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Deep Learning
Expectation vs Reality

People’s expectation of Al and Deep Learning
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Deep Learning

Expectation vs Reality
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LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop

Even natural images
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks
often go awry”

- Engineers, probably
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Deep Learning
Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Novel data sources:

* Test distributions

« Anomalous data
e Out-Of-Distribution data
 Adversarial data

» Corrupted data

* Noisy data

* New classes

Gr Georgia
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

»  Model Representation
A
@
Low Information ©0 - - ‘o -
) (X X » The first instance of training must occur with
2 ¢ less informative samples
o \@ o L L
& B . . .
% ® ® ®  Ex: For autonomous vehicles, less informative
z means
o . .
2;:, « Highway scenarios
« Parking
B o in _ * No accidents
1 niormation
- * No aberrant events
Samples @ Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
9 . : . .
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Deep Learning at Training

Overcoming Challenges at Training: Part 2

Test Accuracies (%)

Subsequent training must not focus only on novel data
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Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1

The model performs well on the new
scenarios, while forgetting the old scenarios

A number of techniques exist to overcome this
trend

However, they affect the overall performance
in large-scale settings

It is not always clear if and when to
incorporate novel scenarios in training

Where to handle novel data?
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Deep Learning at Inference
Overcoming Challenges at Inference

We handle novel data at Inference!!

Model Train At Inference

Novel data sources:

 Test distributions
 Anomalous data

« Out-Of-Distribution data
* Adversarial data

» Corrupted data

* Noisy data

* New classes

9 of 166 Eﬁﬂj(r// [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Gr Georgia
Tech.

Kuala Lumpur



Objective

Objective of the Tutorial

To present methodologies to handle novel data at inference using gradients of neural networks
At the end of the tutorial you will be able to

Observed

Observed

Obse \ed
CO{ﬁ?ﬁons Counterfactual Contrﬁ"ve

Why Bullmastiff, rather
than a Boxer?

hat if Bullmastiff was

Why Bullmastiff? i not in the image?
Obtain fine-grained explanations

e 3',
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Perform Out-Of-Distribution and Anomaly Detection

Construct XAl techniques for Image Quality Assessment
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To present methodologies to handle novel data at inference using gradients of neural networks

 Part 1: Gradients in Neural Networks
» Neural network basics, gradient descent, and properties of gradients

« Part 2: Gradients as Information
* Visual explanations, robust recognition

« Part 3: Gradients as Uncertainty
* Anomaly, Out-Of-Distribution, corruption, and adversarial detection

» Part 4. Gradients as Expectancy-Mismatch
* Image Quality Assessment, human visual saliency

 Part 5: Conclusion and Future Directions

Georgia
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Interpretation, and Applications of Gradients
Part I: Gradients in Neural Networks
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Objectives
Obijectives in Part 1

At the end of Part 1 you will be able to

gl Trainable
Feature Classifier
>

2

1. Describe the basics of neural networks

Ex. LeCun, 2015

2. Discuss the role of L(O).
gradients in optimization :

X

L(9)
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Deep Learning
Overview

Low-Level| |Mid-Level| [High-Level Trainable
—_— — —
Feature Feature Feature Classifier

Ex. LeCun, 2015
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Deep Learning

Neurons
The underlying computation unit is the Neuron
.&%% Artificial Neuron
i . E E%{NPKI,I/@/
Artificial neurons consist of: .. N\
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Deep Learning
Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

input layer

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
* An input layer (Layer 0)
* An output layer (Layer K)
» Zero or more hidden (middle) layers (Layers 1...K — 1)

Gr Georgia
Tech.
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Low-Level| |Mid-Level| |High-Level Trainable
e 1 — |
Feature Feature Featu{e Classifier

Ex. LeCun, 2015
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15,000x increase in 5 years
Transformers, Large Language and Foundation Models GPT-31T

1 trillion

The number of parameters in models has

increased exponentially g Magatron-Tiing
: 530B
v 2
© ™D
o .
=
GPT-3 /
1758
Inception-v3 ) : '
® bEE B Transformers BERT GPT-2 GPT-288 T5 Turing-NLG
Network In Network ® ® Inception-v4 65M 340M 1.58 8.3B 118 178
. . : . MID 2018 2019 MID LATE 2020 MID LATE 2022
2015 2015 ) Rty 18 2017 2019 2019 2020 2021

® i ® ® Time
VGG : Xception ResNeXts
i

Inception-vi ®

ResNets ®
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Training Neural Networks
Stochastically and via Gradient updates

Iteratively reduce a loss function L(0) to find the optimal parameters 6
L(6)

4

* 6 is a combination of weights and biases

« Compute the gradients of a loss function iteratively

and update the weights according to the update rule: GD = Gradient Descent

dL(0)
00
68 = Weights, biases

O(t+1)=06(t) —«a Gradient

/g Initial loss
t = Iteration step minimum o of |
loss & -4
a = Step Length o
L(8) = Loss function between prediction and ground -1 H_‘_ *_&FE >
truth o Oize 9
_ _ _ optimal weights initial weights
ala'(:) = Gradient w.r.t weights and biases (random)

190f166 B A 30tk [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] 0\OLIVES b Georgia
|
HICPB o QR

/ / J
J Kuala Lampur



Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
Cat cat |
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy

v
v

Gr Georgia
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20 of 166 l%%;((ﬁ [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Kuala Lampur



Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
Cat cat |
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
@)
O O

v
v
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(O) Dog Dog
Cat car [N
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
© @)
O O

v
v
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(O) Dog Dog
Cat car [N
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
@) . o @)
@) o ©
@)

v
v

Gr Georgia
Tech.

23 of 166 l%%;((ﬁ [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Kuala Lampur



Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
/ Cat cor [
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
A A O
@) . o @)
o @)
@) 0O o

v
v
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
/ Cat cor |
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
A A ‘
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Our Goal

To Characterize Data at Inference

Goal: Given the novel data point, the network, and its prediction, characterize the data as a
function of the learned knowledge

Given |
Predicted
Class Probability
Network f(0)
2 ., Dog
Stop
Horse
Bird
Represent the novel green
. . . traffic sign as a function of the
Our Clalm: Gradlents prOVIde the learned red traffic S|gn

methodology!
G ez
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)

27 of 166 E\hﬂi(r// [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] Gr Georgia
1 Tech.

Kuala Lumpur




Challenges at Inference
Manifolds at Inference

However, at inference only the test data point is available and the underlying structure of the
manifold is unknown

In Practice |deal Goal

L(6) Trained network knowledge is
not easily accessible

0o

Represent the novel green
traffic sign as a function of the
learned red traffic sign

Existing methodologies estimate this manifold using
surrogate networks and validation data at inference.
However, they lose generalization performance.

A A
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Challenges at Inference
Existing Solutions

Kim et.al.’ use a KNN classifier on validation data at inference to characterize new test data

Additional validation

B data :
L(g) .| Trained netvyork knowledge is — L(O) -
‘ not easily accessible -1, :

::>?\\ » /04
08 07 - e /<)6
> us>?f“\\ ot 0
83" Tl us 1
2 s .
0, 0

The surrogate (approximate) manifold is derived

Cons of surrogates: , from K-Nearest Neighbors search
1. Requires a validation set at inference

2. Computationally impractical scale
3. Authors show that performance on anything greater than MNIST is comparable/worse than baseline
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Relevant Properties of Gradients
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

|deal
L(e) 1 ~4
. | / a Vg L(0) provides local information up to a small
sole” | e distance a away from x
02 48” 07 g ’ : //(05
. 06 o4 s 027_?‘\///0& 91
0 g

A
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Relevant Properties of Gradients
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(09)

===l Path 1?
Which direction should we
===p Path 2? optimize towards (knowing

X only the local information)?
& /@ ===  Path 37
" O *0
L) O
-, Negative of the gradient provides the descent direction
ook | //m/ towards the local minima, as measured by L(6)
S = - ; //Zos
<ol 5% Dz}.\\ﬁ//"na 91
60 X o !

The exact nature and utility of this directional information is discussed in Part 3
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Our Technical Goal
To Characterize the Learned Knowledge

o - At Inference

|/ Trained network knowledge is
not easily accessible

Representation Counterfactu_al
Traversal using Rgpresentqhons
Gradients using Gradients
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Relevant Properties of Gradients
Counterfactual Manifolds

Gradients allow interventions either on the data or the manifolds to create counterfactuals

© Original manifold with x

@ Counterfactual manifold with x'

p . Counterfactuals can be interpreted as changing the
L®) | manifold to fit the new data
’17 » //D‘ 02
° os 07 46 i . /(05
. 08 o4 a3 02>.0>_\///"/m=: 91
0 g
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Takeaways
Takeaways from Part 1

Part 1: Gradients in Neural Networks
* Deep Learning cannot easily generalize to novel data
* Novel data cannot always be handled during Training
» Gradients provide local information around the vicinity of x
« Gradients allow choosing the fastest direction of descent given a loss function L(8)
« Gradients allow interventions either on the data or the manifolds to create counterfactuals

Part 2: Gradients as Information

Part 3: Gradients as Uncertainty

Part 4: Gradients as Expectancy-Mismatch

Part 5: Conclusion and Future Directions
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