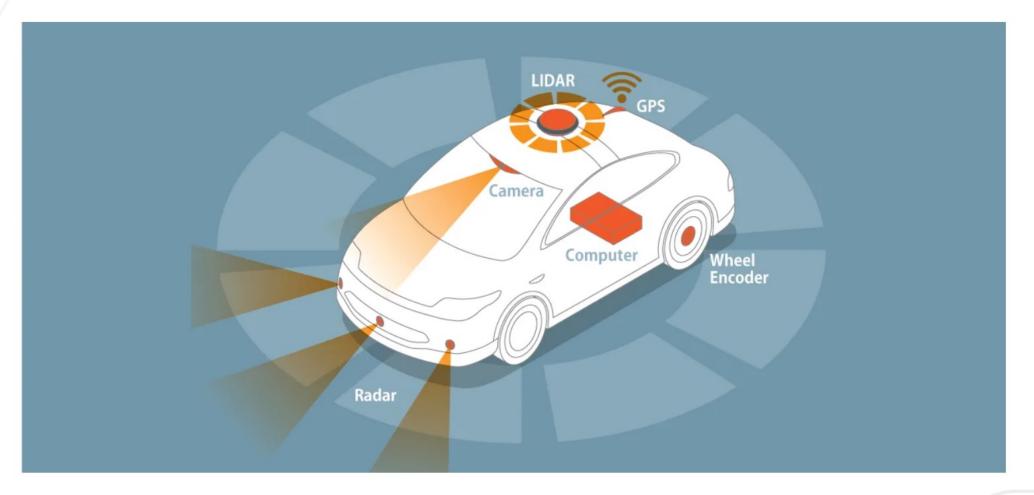
Sensors Role of Sensors for Perception

Tsubaka Mechanical Engineering Laboratory (1977)

Eureka PROMETHEUS Project (1987 - 1995)

DARPA Grand Challenge (2004 - 2005)

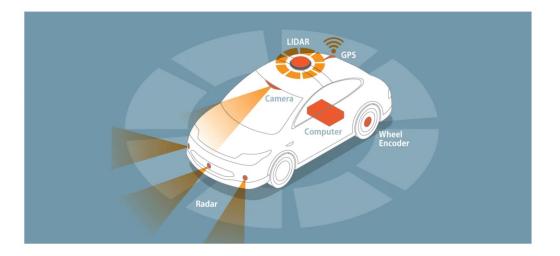
More sensors and better fusion strategies!



20 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Sensors How can we choose the "appropriate" Sensors?



Sensors Choosing the Appropriate Sensors

- Sensors need to work under challenging weather conditions
- Sensors need to have sensing capacity and resolution in meeting challenging sensing environments
- Sensors must be cost effective
- Sensor fusion and sensor registration must be computationally effective
- Sensors must output minimum **noise** or their working ranges must be known in advance
- Sensor data must be resistant to cyber and adversarial attacks

Sensors Choosing the Appropriate Sensors

Factors	Camera	LiDAR	Radar	Fusion	
Range	~	~	\checkmark	\checkmark	
Resolution	\checkmark	~	×	\checkmark	
Distance Accuracy	~	\checkmark	\checkmark	\checkmark	
Velocity	~	×	\checkmark	\checkmark	
Color Perception, e.g., traffic lights	\checkmark	×	×	\checkmark	
Object Detection	~	\checkmark	\checkmark	\checkmark	
Object Classification	\checkmark	~	×	\checkmark	
Lane Detection	\checkmark	×	×	\checkmark	
Obstacle Edge Detection	\checkmark	\checkmark	×	\checkmark	
Illumination Conditions	×	\checkmark	\checkmark	\checkmark	
Weather Conditions	×	~	\checkmark	\checkmark	

23 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor fusion technology in autonomous vehicles: A review. *Sensors*, *21*(6), 2140.

Sensors Choosing the Appropriate Sensors

 TABLE I

 DIFFERENT SENSORS USED IN AV DEVELOPMENT

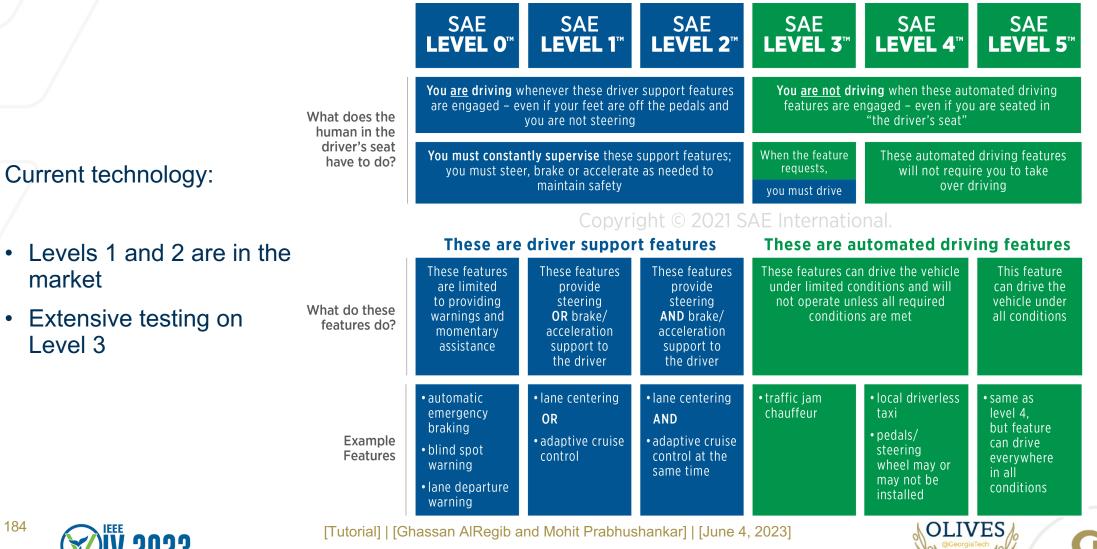
Vehicle		В	С	D	E	F
Audi's Research Vehicle [48]		Y	Y	Y	Y	Y
Ford: Hybrid Fusion [49]				Y	Y	Y
Google: Toyota Prius [50]		Y		Y	Y	
Nagoya and Nagasaki University's Open ZMP Robocar HV (Toyota Prius) [51]				Y		
Volvo: (Stoklosa, Cars) [52]			Y	Y	Y	Y
Apple: Lexus RX450h SUVs [53]			Y	Y	Y	Y
DIDI's research vehicle [54]			Y	Y	Y	Y
Infiniti Q50S [55]					Y	Y
Lexus RX [56]					Y	Y
Volvo XC90 [57]					Y	Y
BMW750i xDrive [58]		Y	Y		Y	Y
Mercedes-Benz E & S-Class [55]		Y	Y		Y	Y
Otto Semi-Trucks [59]				Y	Y	
Renault GT Nav [60]					Y	Y
Tesla Model S [61]					Y	Y
Baidu Apollo [62]					Y	Y

[#]Note: A:Vision; B:Stereovision; C:IR Camera; D:LIDAR; E:Radar; and F:Sonar.

24 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Ma, Y., Wang, Z., Yang, H., & Yang, L. (2020). Artificial intelligence applications in the development of autonomous vehicles: A survey. *IEEE/CAA Journal of Automatica Sinica*, 7(2), 315-329.

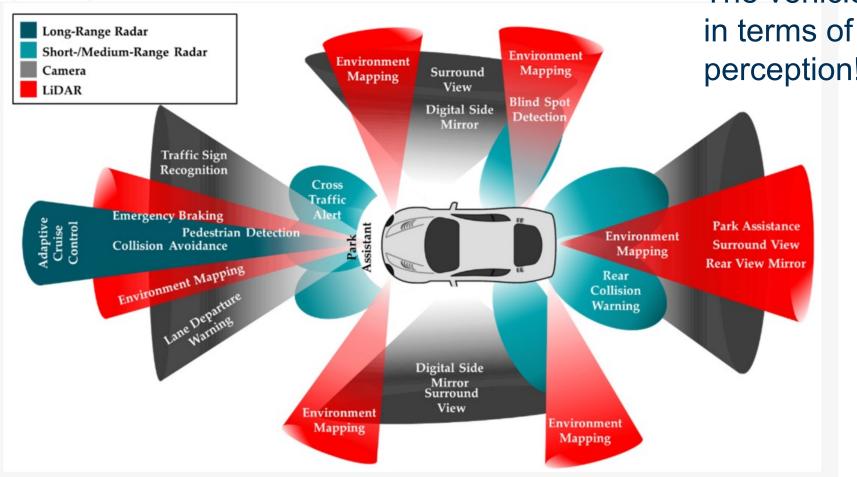

Levels of Autonomy Taxonomy

SAE **J3016**[™] LEVELS OF DRIVING AUTOMATION[™]

Learn more here: sae.org/standards/content/i3016 202104

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

market

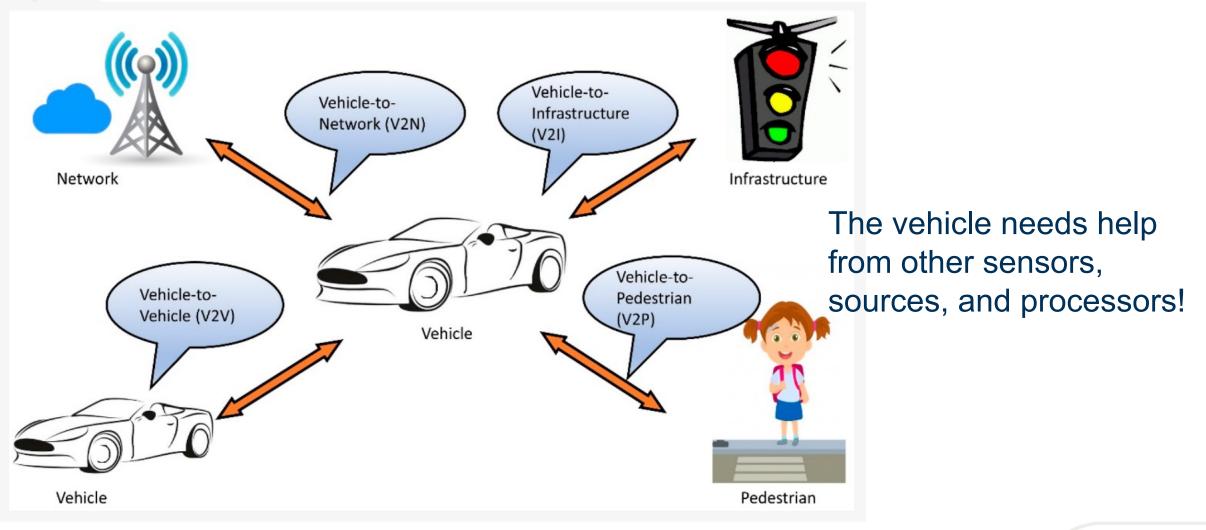

Level 3

25 of 184

https://www.sae.org/blog/sae-j3016-update

Levels of Autonomy Levels 1 and 2 Autonomy

The vehicle is self-sufficient in terms of onboard sensors and perception!

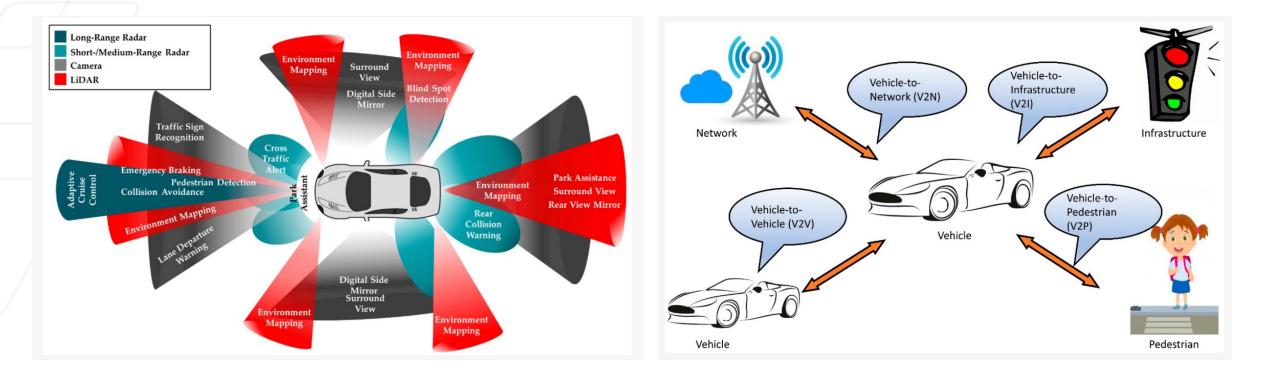


26 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Levels of Autonomy Levels 3 and Beyond

27 of 184


[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

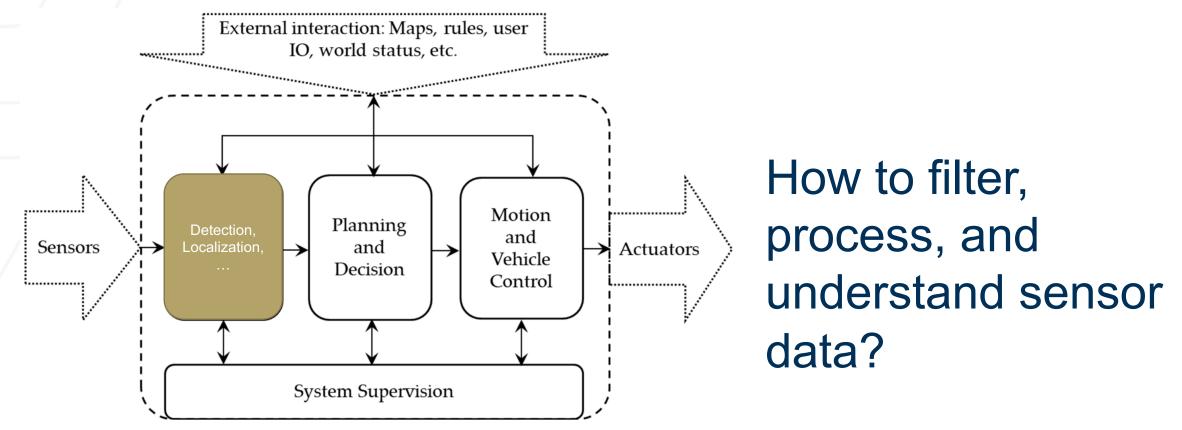
Haque, K. F., Abdelgawad, A., Yanambaka, V. P., & Yelamarthi, K. (2020). Lora architecture for v2x communication: An experimental evaluation with vehicles on the move. *Sensors*, *20*(23), 6876.

Georgia

Levels of Autonomy Achieving Perception

How to filter, process, and understand sensor data?

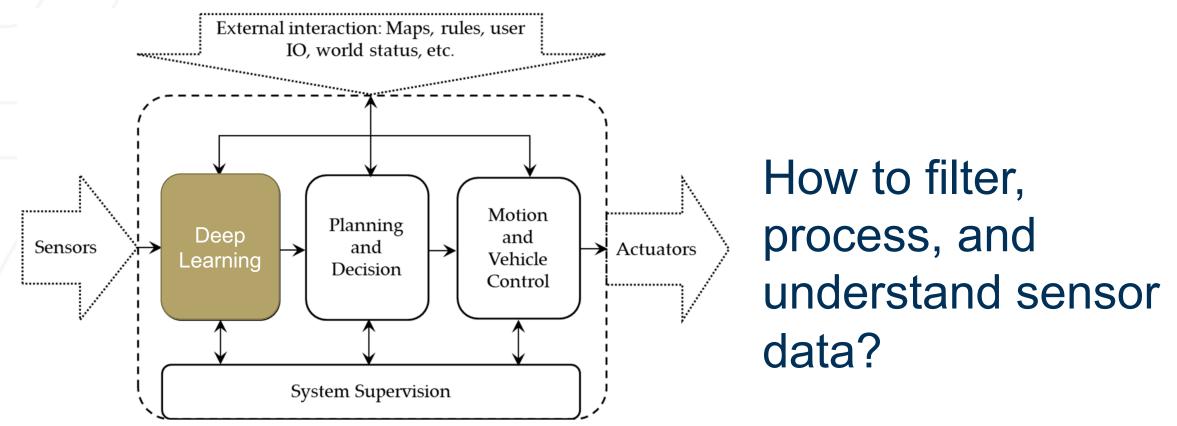
28 of 184


[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Georgia Tech

Levels of Autonomy Achieving Perception

Before: Perception is decomposed into a number of manageable applications


29 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Levels of Autonomy Goal of the Tutorial

Deep Learning: Provides a holistic solution to perception

30 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Georgia Tech

Objectives Takeaways from Part I

Part I: Challenges in Perception and Autonomy

- Robustness under challenging conditions, environments, context and surroundings-awareness are challenges in AV perception
- Deep Learning promises a holistic solution to a number of the above challenges
- Part II: Deep Learning for Perception
- Part III: Existing Deep Learning solutions to Challenges in Perception
- Part IV: Remaining Challenges and Future Directions

