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Objectives
Obijectives in Part Il

« Discuss myths surrounding deep learning

* Brief history of deep learning

* Review deep learning models for vision

« Deep learning extensions into sensor domain

» Transfer Learning and foundation models

« Self-supervised learning

« Case study: Self-supervised learning for fisheye images
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Deep Learning
Meme to start off with

People’s expectation of Al and Deep Learning
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Deep Learning
Model Decomposition

Low-Level
Feature

| Ex. LeCun, 2015 \

L. Mid-Level

Feature

High-Level
— —

Feature
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“Deep learning is hard to train”

O PyTorch 2.0

Convolution Layers

nn

nn

nn

nn

nn

.Convild

.Conv2d

.Conv3d

.ConvTransposeld

.ConvTranspose2d

U (@023

Applies a 1D convolution over an input signal composed
of several input planes.

Applies a 2D convolution over an input signal composed
of several input planes.

Applies a 3D convolution over an input signal composed
of several input planes.

Applies a 1D transposed convolution operator over an
input image composed of several input planes.

Applies a 2D transposed convolution operator over an
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109,392 repository results i PyTorch Conference

/ ~-tober 16 - 17 | San Francisco, CA |
I>-- Containers

e Convolution Layers
* Pooling layers
o Padding Layers

e Non-linear Activations (weighted

» Non-linear Activations (other) PyTorCh

CRASH COURSE

— e Linear Layers ZERO TO HERO IN 50 MINUTES
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e Recurrent Layers

o Transformer Layers




Deep Learning
Some Common Myths about Deep Learning

“Deep learning requires lots of data”

£

&

|_

"Stripes" Horse,
‘ A "zebra" is a striped horse. ’
"Zebra"
1% .
@ Zero-Shot Learning

Source Domain
Target Domain

Domain Adaptation
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Deep Learning
Some Common Myths about Deep Learning

“Deep learning has poor interpretability”

Observed Correlation Observed Counterfactual Observed Contrastive
o
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“More the data, better the model”

R - 2

Example of balanced and imblanced data

male female normal gene oncogene

Negatives = Positives Negatives > Positives
Balanced Imbalanced

Data imbalance issues

&‘@

& (a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Human labeling Dataset uncertainties

'% issues
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Deep Learning
Some Common Myths about Deep Learning

“Deep learning is State-of-the-Art in every field”

. 241 - (-241) +1

Object detection

A
241 - (-241) + 1is equivalent to 241 + 241 + 1, which simplifies to 483 + 1. So
241 - (-241) + 1is equal to 484.

Semantic segmentation

makinn
fMdxing a

ATTALK PATTERN IS ISBLE
10 T ALY EYE

Depth estimation

 Clear weather Rain (200 mm/hr)
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Deep Learning
The Building Block

The underlying computational unit is the artificial neuron

" § Artificial Neuron
o . : e,
Artificial neurons consist of: o Sy
- A single output [egh, | -
M |t|p|e inputs _g summation activation
) u 0
. = output
° |an,I’[ V\{elghts g D
A bias input S
« An activation function " )
e‘\‘?\é\
@ @ bias
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Deep Learning
Artificial Neural Networks

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
« An input layer (Layer 0)
* An output layer (Layer K)
« Zero or more hidden (middle) layers (Layers 1...K — 1)
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Deep Learning
Convolutional Neural Networks

|

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Featu:’e Classifier

Ex. LeCun, 2015
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999 2000 2001

o
LeNet-5

@IV 2023

2003

LeNet
AlexNet
VGG

« ResNet

2004 2005 2006 2007 2008
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2011

GooglLeNet (Inception-V1)

Inception-v3 .
® ® Inception-ResNe

Network In Network @ ® Inception-v4

2012 * 2013 2014° 2016 2017 *2018

[ ] (]
AlexNet VGG

Xception

o
ResNeXts

Inception-v1 @

ResNets ®
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CNN Architectures
LeNet5 (1998)

avg-pool | avg-pool
2%2 2x2

32x32x1

120 84 10

Novelty:
* Reduced number of learnable parameters and learned from raw pixels automatically

 The 1%t popular CNN that became the “standard” template of CNNs
e Stacking convolutional, activation, pooling layers
* Ending with fully connected layers

* Good results on small datasets
* Top-5 error rate on MNIST is 0.95%
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https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

« Working to improve computational power
 Existing accelerators were not yet sufficiently powerful to make deep multichannel, multilayer
CNNs with a large number of parameters.
 Existing datasets were relatively small
 Limited storage capacity of computers

 Tricks for neural network training were not established yet
» Parameter initialization
 Variants of stochastic gradient descent
* Non-squashing activation functions
 Effective regularization techniques
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CNN Architectures
AlexNet (2011)

‘ e max-pool max-pool max-pool
224x224x3 x3
4096 4096 1000
Novelty:

* First to implement Rectified Linear Units (ReLUs) as activation, solving the
vanishing gradient problem

* Applied dropout regularization to fully connected layer to control complexity
 Deep CNN that runs on GPU hardware

* Deeper and wider than LeNet

 More robust than LeNet (data augmentation)

 Won ImageNet Challenge and significantly outperformed traditional methods
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AlexNet (2012)

ImageNet Classification Error (Top 5)

0,0
N
20,0 '
15,0
AN EEm
2011 (XRCE) | 2012 (AlexNet) | 2013 (zF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) (GooglLeNet-v4)

Imagenet:
1000 classes, 1.2M training images, 150K for testing

16.4% top 5 error in ILSVRC 2012

Figure Credit: Zitzewitz, Gustav. "Survey of neural networks in autonomous driving." (2017)

Gr Georgia
Tech.

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE




ResNet (2015)

ImageNet Classification Error (Top 5)

0,0

25,0 '26,—0]

20,0

15,0

ol

5,0 l I

B EEEENNI
2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016

(GooglLeNet) [(GoogLeNet-va)

Imagenet:

~3.6% top 5 error in ILSVRC 2015, 1000 classes, 1.2M training images, 150K for testing

lower than human recognition error!

Figure Credit: Zitzewitz, Gustav. "Survey of neural networks in autonomous driving." (2017)
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CNN Architectures
ResNet (2015)

| global
~ | avg-pool

> identity

input

¢
I
L T |

224%224x3

=
]

1000

(8)

(R)
(6)
(R)

B (&) (5) = (R) (&) (5) (&) (®)
® B ® ® -
N ove I ty : Conv block Identity block
 Introduced residual learning (Residual blocks) X
« Shortcut connections with identity mapping weight layer
: : : F(x relu
* Popularized skip connections (%) weigh{Iayer X
. identity
« 20 and 8 times deeper than AlexNet and VGG, |
respectively with less computational complexity and F(x)+x
without compromising generalization power
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Object Detection Architectures
YOLO (2016 - Ongoing)

All previous object detection techniques required multiple stages of detection

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 X 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.
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Novelty:

« Object detection is reformulated as a

regression problem from image space
to bounding-box coordinate space

« Single stage object detectors

 Feature extraction, detection,
classification performed in one go

 Contextual information is encoded

within each prediction




Deep Learning for LIDAR data
PointNet (2017)

The challenge in utilizing LIDAR data is the volume of point cloud data and the permutation of
their processing

Classification Network

input mlp (64,64) feature mlp (64,128,1024) Hho% mlp
é transform : transform 4 pool 1024 (512,256.k)
12 |en en =
g z muE shalred % & & E sha!red nx1024 Il e |
: obal feature
og : _”_I_'—. —OI_I_'—D g - . k
W S B IS - R output scores
palpmsmeeniey it features T
L
(=]
1088 & | 8 |=
ne shared e shared z =
= =
e S [ Y 2
mlp (512,256,128) mlp (128,m)

Ségmentation Network
» Performed classification and segmentation on n points of LIDAR data. Input nx3 refers to n points with {x, y, z}
coordinate dimensions
 Used RNNs to overcome the permutation issues within LIDAR data

Gr Georgia
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Deep Learning for Sensor Fusion
Vision and LIDAR

' SR,
Color Image(C) b e,
c-YOoLOo
H (X.Y.)
"” YOLO Framework is used to independently
| o bbecs | orgiiod o Final Resul extract features from cameras and LIDAR
He = (X0 Ye) Sensor (b.b,,¢;) .
peo ’ — Pusion | =™ sensors and fused to detect missed boxes
Map(R) m b.b,.c,
H, = (X..Y4) \ T

This is ‘late fusion’, in the sense that each sensor modality is independently evaluated
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15,000x increase in 5 years

GPT-31T
1 trillion
The number of parameters in models has
increased exponentially
g Megatron-Turing
2 5308
L") N
o
=
Inception-v3 : GPT-3
P ® Inception-ResN¢g 1758
Network In Network ® ® Inception-v4 Transformers BERT GPT-2 GPT-28B TS  Turing-NLG
: 65M 340M 1.58 8.3B 11B 178
[
21 S RS 2 e MID 2018 2019 MID LATE 2020 MID  LATE 2022
® ® ® ® 2017 2019 2019 2020 2021
AlexNet VGG Xception ResNeXts Time

Inception-v1 @

ResNets @
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Deep Deep Deep ... Deep Deep Learning
Motivation

Underlying features among different vision tasks are similar

=
6%5‘;. Traditional Vision Tasks

Image Recognition
Object Detection
Segmentation

Edge Detection
Keypoints Detection
Surface Normals
Reshading
Curvature
Uncertainty

Depth

This similarity leads to Transfer Learning
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» Deep networks tend to learn common representations for various tasks in their earlier layers

« Can be exploited to transfer representations from networks trained on large datasets on one task (i.e.,
Image Classification on ImageNet) called the source to a different task called the target task

« Usually done by taking large pretrained network and then finetuning last layer (with all other layers
frozen) on target dataset

* Pre-trained frozen backbone acts as a feature extractor while finetuned last layer acts to project the
representations into the decision boundary for the target task

« Utility depends on how closely related the source and target datasets and/or tasks are
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Transfer Learning
Foundation Models

Source: https://gluon-cv.mxnet.io/ Source: https://www.move-lab.com/blog/tracking-
things-in-object-detection-videos

Foundation Model

Pretraining

Finetuning
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Foundation models are like any other deep network that have employed transfer learning, except at scale

Scale brings about emergent properties that are common between tasks

Before 2019: Base architectures that powered multiple neural networks were ResNets, VGG etc.
Since 2019: BERT, DALL-E, GPT, Flamingo
Changes since 2019: Transformer architectures and Self-Supervision
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Data Sources

Perceptual Sources

o &R v
o 1 = S
¢ ) 3 4 ox» 3
82 §a X )
X v
Cameras & Autonomous Ambient
Devices Agents Sensors
Data Types

Depth Thermal

RGB
"3
o]

Text Radio Audio
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‘By harnessing self-supervision at scale,
foundation models for vision have the potential
to distill raw, multimodal sensory information
into visual knowledge, which may effectively
support traditional perception tasks and
possibly enable new progress on challenging
higher-order skills like temporal and
commonsense reasoning These inputs can come
from a diverse range of data sources and
application domains, suggesting promise for
applications in healthcare and embodied,

interactive perception settings’
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Foundation Models
Segment Anything Model

Segment Anything Model (SAM) released by Meta on April 5, 2023 was trained on Segment Anything 1 Billion
dataset with 1.1 billion high-quality segmentation masks from 11 million images
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Foundation Models
Segment Anything Model

Cityscapes dataset
semantic segmentation
annotation took ~90
mins per image

31 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] ak\\OLIVES/,;*O Georgia
IV 2“23 Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. W\ /'});/ Gr Tech.

NS\ 76/
:&}g\fﬁ%o

"Segment anything." arXiv preprint arXiv:2304.02643 (2023). L=



Foundation Models
Training Foundation Models

32 of 184

Self-Supervision:

 Type of unsupervised learning

» Primary difference is the introduction of a “pre-text

task.”

* The pre-text task generates pseudo-labels that are
used to train a network.

sssssssssssssssssssssssssssssss

Foundation models are trained via Self-Supervision

Supervised Unsupervised Self-Supervised
Labelled Dataset Unlabelled Dataset Unlabelled Dataset
X,V — X — X
\ j
\
X, Z

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

Ericsson, L., Gouk, H., Loy, C. C., & Hospedales, T. M. (2021). Self-Supervised Representation

Learning: Introduction, Advances and Challenges. arXiv preprint arXiv:2110.09327.
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Self-Supervision
Overall Training Process

1. Identify Labeled and Unlabeled
Data

Unlabeled Data

Labeled Data

(X1 o), V1 - YM)

(1 ... xp)

2. Generate pseudo-labels with some pre-text
task P

Unlabeled Data p Pseudo - Labeled
:> Data

(%1 ... xXp)
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Self-Supervision
Example Training Process

Step 1: Generate pseudo-labels via image Step 2: Network learns to predict angle image
rotations is rotated
I Update
»| Rotate 90 ConvNet 72 —L(2,2¢)
| Rotate 180 Step 3: Attach linear layer and train to classify
labels (y) on labeled dataset
Update |«
label * Rotate 270 [
Uln abeled SRETONESS E
mage x Ea 57 @ W -
wH v 8 ConvNet - e ——L(y,y,)
- Trained 2
o o e ) O D s i T =
AR =l P 2
dEsREESES
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Self-Supervision
Motivation

Step 1: Generate pseudo-labels via image
rotations

*[ Rotate 90 X1,21 = 90
*| Rotate 180 X2,z =180 Learning pre-text task will allow network to learn
relevant features without needing explicit labels!

*| Rotate 270 X3,23 = 270

Unlabeled

Image x
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Self-Supervision
Types of Pre-text Tasks

Differences in self-supervision are based on the type of pre-text task that is defined

Transformation Prediction

» Pre-text task performs some transformation on data and tasks model with trying to learn nature of
transformation.

Masked Prediction

* Pre-text task removes some part of the data and the model is tasked with trying to predict what was
removed.

Deep Clustering
« ldentify clusters of features and iteratively assign pseudo-labels to train model.
Contrastive Learning

» Pre-text task identifies positive and negative pairs of data and the model is tasked with learning similarities to
discriminate between positive and negatives.
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Contrastive Learning
Sim-CLR Framework

The Pseudo-labels are used to create positive-negative pairs within each batch

Calculated Embeddings

z : :
1 Contrastive loss on embeddings
z .
BatCh 2 l(’l,]) _ —lOg - CZBp(Sz,])
Augmented > i1 lp=ijexp(sik)
Images Z3
esimilarity( m ‘ )

- 1 g
Z, I(’E |09( esimilaritv(m &) - esim“arity() . esimilarity() )

Note: The positive pairs are only the augmentations and negative
pairs are all other images in the batch
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Contrastive Learning
Contrastive Learning vs Supervised Learning

Performance vs Models Performance vs Parameters
80 po

% Supervised .- %SimCLR (4x) Wi RE0(2x) T R Sup. R50(4x)
— 75 et : BSUP. RSO i *R50(4x)*
o _#SimCLR (2x o P i W RORON (-
2\/ ( ) '_4-‘*‘R'5“0(2X)* "
> o - R50(4x)
8 20 eCPCv2-L . ‘R101(2§f‘152(2x>
5 *SimCLR oCMC JMoCo (4x) *Rsor  ®R50(2x) :
8 ePIRL-c2x iy - ®Rp152 R34(4x)
< AMDIM o R101 ®R1s(4
T 65 1 oMoCo (2x) S 65 |4 (4x)
! PIRL-ens. o R50
Q QCPCVZ ®R34(2x)
° PIRL eBigBiGAN 60
< LA
[}
(o))
@ . 2 ®R34
£ 55 _ eRotation

e|nstDisc -

50 | ®R1
25 50 100 200 400 626 0 50 100 150 200 250 300 350 400 450
- N b fP t Milli
Number of Parameters (Millions) Hmberof Farametek={Miliions)
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Contrastive Learning

Contrastive Learning other than SIM-CLR

What differentiates other Contrastive Learning methods from Sim-CLR?

The way that similar pairs (positives)
and dissimilar pairs (negatives) are
generated.

T (@i 2023

Paper

Short description

Topics of contribution

Becker and Hinton [8]

Maximise MI between two views

Foundation

Bromley et al. [11]

Siamese network in metric learning setting

Foundation

Chopra, Hadsell, and LeCun [20]

Learn similarity metric with contrastive pair loss

Energy-based loss, Application

Hadsell, Chopra, and LeCun [39]

Learn invariant representation from pair loss

Energy-based loss, Application

Weinberger, Blitzer, and Saul [108]

Learn distance metric with triplet loss

Energy-based loss

Collobert and Weston [21] Learn language model with triplet loss Application
Chechik et al. [15] Learn image retrieval model with triplet loss Application
Noise Contrastive Estimation [38] Introduce NCE, a general methods to learn unnormalised probabilistic model Probabilistic loss
Mnih and Teh [71] Learn language model with NCE-based loss Application

Mikolov et al. [68]

Learn word embedding with Negative Sampling (NEG), a modified version of
NCE

Probabilistic loss, Application

Wang et al. [105]

Learn fine-grained image similarity using deep network and triplet loss

Application

Wang and Gupta [107]

Use video’s sequential coherence to learn unsupervised video representation

Similarity, Application

Lifted-structure loss [75]

Extend triplet loss to multiple positive and negative pairs per query

Energy-based loss

N-pair loss [92]

Proposed non-parametric classification loss with multiple negative pairs per
query

Probabilistic loss

Wu et al. [109]

Focus on the quality of negative samples through a distance-weighted margin
loss

Similarity, Energy-based loss

Hermans, Beyer, and Leibe [45] State the important of mining hard samples in triplet loss Similarity
Wu et al. [110] Self-supervised reprcsematiop with instance discrimination Application
) Memory bank to holds keys for next epoch Encoder

CPC [77] Mutual l.nf(')rm.alion. with the contrastive lqss . ) Mut.uul'lnformution loss
Define similarity with past-future context-instance relationship Similarity

DIM [46] Evaluate multiple mu.tual informat@on b(?und for the contrastive loss Mutyal .Information Loss
Global-local context-instance relationship Similarity

MoCo [43] Use momentum encoder to store features to memory queue Encoder

SimCLR [16] ﬁg:ll;::sf})(/ and demonstrate large empirical improvement in instance discrimina- | Application
Focus on the use of separate heads Transform heads

BYOL [34] Learning similarity without negative samples Loss
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SCAN ME

Intuition: Regions within a fisheye image are their own class. Hence, any object within them
are positives

Intuition for Loss 1:

All objects from the edge (be it a car, bike,
pedestrian) are positives and objects from the centre

(be it a car, bike, pedestrian) are negatives

50 100 150 200

Object from Edge
Intuition for Loss 1:

All objects from labeled car (be it in the center or the
edge) are positives and all other objects (be it in the
center or the edge) are negatives

Object from Center
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SCAN ME

Intuition: Regions within a fisheye image are their own class. Hence, any object within them
are positives

aLegss + (1 — a)LRegionClaSS

a controls the level of unsupervised
contrastive learning

Performance as alpha parameter varies

0.4650 A
50 100 150 200

Object from Edge 0.4625

0.4600 -

© 0.4575 A

mAP @ .5

0.4550 A

0.4525 - / [
0.4500 4 4

——$— 0D with alpha contrastive pre-training
—$— Standard OD

0.4475 1 I I I I I I
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ObJeCt from Center Alpha Parameter Variation
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Defining the positive-negative pairs is application dependent
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Objectives
Takeaways from Part Il

Part |: Challenges in Perception and Autonomy

Part Il: Deep Learning for Perception
» Transfer Learning and training at scale are essential for foundation model development
» Self-supervised Learning provides a framework for large scale learning on unannotated data

Part lll: Existing Deep Learning solutions to Challenges in Perception

Part IV: Remaining Challenges and Future Directions
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