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Objectives
Obijectives in Part Il

Challenging conditions at training

Inference
* Deficiencies at Inference

Overcoming deficiencies at Inference
« Anomaly Detection
* Uncertainty
« Explainability

Case study 1: Robustness to challenging conditions

Case study 2: Aberrant Object Detection
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» Challenging weather

* Challenging sensing

* Challenging environments
« Context awareness
 Embedded perception

« V2X perception

Georgia
Tech.
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Challenging Conditions in Deep Learning
Integrating Challenging Conditions in Training

The most novel/aberrant samples should not be used in early training

»  Model Representation

A
=
Low Information ®0 : : e -
o e 0o » The first instance of training must occur with
° ¢ less informative samples
() o°0 o ®
= ®eo o « Less informative:
g - Highway scenarios
= .
o~ « Parking
 No accidents
Tigh Information  No aberrant events
Samples @ Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
4 of 184 IEEE [Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023] GI‘ Georgia
IV2023 Benkert, R., Prabushankar, M., AIRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: TECh.

A Second Order Approach to Active Learning. IEEE Transactions on Attificial Intelligence.



Challenging Conditions in Deep Learning
Integrating Challenging Conditions in Training

Subsequent training must not focus only on novel data

__100
80
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~ ——— » The model performs well on the new
scenarios, while forgetting the old scenarios

Catastrophic f
Forgetting )
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— MNIST * A. number of techniques exist to overcome
—— FMNIST this trend

» However, they affect the overall performance
in large-scale settings

\
\
\
\

!

20)

Test Accuracies (%
L
-

0! ittt * It is not always clear if and when to
() 20 ) (1) 10() incorporate novel scenarios in training
Epochs
Catastrophic Forgetting Handle challenging

conditions at Inference!
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Inference
What is Inference?

Ability of a system to predict correctly on novel data

Model Train At Deployment

Novel data sources:

 Test distributions

* Anomalous data

» Out-Of-Distribution data
* Adversarial data

» Corrupted data

* Noisy data

* New classes
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Inference
What is Inference?

Ability of a system to predict correctly on novel data

Novel data sources

 Test distributions
* Anomalous data
» Out-Of-Distribution data
* Adversarial data

Cat

» Corrupted data
* Noisy data

* New classes
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“Ee;m: e |
“The best-laid plans of sensors and networks
often go awry”
- Engineers, probably

L. 'L'.A.;‘_I ) ol . .'f ’ .
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

« Anomaly scores: How close to the training data is the novel data at inference?
* Uncertainty scores: How close to the best possible network is the trained network?
» Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous
data data

Grad-CAM : Why No- Why No-Left, rather
Left? than Stop?

Certain objects  Uncertain objects ‘Why P’ ‘Why P, rather
than Q?’
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Backpropagated Gradient Representations for
Anomaly Detection
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AnOmalleS : Backpropagated Gradient

[=] Representations for Anomaly Detection

Finding Rare Events in Normal Patterns SCAN ME

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ !/

Statistical Definition:

: M\ » Normal data are generated from a stationary process Py
R R R PI

* Anomalies are generated from a different process P, + Py
R

J" Goal: Detect ¢,

() = ®o Normal data
$1 Anomalies

bo $1 Po
[ l \F.L\f_l_\
\;;/. o o . o ° . ° . o
"7 t
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SCAN ME

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

« Step 1 ensures that patches from natural
images live close to a low dimensional
manifold

« Step 2 designs distance functions that
detect implausibility based on
constraints

Anomaly
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2004 2016 2018 2019
Tax et.al * Fan et.al 2 Pidhorksyi et.al 3 Abati et.al4

Encoder Decoder
& B
Training ’ .
Activations are

constrained Statistical deviation (Latent Loss)

using GANSs, Anomal
VAEsS, etc. '
Testing |

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint
arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. AlImohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822—6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481-490.
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SCAN ME

Activation Constraints

Activation-based representation

Forward propagation (Data perspective) How much of the input

. . e.g. Reconstruction error ( does not correspond to
Trained with ‘0

Anomaly

. . the learned information?

» Gradient Constraints
Input || | / Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w oL w’ How much model update is
ow required by the input?

—>
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Constraining Manifolds $| Backpropagated Gradient

[=] Representations for Anomaly Detection

Advantages of Gradient-based Constraints SCAN ME
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Gradients provide directional information to characterize anomalies
Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution

| o Backpropagated
econstruction 9o (fo())™, GFr)adian[s
Error (L) oL 0L
9o o (), :: 00 9
““ I X=Xout
x
Xout

Reconstructed image manifold

0 Gr Georgia
. Tech.

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



SCAN ME

AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
detection (ClFAR 10 CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 0.711 0.390 0.564

Normal

+ Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661
VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
(I.D L tatent V.boad U.44s V.04 U.4J( V.20 U019 U.(a9 U.oz( U D= U.210 U.000 |

Abnormal

CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554

Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
econ

Latent O 586 O 396 0. 618 O 476 O 719 O 474 O 698 O 5oF W 586 0. 413 O 550
Grad 0.736 0.625 0.591 0.596 0.707 0.570 0.740 0.543 0.738 0.629 0.647

VAE
+ Grad

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

« (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
« (CAE vs. VAE) Performance sacrifice from the latent constraint

« (VAE vs. VAE + Grad) Complementary features from the gradient constraint
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GradCON: Gradient ConStraint : Backpropagated Gradient

[=] Representations for Anomaly Detection

Aberrant Condition Detection SCAN ME

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure
1.0
0.8
.y g 06 3
Abnormal “condition”
detection (CURE-TSR) -
0.0 2 : 0.0
Levels
Gaussian Blur Rain
1.0 1.0 ; 1.0
0.8 0.8 @/Me ; 0.8
D6 e e U016 Ol X| gos
204 204 : 204
Normal Abnormal c [ e S
0.0 4k 2 3 0.0 1 2 3 4 5
Levels Levels Levels

[->¢- Recon (CAE) —<— Recon (CAE+Grad) |—e— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

« Anomaly scores: How close to the training data is the novel data at inference?
* Uncertainty scores: How close to the best possible network is the trained network?
» Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous

Grad-CAM : Why No- Why No-Left, rather

Left? than Stop?
data . . . . ’ ) ) .
data Certain objects  Uncertain objects Why P Why P, rather
than Q?’
20 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] OLIVES;/ Georgia
@Il 2023 W Cres



21 0of 184

I E E E Probing the Purview of Neural Networks via

ACC@SS Gradient Analysis

Jinsol Lee, Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
PhD Candidate Postdoc Professor




Uncertainty
What is Uncertainty?

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Uncertainty is a model knowing that it does not know

Prediction
20 - - Predictive mean
+ Taining data
15 A Epistemic uncertainty
10 -
n A simple example: More the training data, lesser the

0.0 - L uncertainty
-0.5
1.0 - o
_1.5 1 L Ll ] | L ]

=15 -1.0 -0.5 0.0 0.5 10 15
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SCAN ME

Uncertainty is a model knowing that it does not know

LeNet (1998)
CIFAR-100

ResNet (2016)
CIFAR-100

0.

T
gl
D, -~
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Eng
(=]
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I
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<

Avg. confidence

0 02 04 06 0.8 1.0

Bl Outputs
1 Gap

Error=44.9

Il Outputs
1 Gap

Error=30.6

Larger the model, more misplaced is a network’s
confidence

On ResNet, the gap between prediction accuracy
and its corresponding confidence is significantly
high

On OOD data, uncertainty is not easy to quantify

0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 0.8 1.0
Confidence
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Uncertainty
Types of Uncertainty

@ Training data
- Underlying Data
Generator

SCAN ME

Probing the Purview of Neural Networks
via Gradient Analysis

Two major types of uncertainty: Uncertainty in data and uncertainty in model

High data
uncertainty

@ Training data

___ Underlying Data
Generator

— Model 1

- Model 2

Low data
uncertainty

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

High model

uncertainty

Low model
uncertainty

[Tutorial] | [Ghassan AIRegib and Mohit Prabhushankar] | [June 4, 2023]
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A

survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.

@ Training data
___ Underlying Data
Generator

Out of
distribution

Out of
distribution
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data

However, what is L?

Abnormal data distribution

* |In anomaly detection, the loss was between the input and

its reconstruction
* In prediction tasks, there is neither the reconstructed input

or ground truth

Backpropagated
Gradients

9o (fo ())

Gr Georgia
Tech.
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Uncertainty in Neural Networks
Principle

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data
P = Predicted class
Q, = Contrast class 1

Q, = Contrast class 2 However, what is L?
Backpropagated * In anomaly detection, the loss was between the
Gradients input and its reconstruction
dL(P, Q1) « In prediction tasks, there is neither the

00 reconstructed input or ground truth

 We backpropagate all possible classes -
Q1, Q. ...Qy by backpropagating N one-hot

vectors
Backpropagated « Higher the distance to all classes, higher the
Gradients uncertainty score
Learned Representation dL(P,Q>)
a0
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Uncertainty in Neural Networks
Deriving Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Introspective Features
Gradients =« = = = 37 (%
Weights, W, . .
L M N Normalized and vectorized
aw, y=1 gradients are introspective
\ features
X = se::,mgk Vwl (3. y1)
etwor
f@) - 3
I 9=3 Why vector of all 1s? The theory is
fi-1(x . presented in [1]
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Uncertainty in Neural Networks
Deriving Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 2: Take L2 norm of all generated gradients

. Collection of Lsiquared L2 norm Ve, J(80; x, yc)”z Vo, J(On; 1, J’c)”z =
Vo ’ ’

-

.i j.j*; ‘*ﬁ*ﬁ*

L]

1! |

. ¢ .
0= 4.'I'_é9 —4'_9i —H AT _a_aw ...+.'i'i —_— A «EFLE Y .= .T.A.i’ - - 1-"4. ' .;-1-4.; -P.i.i M.b‘- — Ay s e -—

H -

s & 9 s & e s & o s & e . P s & e - PO & & o . s o L & e . P . P . PO s o e P . s e - P & . ,
o K & ¢ $ & I K $ ¢ o ¢
& & F & & S & F S & S & ° & & ° & & & & & 8§ &S & & & s & S & &F S & ¥ & F S & & &P & & & S & &P & & ¢

Network Parameters

MNIST: In-distribution, SUN: Out-of-Distribution
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Gradient-based Uncertainty
Uncertainty Results in OOD setting

Probing the Purview of Neural Networks
via Gradient Analysis

B B ) 7
17.5 T 3.0 0.4
5 10 6
15.0 - S5
4 5
12.5 8 0.3 Datasets
T 2.0
N 4 B MNIST
) 10.0 3 - 6 B SVHN
— 1.5
> 75 3 B TinylmageNet
2 4 BN LSUN
1.0
5.0 2 B CIFAR-10
1 2
2.5 0.5 1
0.0 = 0 = o - 0.0 = 0 -

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

Gr Georgia
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Gradient-based Uncertainty
Uncertainty Results in Adversarial Setting

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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MODEL ATTACKS BASELINE  LID M(V) M®P) MFE) M(P+FE) OURS

FGSM 51.20 90.06 81.69 84.25 99.95 99.95 93.45
BIM 49.94 99.21 87.09 89.20 100.0 100.0 96.19
RESNET C&W 53.40 76.47 74.51 75.71 92.78 92.79 97.07
PGD 50.03 67.48 56.27 57.57 65.23 75.98 95.82
ITERLL 60.40 85.17 62.32 64.10 85.10 92.10 98.17
SEMANTIC 52.29 86.25 64.18 65.79 83.95 84.38 90.15
FGSM 52.76 98.23 86.88 87.24 99.98 99.97 96.83
BIM 49.67 100.0 89.19 89.17 100.0 100.0 96.85
C&W 54.53 80.58 75.77 76.16 90.83 90.76 97.05
DENSENET  py 49.87  83.01 7039 6652 8694  83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84 98.53
SEMANTIC 53.54 81.41 62.16 62.15 67.98 67.29 89.55
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Gradient-based Uncertainty
Uncertainty Results to Detect Challenging Conditions

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Gaussian Noise Defocus Blur  Gaussian Blur Spatter

Brightness Snow

* A
! \ :
‘. 2l 41 ”w'.

" - -

No Decolor-
Challenge ization
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Gradient-based Uncertainty

Uncertainty Results to Detect Challenging Conditions

34 of 184

g Method Mabhalanobis [12] / Ours
8| Comuption | Levell  Levelz  Leveld  Levlld  Level5
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
- GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
9: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44/83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
é DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
g Exposure 74.90 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91

EEEEEEEEEEEEEEEEEEEEEEE
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Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Gaussian Noise Defocus Blur  Gaussian Blur Spatter
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Gradient-based Uncertainty

Uncertainty Results to Detect Challenging Conditions

35 of 184

g Method Mabhalanobis [12] / Ours
8| comuption | Levll  Levelz  Leveld  Levld  Levels
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
- GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
9: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44/83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
é DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
g Exposure 74.90 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

« Anomaly scores: How close to the training data is the novel data at inference?
* Uncertainty scores: How close to the best possible network is the trained network?
« Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous
data data

Grad-CAM : Why No- Why No-Left, rather
Left? than Stop?

Certain objects  Uncertain objects ‘Why P’ ‘Why P, rather
than Q?’
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
What are Visual Explanations?

SCAN ME

« Explanations are defined as a set of rationales used to understand the reasons behind a
decision

 If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed
Corralations Contras;[i.\_/e

N

What if Bullmastiff was not in | Why Bullmastiff, rather than a

Bullmastiff Why Bullmastiff? the image? Boxer?
42 of 184 IEEE [Tutorial] | [Ghassan AIRegib and Mohit Prabhushankar] | [June 4, 2023] Gr Georgia
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SCAN ME

Explainability matters establishes trust in deep learning systems by developing transparent
models that can explain why they predict what they predict to humans

Algorithm
b l . Output
Explainability is useful in: { Pl J 0 =) H ﬂ
NN Ny : =—\/=\ /2] class scores
« Medical: help doctors diagnose L | AE ] ‘.,}f. =
» Seismic: help interpreters label seismic A= TE =
d ata Noemalization Noemalization
« Autonomous Systems: build appropriate Deep models act as algorithms that take
trust and confidence data and output something without
being able to explain their methodology
43 of 184 ‘IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] 3 ‘OLIVES‘_ f Georgia
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusion

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted
probabilities change

= M "\ il i P(elephant) = 0.95

b <
Hl
5
8

A gray patch or patch of average pixel value of the dataset
Note: not a black patch because the input images are
centered to zero in the preprocessing.

Gr Georgia
Tech.
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusion

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted
probabilities change

P(elephant) = 0.95

12

\ 13
These pixels <iim - _
affect decisions =y Ay P(elephant) =0.75
more e x— x.f 1;

\ll -;: ;; Dense

192 128 .,
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Explanations
Input Saliency via Occlusion

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

SCAN ME

The network is trained with image- labels, but it is sensitive to the common visual regions in

images

African elephant, Loxodonta africana

| {m
§C
E)

12 128 .. -
Pociing 0.
\ &
N 3 I P o |
a r‘\ \ \ A ~
T\ /f_ 0 O e S |
192 128 \/ 2048 \/ 2088
AT AT
EWN NV N\ 1000
41 | o || |Dense
192 128 -
Pooling
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Gradients

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

Input

However, localization remains an issue
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Gradient and Activation-based Explanations

GradCAM

SCAN ME

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» To find the important activations that are
responsible for a particular class

 \We want the activations:

 Class-discriminative to reflect decision-
making

* Preserve spatial information to ensure
spatial coverage of important regions

49 of 184
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Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.




SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

#{>—M % Boxer Image Classification
3

y
Rectified Conv

Feature Maps global average pooling

= o i)
A y c 1 dy°
—{ TasK-specific &, = — =
.................... Retwork E Z Z Z 0AF,
' ) ) 2 %
! €—— Gradients : A1,
i ——> Activations ! = i 5
i K # | gradients via backprop
4—) c L E : c Ak
Backprop till conv LGrad—C AM — R@L U (84 k A
4 B4 k
Grad-CAM (up-sampled to original image dimension) _ ~
linear combination
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Grad-CAM generalizes to any task:
* Image classification
* Image captioning

Visual question answering

e efc. i

Image Classification

y
Rectified Conv
Feature Maps
(or)
A ey
TagRgpecific ] "] A cat lying on Image Captioning
___________________ Netwaork P the ground
E «<—— Gradients E
E ——> Activations !
N e ! A (or)
—_ % Q Visual
Backprop RNN/LSTM I Question Answering
till conv )
Grad-CAM
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Extensions of GradCAM

SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Counterfactual Observed
Corralations Contras;[i}./e

N

BuIImastiff Why BuIImastiff’? What if Bullmastiff was not in | Why Bullmastiff, rather than a

the image? Boxer?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if P is not there in the Image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain a¢ for each kernel k

<€ C | Boxer . .
|
|:I' >—M : i } mage Classification

y

Rectified Conv
Feature Maps global average pooling

N
7 TN
Al s G- L 3 Oy
ask-specific — —

.................. Network k 7z OHAE.

- mmmnos, P g ij
! <«—— Gradients ! W

A i i : p i '\\ > C . .
e IR 47 gradients via backprop

....................

4—) C E : c Ak

Backprop till conv LGrad-C AM — RelL U 8% A

oy°¢ 2

What if Bullmastiff was not in oAk “ i
the image? ; s

linear combination

Negating the gradients effectively removes these regions from analysis
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

‘:S—M % Boxey }Image Classification

y

Rectified Conv
Feature Maps global average pooling

55 sika B )
Al g . Z Z 8J(P,Q)
— TagK-specific Q. = — —
.................... Network / . AL
E <«—— Gradients E W ? % J
Activations | 5“5—;|"%'| a](é gradients via backprop

....................

Backprop till conv Lg}rad-C AM — ReLU (8% Z A
daJ(P,Q) 3

Why Bullmastiff, rather than a " PYX: w _
Boxer? i ’ i riads
inear combination
Contrast-CAM

Backpropagating the loss highlights the differences between classes P and Q.
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Gradient and Activation-based Explanations
Results of GardCAM, Counterfactual CAM, and ContrastCAM

T @i 2023

SCAN ME

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

ImageNet dataset : ’ Grad-CAM : Why Representatuve Why Spoonbill, rather Representative Pig Why Spoonbill, rather Why not Spoonbill,
Soonblll Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?

ImageNet dataset : | Grad-CAM : Why : Bull Why Bull Mastiff, Representative Blue jay [  Why Bull Mastiff,
BuII Mastiff Masnff? imae rather than Boxer image rather than Blue jay?

wD

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?

_—
— -
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Gradient and Activation-based Explanations
Results of GardCAM, Counterfactual CAM, and ContrastCAM

T (@ 2023

SCAN ME

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

ImageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather Representative Plg Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image lhan Flamingo? image than Pig? with 100% confidence?

I

(ié

Representative Boxer Why Bull Mastiff, Representative Bluejay Why Bull Mastiff,
image rather than Boxer image rather than Blue jay?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Results of GardCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

SCAN ME

Human
Interpretable

ImageNet dataset : ‘ Grad-CAM : Why Representative Why Spoonbill, rather Repre ntative Plg Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence? S G d_
@\w ame as Gra
A ' * ! CAM
K¢ o Lo N k
7\ ; P>
- & ) "

&
’ .

&

e St > 3 ™y N
Representative Boxer Why Bull Mastiff, Why Bull Mastiff,

image rather than Boxer rather than Blue jay?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations e
Results of GardCAM, Counterfactual CAM, and ContrastCAM SCA;'ME

Contrastive Contrastive
Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

Input
Image

Human
Interpretable

X = § vHD
& —dl ,” s
Grad-CAM : Why Representative Why Spoonbill, rather Representative Pig ’ Why Spoonbill, rather | Why not Spoonbill,
than Flamingo? image than Pig? with 100% confidence? Sa m e aS G rad -

Spoonbill? Flamingo image
1/ S
[ CAM
/» \ > P
x p
v

|"' 1 i
v

ImageNet dataset : | Grad-CAM : Why : Bull Representauve Boxer Why Bull MaStlff Representatlve Blue jay | Why Bull Mastiff, Why not Bull Mastiff,
_Bull Mastiff Mastlff? ra!her than Boxer image rather than Blue jay? | with 100% confidence?

Why Bugatti, rather Why not Bugatti with

Why Convertible, Representative Audi A6
than Audi A6? 100% confidence?

rather than Coupe? image

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti
Bugatti Convertible Bugatti Convertible? Coupe image
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Only traffic sign with a straight
> bottom-left edge — enough to
say Not STOP Sign’
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Case Study 1: Leveraging anomaly scores, uncertainty scores, and explanations for
Robust Recognition

;3“7’NEUF£AL.NFORMAT,ON Introspective Learning: A Two-Stage
»} PROCESSING SYSTEMS ~ Approach for Inference in Neural Networks

Monhit Prabhushankar, PhD Ghassan AlRegib, PhD
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop Dumb-bell
_’

Even natural images Manhole cover
can fool a DNN, SRR
because it might focus :
on the picture's colour,
texture or background
rather than picking out
the salient features a
human would
recognize.

Racket

enature

Georgia
Tech.
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

How would humans resolve this challenge?

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bull mastiff?

69 of 184 Iﬁi 2 ﬂ 2 3 [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

EEEEEEEEEEEEEEEEEEEEEEEEEEEE



SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspectlon
S U |
- Visual Sensing 1 Reflection

| .. .

: |

+ Sense .plnk feathers, Why Spoonbill, rather than Flamingo?
straight beak x does not have an S-shaped neck

Spoonbill Why Spoonbill, rather than Crane? : _
y x does not have white feathers : »SpOOnblH
! y

o Why Spoonbill, rather than Pig? :
 Feed-Forward . B x's leg and neck shapes are :
- Sensing I different !
| -,
--------------- ol —-—-—-—-—-—-—-—-—-—-—-—-—-—-I
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Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection

Introspection in Neural Networks
SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Counterfactual Observed
Corrdlations Contras;[i.\_/e

N

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?
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Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form Why
P, rather than Q?’where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the networks prediction
f(x) =9, introspection in f (-) is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Gradients as Features

Why 5, rather than 0?

Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Gradients as Features

For a well-trained network, the gradients are sparse and informative

T .| |

I Informative sparse features
| Why 5, rather than 0?\Why 5, rather than 1? |

g — E——— 1 IA \
Why 5, rather than 27? Why 5, rather than 4?
I
- " . | - n B
\
’ Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features
Gradients =« = = =

a]@r}'l)

Weights, W,

Normalized and vectorized
gradients are introspective

features
X -+ Sensing \
Network .
£0) Vector of all ones: A confounding label!
\ J

Y
fiL-13(x)
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Introspection in Neural Networks
Utilizing Gradient Features

Approach for Inference in Neural
Networks

Gradients =« = = =
Weights, W,

Introspective Features

X —» Sensing
Network

Vwl(3.y1)

)

Y
fiL-13(x)

[

4————————0——0————);*

Txm

MLP
H()

M vectorized
and normalized
gradients

Introspecti\}e Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

v v
SIUF

No Decolor- Lens Dirty Gaussian
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Introspection in Neural Networks
Generalization and Calibration

.~~~_ CIFAR-10C

Networks
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Legend
Feed-Forward Networks ® ResNet-18 @ ResNet-34 @ ResNet-50 ResNet-101
After Introspection ® ResNet-18 ResNet-34 @ ResNet-50 ResNet-101
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Plug-in Nature of Introspection

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
Drostrenve TR Introspection is a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% netWO rkS a nd on a ny
SIMCLR (39) FEED-FORWARD 70.28% down Stream taSk'
INTROSPECTIVE 73.32% )
AUGMENT NOISE (28) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (2%) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Case Study 2: Leveraging anomaly scores, uncertainty scores, and explanations for
Anomalous object classification

Detecting and Classifying Anomalies in Artificial
Intelligence Systems

£

Gukyeong Kwon, PhD Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Amazon AWS Postdoc, Georgia Tech Professor, Georgia Tech
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Aberrant Object Detection
Deriving Gradient Features

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features

Gradients = = = — - \

bl L L M Uncertainty: We took energy of
all gradients
Robustness: We trained a new
network

X | Sensing Aberrant Objects: We take
e variance across gradients from

object detector

\ )

|
fir-13(x)

Gr Georgia
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Aberrant Object Detection
Aberrance Detection

Uncertainty using variance of introspective gradients rather than energy of gradients
: \ o L ' ,...".u, g , 1.0

0.8

L o, A v. L 0.6
At

0.2

0.0

» Object detection algorithms would pick up on all the trained objects

» The gradient-based uncertainty approach picks up only the aberrant object — objects that bear a
resemblance to novel classes
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Uncertainty using variance of introspective gradients rather than energy of gradients

Faster-RCNN Faster-RCNN

Faster-RCNN

car 0.946 < car 0.934

car 0.949

car 0.987 person 0.9
person Ol9L7

car 6lagg ”
car 0.999 person 0.946. persen-0:942789

car 1.000

-

person=0s9970.998

0.996
persor person 0.994 persoR&ISen

Proposed
Proposed
Proposed

0.c
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Use the uncertain boxes for obtaining labels from annotators

Proposed

Proposed Proposed

Use new annotations for subsequent training in an active learning setting

86 of 184 Iﬁi 2023 [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] \OLIVES / Gl" Georgia
¥ EUCLY DY) Tech.

Parchami, Armin, et al. "Variance of gradient based active learning framework for training perception
algorithms." U.S. Patent Application No. 17/172,854.



Objectives
Takeaways from Part Il

Part |: Challenges in Perception and Autonomy

Part |l: Deep Learning for Perception

Part lll: Existing Deep Learning solutions to Challenges in Perception
* |tis not always clear if aberrant events and challenges must be incorporated in training
 Instead, they can and should be equipped with diagnostic tools at predictions

» These diagnostic tools are anomaly and uncertainty scores for decision making and contextual
explainability for post-hoc stakeholders

» Gradients provide the change induced by an aberrant event in the network and can be used to obtain
the required prediction diagnosis

Part IV: Key Takeaways and Future Directions
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