A Holistic View of Perception in Intel. Vehicles Part III: Deep Learning at Inference

Objectives Objectives in Part III

- Challenging conditions at training
- Inference
 - Deficiencies at Inference
- Overcoming deficiencies at Inference
 - Anomaly Detection
 - Uncertainty
 - Explainability
- Case study 1: Robustness to challenging conditions
- Case study 2: Aberrant Object Detection

2 of 184

Perception in AVs Technical Challenges

- Challenging weather
- Challenging sensing
- Challenging environments
- Context awareness
- Embedded perception
- V2X perception

3 of 184

Challenging Conditions in Deep Learning Integrating Challenging Conditions in Training

The most novel/aberrant samples should not be used in early training

- The first instance of training must occur with less informative samples
- Less informative:
 - Highway scenarios
 - Parking
 - No accidents
 - No aberrant events

Novel samples = Most Informative

4 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Georgia Tech

Benkert, R., Prabushankar, M., AlRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: A Second Order Approach to Active Learning. *IEEE Transactions on Artificial Intelligence*.

Challenging Conditions in Deep Learning Integrating Challenging Conditions in Training

Subsequent training must not focus only on novel data

Catastrophic Forgetting

- The model performs well on the new scenarios, while forgetting the old scenarios
- A. number of techniques exist to overcome this trend
- However, they affect the overall performance in large-scale settings
- It is not always clear **if and when** to incorporate novel scenarios in training

Handle challenging conditions at Inference!

5 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." *Nature communications* 12.1 (2021): 2549.

Ability of a system to predict correctly on novel data

Novel data sources:

- Test distributions
- Anomalous data
- Out-Of-Distribution data
- Adversarial data
- Corrupted data
- Noisy data

6 of 184

New classes

Model Train

At Deployment

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Ability of a system to predict correctly on novel data

Novel data sources

- Test distributions
- Anomalous data
- Out-Of-Distribution data
- Adversarial data
- Corrupted data
- Noisy data

7 of 184

. . .

New classes

Trained Model — Cat

Inference

Deficiencies at Inference

"The best-laid plans of sensors and networks often go awry"

- Engineers, probably

8 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Inference Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

- Anomaly scores: How *close* to the training data is the novel data at inference?
- Uncertainty scores: How close to the *best* possible network is the trained network?
- Contextual Explainability: How *relevant* are the network explanations for its prediction?

9 of 184

Inference Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

- Anomaly scores: How *close* to the training data is the novel data at inference?
- Uncertainty scores: How close to the *best* possible network is the trained network?
- Contextual Explainability: How *relevant* are the network explanations for its prediction?

10 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Backpropagated Gradient Representations for Anomaly Detection

Gukyeong Kwon, PhD Amazon AWS

11 of 184

Mohit Prabhushankar, PhD Postdoc, Georgia Tech

Ghassan AlRegib, PhD Professor, Georgia Tech

Anomalies Finding Rare Events in Normal Patterns

Backpropagated Gradient Representations for Anomaly Detection

'Anomalies are patterns in data that do not conform to a well defined notion of normal behavior'^[1]

Statistical Definition:

- Normal data are generated from a stationary process P_N
- Anomalies are generated from a different process $P_A \neq P_N$

Goal: Detect ϕ_1

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

12 of 184

[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages

Anomalies Steps for Anomaly Detection

Backpropagated Gradient Representations for Anomaly Detection

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

- Step 1 ensures that patches from natural images live close to a low dimensional manifold
- Step 2 designs distance functions that detect *implausibility* based on constraints

Constraining Manifolds General Constraints

SCAN ME

Backpropagated Gradient Representations for Anomaly Detection

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, "Latent space autoregression for novelty detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.

14 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Constraining Manifolds Gradient-based Constraints

Backpropagated Gradient Representations for Anomaly Detection

Activation Constraints

Activation-based representation (Data perspective)

e.g. Reconstruction error (\mathcal{L})

How much of the input does not correspond to the learned information?

Gradient Constraints

Gradient-based Representation (Model perspective)

 $\begin{array}{c} W \\ \overline{\partial W} \\$

How much **model update** is required by the input?

15 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," 2020

Gradients provide directional information to characterize anomalies Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution Xout x_{out} Backpropagated $g_{\phi}(f_{\theta}(\cdot))$ Reconstruction Gradients Error (\mathcal{L}) $\partial \mathcal{L}$ $\partial \mathcal{L}$ $g_{\phi}(f_{\theta}(\cdot))$ $\partial \theta, \partial \phi$ \hat{x}_{out} $x = x_{out}$ \hat{x}_{out} Reconstructed image manifold

۲

16 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," 2020

Constraining Manifolds Advantages of Gradient-based Constraints

Backpropagated Gradient Representations for Anomaly Detection

GradCON: Gradient Constraint

Activations vs Gradients

AUROC Results

Abnormal "class" detection (CIFAR-10)

18 of 184

Normal Abnormal

2023

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon	0.659	0.356	0.640	0.555	0.695	0.554	0.549	0.478	0.695	0.357	0.554
$+ \operatorname{Grad}$	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE	Recon	0.553	0.608	0.437	0.546	0.393	0.531	0.489	0.515	0.552	0.631	0.526
	Latent	0.634	0.442	0.640	0.497	0.743	0.515	0.745	0.527	0.674	0.416	0.583
VAE + Grad	Recon	0.556	0.606	0.438	0.548	0.392	0.543	0.496	0.518	0.552	0.631	0.528
	Latent	0.586	0.396	0.618	0.476	0.719	0.474	0.698	0.537	0.586	0.413	0.550
	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

- (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- (CAE vs. VAE) Performance sacrifice from the latent constraint
- (VAE vs. VAE + Grad) Complementary features from the gradient constraint

GradCON: Gradient Constraint

Aberrant Condition Detection

Recon: Reconstruction error, Grad: Gradient loss

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Abnormal "condition" detection (CURE-TSR)

2023

Normal

19 of 184

Abnormal

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," 2020

Inference Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

- Anomaly scores: How *close* to the training data is the novel data at inference?
- Uncertainty scores: How close to the *best* possible network is the trained network?
- Contextual Explainability: How *relevant* are the network explanations for its prediction?

20 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

IEEE Access

Probing the Purview of Neural Networks via Gradient Analysis

Jinsol Lee, PhD Candidate

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

21 of 184

Uncertainty What is Uncertainty?

Probing the Purview of Neural Networks via Gradient Analysis

Uncertainty is a model knowing that it does not know

A simple example: More the training data, lesser the uncertainty

22 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Uncertainty When is uncertainty an issue?

Probing the Purview of Neural Networks via Gradient Analysis

Uncertainty is a model knowing that it does not know

- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high
- On OOD data, uncertainty is not easy to quantify

23 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Guo, Chuan, et al. "On calibration of modern neural networks." *International conference on machine learning*. PMLR, 2017.

Uncertainty Types of Uncertainty

Probing the Purview of Neural Networks via Gradient Analysis

Two major types of uncertainty: Uncertainty in data and uncertainty in model

24 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A survey of uncertainty in deep neural networks. *arXiv preprint arXiv:2107.03342*.

Uncertainty in Neural Networks Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input or ground truth

26 of 184

Uncertainty in Neural Networks Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

P = Predicted class Q_1 = Contrast class 1 Q_2 = Contrast class 2

However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input or ground truth
- We backpropagate all possible classes - $Q_1, Q_2 \dots Q_N$ by backpropagating N one-hot vectors
- Higher the distance to all classes, higher the uncertainty score

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Uncertainty in Neural Networks Deriving Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

28 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Uncertainty in Neural Networks Deriving Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

MNIST: In-distribution, SUN: Out-of-Distribution

29 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradient-based Uncertainty Uncertainty Results in OOD setting

Probing the Purview of Neural Networks via Gradient Analysis

Squared L2 distances for different parameter sets

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

30 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradient-based Uncertainty Uncertainty Results in Adversarial Setting

SCAN ME

Probing the Purview of Neural Networks via Gradient Analysis

Vulnerable DNNs in the real world

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

31 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Probing the Purview of Neural Networks via Gradient Analysis

MODEL	ATTACKS	BASELINE	LID	M(V)	M(P)	M(FE)	M(P+FE)	OURS
	FGSM	51.20	90.06	81.69	84.25	99.95	99.95	93.45
	BIM	49.94	99.21	87.09	89.20	100.0	100.0	96.19
DECNET	C&W	53.40	76.47	74.51	75.71	92.78	92.79	97.07
RESINET	PGD	50.03	67.48	56.27	57.57	65.23	75.98	95.82
	ITERLL	60.40	85.17	62.32	64.10	85.10	92.10	98.17
	SEMANTIC	52.29	86.25	64.18	65.79	83.95	84.38	90.15
	FGSM	52.76	98.23	86.88	87.24	99.98	99.97	96.83
	BIM	49.67	100.0	89.19	89.17	100.0	100.0	96.85
DENSENET	C&W	54.53	80.58	75.77	76.16	90.83	90.76	97.05
DENSENET	PGD	49.87	83.01	70.39	66.52	86.94	83.61	96.77
	ITERLL	55.43	83.16	70.17	66.61	83.20	77.84	98.53
	SEMANTIC	53.54	81.41	62.16	62.15	67.98	67.29	89.55

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

32 of 184

2023

Probing the Purview of Neural Networks via Gradient Analysis

Same application as Anomaly Detection, except there is no need for an additional AE network!

CIFAR-10-C

CURE-TSR

33 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradient-based Uncertainty Uncertainty Results to Detect Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

aset	Method	Mahalanobis [12] / Ours							
Dati	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5			
CIFAR-10-C	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99			
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0			
	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0			
	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96			
	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87			
	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92			
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0			
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83			
CURE-TSR	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81			
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65			
	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53			
	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70			
	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90			
	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66			
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88			
	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91			

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

34 of 184

Gradient-based Uncertainty Uncertainty Result

48.37 / 62.36 60.55 / 81.30 71.73 / 89.93 87.29 / 95.42 89.68 / 96.91

esults	to Det	ect Ch	allengi	ng Cor	nditions)			
			C	•					SCA
	Mah	alanobis [12] /	Ours						
Level 1	Level 2	Level 3	Level 4	Level 5					
96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99	Gaussia	in Noise	Defocus Blu	ur Gaus	ssian Blur
94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0					1
94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0	and the second s				1.
93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96	Brigh	those	Spow		Fog
91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87	Bign	uless			r og
93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92					2 de
95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0			(Maria		
93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83					
25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81					
48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65	(arap)	0700			0705
66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53	STUP	STUP	SIOP	SIDP	STUP
29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70	STOP	STOP	1100	STOP	STOP
74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90	No	Decolor-	Lens	Dirty	Exposure
28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66	Challenge	ization	Blur	Lens	Exposure
66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88					

Spatter

Probing the Purview of Neural Networks via Gradient Analysis

ľ 2023

Dataset

CIFAR-10-C

CURE-TSR

35 of 184

Method

Corruption

Noise

LensBlur

GaussianBlur

DirtyLens

Exposure

Snow

Haze

Decolor

Noise

LensBlur

GaussianBlur

DirtyLens

Exposure

Snow

Haze

Decolor

[Tutorial] [Ghassan AlRegib and Mohit Prabhushankar] [June 4, 2023]

Inference Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

- Anomaly scores: How *close* to the training data is the novel data at inference?
- Uncertainty scores: How close to the best possible network is the trained network?
- Contextual Explainability: How relevant are the network explanations for its prediction?

40 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

41 of 184

Explanations What are Visual Explanations?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

- Explanations are defined as a set of rationales used to understand the reasons behind a decision
- If the decision is based on visual characteristics within the data, the decision-making reasons are visual explanations

42 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

Explanations Why Explainability?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Explainability matters establishes trust in deep learning systems by developing *transparent* models that can explain *why they predict what they predict* to humans

Explainability is useful in:

- Medical: help doctors diagnose
- Seismic: help interpreters label seismic data
- Autonomous Systems: build appropriate trust and confidence

Algorithm

Deep models act as algorithms that take data and output something **without** being able to **explain** their methodology

43 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

Explanations Role of Visual Explanations

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

44 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

Explanations Input Saliency via Occlusion

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted probabilities change

A gray patch or patch of average pixel value of the dataset Note: not a black patch because the input images are centered to zero in the preprocessing.

45 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Explanations Input Saliency via Occlusion

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted probabilities change

more

46 of 184

[Tutorial] [Ghassan AlRegib and Mohit Prabhushankar] [June 4, 2023]

OLIVES

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Explanations Input Saliency via Occlusion

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

The network is trained with image- labels, but it is sensitive to the common visual regions in images

African elephant, Loxodonta africana

47 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

0.6

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output

Input

However, localization remains an issue

48 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

Gradient and Activation-based Explanations GradCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output. Activations provide the localization.

- To find the important activations that are responsible for a particular class
- We want the activations:
 - Class-discriminative to reflect decisionmaking
 - **Preserve spatial information** to ensure spatial coverage of important regions

49 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradient and Activation-based Explanations GradCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN to assign importance values to each activation for a particular decision of interest.

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradient and Activation-based Explanations GradCAM

Grad-CAM generalizes to any task:

- Image classification
- Image captioning
- Visual question answering

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

SCAN ME

2023

• etc.

[Tutorial] [Ghassan AlRegib and Mohit Prabhushankar] [June 4, 2023]

Gradient and Activation-based Explanations Extensions of GradCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

GradCAM provides answers to '*Why P*?' questions. But different stakeholders require relevant and contextual explanations

58 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

In GradCAM, global average pool the negative of gradients to obtain α^c for each kernel k

Negating the gradients effectively removes these regions from analysis

59 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradient and Activation-based Explanations ContrastCAM: Why P, rather than Q?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to last conv layer

Backpropagating the loss highlights the differences between classes P and Q.

60 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

WIV 2023

61 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

> Human Interpretable

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

62 of 184

REE INTELLIGENT VEHICLES SYMPOSIUM Prabhushankar, M., Kwon, G., Temel,

Stanford Cars Dataset:

Bugatti Convertible

Grad-CAM: Why

Bugatti Convertible?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Human Interpretable

Same as Grad-CAM

2023

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Representative Bugatti

Coupe image

Georgia Tech

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In *2020 IEEE International Conference on Image Processing (ICIP)* (pp. 3289-3293). IEEE.

Why Convertible,

rather than Coupe?

Representative Audi A6

image

Why Bugatti, rather

than Audi A6?

Why not Bugatti with

100% confidence?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Human Interpretable

Same as Grad-CAM

Not Human Interpretable

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

65 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Georgia

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

66 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Case Study 1: Leveraging anomaly scores, uncertainty scores, and explanations for Robust Recognition

Introspective Learning: A Two-Stage Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

NEURAL INFORMATION

PROCESSING SYSTEMS

67 of 184

Robustness in Neural Networks Why Robustness?

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they are too different from the types of image used to train the network.

Even natural images can fool a DNN, because it might focus on the picture's colour, texture or background rather than picking out the salient features a human would recognize.

onature

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

68 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Robustness in Neural Networks Why Robustness?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

How would humans resolve this challenge?

We Introspect!

- Why am I being shown this slide?
- Why images of muffins rather than pastries?
- What if the dog was a bull mastiff?

69 of 184

Introspection What is Introspection?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

70 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted questions.

What are the possible targeted questions?

71 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What are the possible targeted questions?

72 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form `Why *P*, rather than *Q*? 'where *P* is a network prediction and *Q* is the *introspective class.*

Technical Definition : Given a network f(x), a datum x, and the network's prediction $f(x) = \hat{y}$, introspection in $f(\cdot)$ is the measurement of change induced in the network parameters when a label Q is introduced as the label for x..

73 of 184

[Tutorial] [Ghassan AlRegib and Mohit Prabhushankar] [June 4, 2023]

Introspection in Neural Networks Gradients as Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

For a well-trained network, the gradients are sparse and informative

74 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Introspection in Neural Networks Gradients as Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

For a well-trained network, the gradients are sparse and informative

75 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Introspection in Neural Networks Deriving Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

76 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Introspection in Neural Networks Utilizing Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspective Features

77 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Georgia

Introspection in Neural Networks When is Introspection Useful?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

78 of 184

[Tutorial] [Ghassan AlRegib and Mohit Prabhushankar] [June 4, 2023]

Introspection in Neural Networks Generalization and Calibration

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

79 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing robustness techniques.

Methods		ACCURACY
ResNet-18	Feed-Forward Introspective	67.89% 71.4 %
DENOISING	Feed-Forward Introspective	65.02% 68.86 %
Adversarial Train (27)	Feed-Forward Introspective	68.02% 70.86 %
SIMCLR (19)	Feed-Forward Introspective	70.28% 73.32 %
Augment Noise (28)	Feed-Forward Introspective	76.86% 77.98 %
Augmix (24)	Feed-Forward Introspective	89.85% 89.89 %

Introspection is a **plug-in approach** that works on all networks and on any downstream task!

80 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Case Study 2: Leveraging anomaly scores, uncertainty scores, and explanations for Anomalous object classification

Detecting and Classifying Anomalies in Artificial Intelligence Systems

Gukyeong Kwon, PhD Amazon AWS

Mohit Prabhushankar, PhD Postdoc, Georgia Tech

Ghassan AlRegib, PhD Professor, Georgia Tech

82 of 184

Aberrant Object Detection Deriving Gradient Features

Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

83 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Aberrant Object Detection Aberrance Detection

Uncertainty using variance of introspective gradients rather than energy of gradients

- Object detection algorithms would pick up on all the trained objects
- The gradient-based uncertainty approach picks up only the *aberrant* object objects that bear a resemblance to novel classes

84 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, Ghassan, et al. "Detecting and Classifying Anomalies in Artificial Intelligence Systems." U.S. Patent Application No. 17/633,878.

Aberrant Object Detection Complementary to object detectors

Uncertainty using variance of introspective gradients rather than energy of gradients

85 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, Ghassan, et al. "Detecting and Classifying Anomalies in Artificial Intelligence Systems." U.S. Patent Application No. 17/633,878.
Aberrant Object Detection Active Learning

Use the uncertain boxes for obtaining labels from annotators

Use new annotations for subsequent training in an active learning setting

86 of 184

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Georgia Tech

Parchami, Armin, et al. "Variance of gradient based active learning framework for training perception algorithms." U.S. Patent Application No. 17/172,854.

Objectives Takeaways from Part III

- Part I: Challenges in Perception and Autonomy
- Part II: Deep Learning for Perception
- Part III: Existing Deep Learning solutions to Challenges in Perception
 - It is not always clear if aberrant events and challenges must be incorporated in training
 - Instead, they can and should be equipped with diagnostic tools at predictions
 - These diagnostic tools are anomaly and uncertainty scores for decision making and contextual explainability for post-hoc stakeholders
 - Gradients provide the change induced by an aberrant event in the network and can be used to obtain the required prediction diagnosis
- Part IV: Key Takeaways and Future Directions

87 of 184

