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Objectives
Obijectives in Part IV

« Takeaway Messages and Key Insights

« Unaddressed Challenges in Perception
» Context Awareness
 Embedded Perception
« V2X Perception

* Future Research Directions
« Temporal Processing
« Sensor Processing Architectures
« Sensors research
* Infrastructure + AV Datasets
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* Robustness under challenging conditions, environments, context and surroundings-awareness are

challenges in AV perception
« Deep Learning provides a holistic solution to a number of the above challenges

« Transfer Learning and training at scale help to create foundation models
» Self-supervised Learning provides a framework for large scale learning on unannotated data

* |tis not always clear if aberrant events and challenges must be incorporated in training
» Instead, model predictions must be equipped with diagnostic tools at inference
» These diagnostic tools are anomaly and uncertainty scores for decision making and contextual
explainability for post-hoc stakeholders
» Gradients provide the change induced by an aberrant event in the network and can be used to obtain
the required prediction diagnosis
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Perception in AVs

Unaddressed Technical Challenges for Level 3 Automation

» Challenging weather

« Challenging sensing

« Challenging environments
» Context awareness

- Embedded perception

« V2X perception
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» Foundation models are great but the real-time feasibility
is an issue

« The inaccuracies from model outputs is dangerous in
urban settings
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Perception in AVs

Unaddressed Technical Challenges for Levels 4 and 5

Foundation models with multiple sensor modalities

» Challenging weather

« Challenging sensing

« Challenging environments
« Context awareness

- Embedded perception

« V2X perception
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Kim, J., Kim, J., & Cho, J. (2019, December). An advanced object classification strategy using YOLO through
camera and LiDAR sensor fusion. In 2019 13th International Conference on Signal Processing and
Communication Systems (ICSPCS) (pp. 1-5). IEEE.
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Perception in AVs
Unaddressed Technical Challenges for Levels 4 and 5

Foundation models with multiple sensor modalities and on temporal data

» Challenging weather

« Challenging sensing

« Challenging environments
« Context awareness

- Embedded perception

« V2X perception

[ ]
Stage2: Learning Region-based Relation
Spatial Encoding Temporal Encoding Regional Relation Extraction
a
e fs N fm hye € R™<En hxw . )
M | .y / Ry, € R
Ty ; ' l e
e ! 5 z
: £% — - HE /: v | romapete Ly :
QR ¢ = i Excy 7
{ g 1 time, 4 ./ )
s h .. """ izl ’ fs Intra-Regional Inter-Regional [ ]
) Temporal Dynamics Relations
w

6 of 184

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based
Relation Learning," IEEE Transactions on Intelligent Transportation Systems, submitted on Dec. 28 2022
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Levels 4 and 5 automation relies on roadside
infrastructure to obtain high-resolution predictions
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Future Direction 1
Temporal processing of data

Temporal processing # Linear spatial processing

Stage2: Learning Region-based Relation

Spatial Encoding Temporal Encoding Regional Relation Extraction
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Future Direction 2
Sensor processing architectures

Vision data processing was revolutionized by CNNs

Language data processing was revolutionized by
Transformers

aljeep'L_earning-~'
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LIDAR, RADAR Commurity LIDAR data processing is revolutionized by

RADAR data processing is revolutionized by ?
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Future Direction 3
More data with less sensors!

4 Fisheye cameras provide a 360 degree surround view of the car

Results from Zero-shot (i.e. using the trained model out of the box) Segment Anything Model on Woodscape
dataset

Important context and
objects are not
segmented
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Future Direction 4
Infrastructure + AV Datasets

Abundance of egocentric AV datasets! Dearth of Infrastructure + AV datasets

* Infrastructure datasets: Stationary
sensors at traffic junctures, streets,
heavy pedestrian traffic areas etc.

 Infrastructure + AV datasets: Egocentric
sensors on vehicles + stationary
sensors for the same scenes
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Some Memes to Wrap it Up
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