Interpretation, and Applications of Gradients Part 2: Gradients as Information

Objectives Objectives in Part 2

- Discuss three types of Information
- Interpret gradients as Fisher Information
- Visual Explanations
 - Explanatory Paradigms: Correlations, Counterfactuals, and Contrastives
 - GradCAM
 - ContrastCAM
- Robust Recognition under Challenging Conditions: Introspective Learning
 - Introspective Features
 - Robustness measures: Accuracy and Calibration
 - Downstream Applications

Information Types of Information

Colloquially, information is the "surprise" in a system that observes an event

Shannon Information (Surprise of an event)

 $H[X] = -\sum_{i=1}^{N} p(x_i) \log_2 p(x_i)$

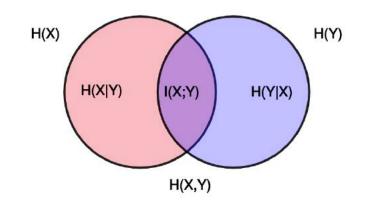
H[X] = Shannon Entropy $p(x_i) =$ Probability of event x_i

Connects surprise to probability

Mutual Information (Surprise conditioned on another event)

I(X;Y) = H[X] + H[Y] - H(X,Y)

H[X] = Shannon Entropy of X H[Y] = Shannon Entropy of Y H(X,Y) = Joint Entropy



Fisher Information (Surprise of underlying distribution)

$$(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

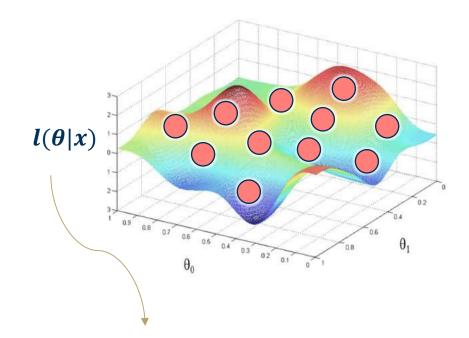
 θ = Statistic of distribution $\ell(\theta \mid x)$ = Likelihood function

Variance of the partial derivative w.r.t. θ of the Log-likelihood function $\ell(\theta \mid x)$.

Fisher Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



Likelihood function instead of loss manifold

From before, $I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$

Using variance decomposition¹, $I(\theta)$ reduces to:

 $I(\theta) = E[U_{\theta}U_{\theta}^{T}]$ where

 $E[\cdot] = \text{Expectation}$ $U_{\theta} = \nabla_{\theta} l(\theta | x)$, Gradients w.r.t. the sample

A key feature is that every sample draws information from the underlying distribution!

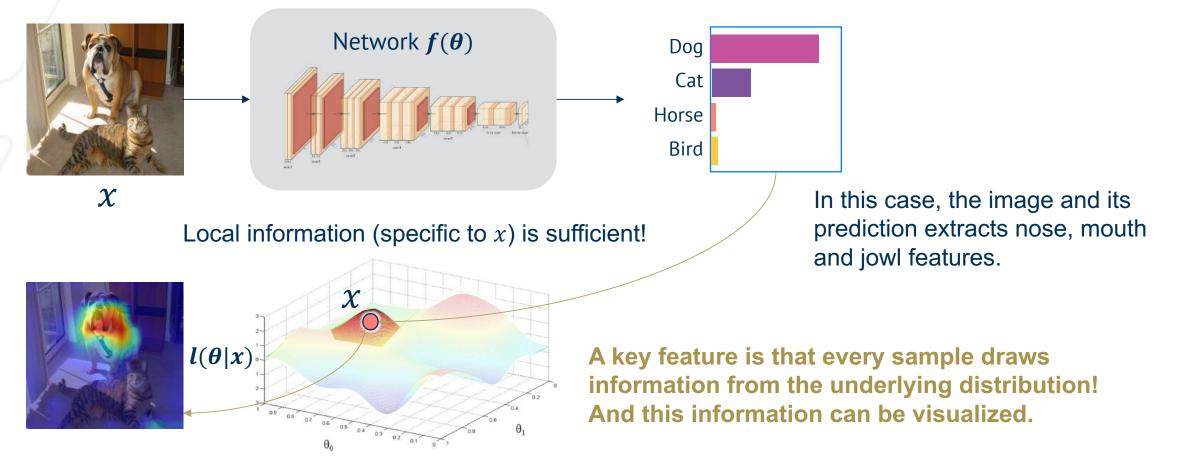
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-atfisher-information-2720c40867d8

Fisher Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

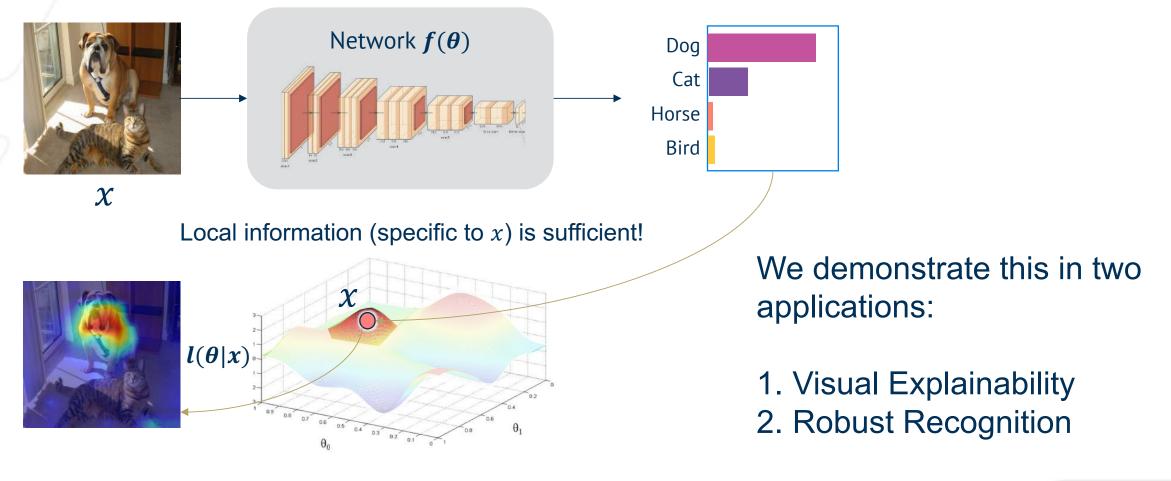
[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-

fisher-information-2720c40867d8

Applicability of Gradient Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



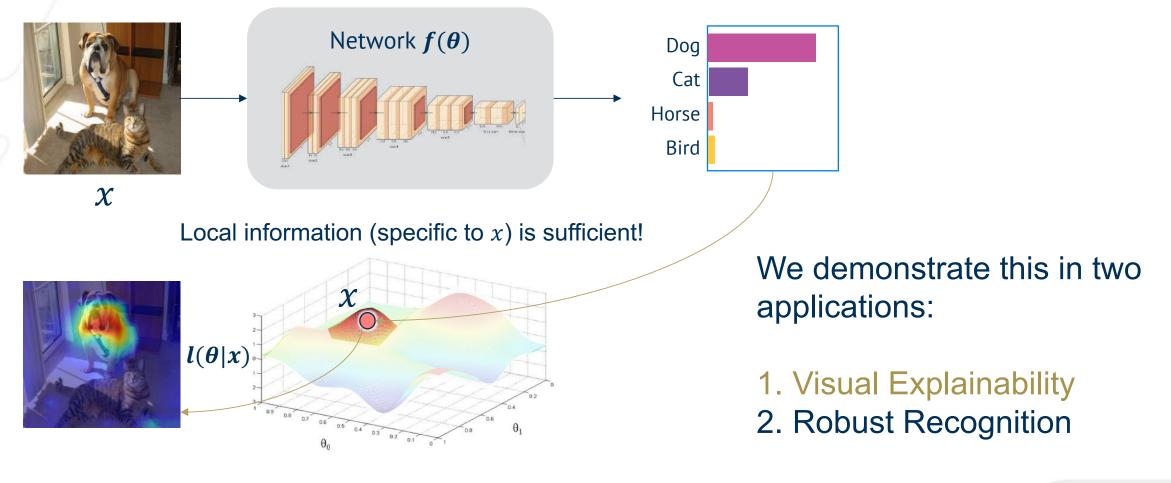
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-atfisher-information-2720c40867d8

Applicability of Gradient Information

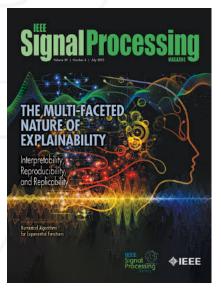
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-atfisher-information-2720c40867d8



Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

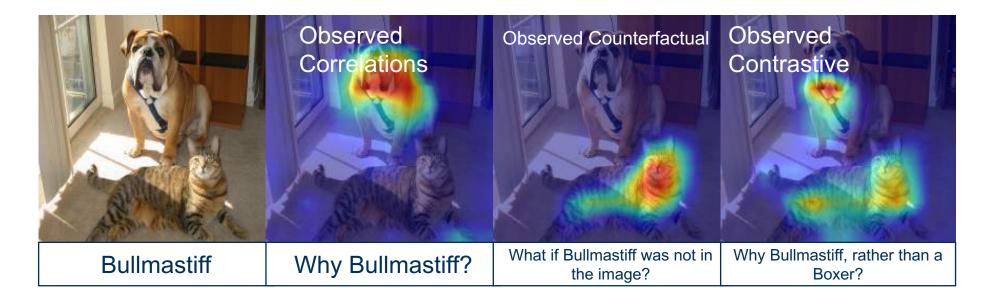
Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Explanations Visual Explanations

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

- Explanations are defined as a set of rationales used to understand the reasons behind a decision
- If the decision is based on visual characteristics within the data, the decision-making reasons are visual explanations



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

s useful in: octors diagnose

Data

Explainability establishes trust in deep learning systems by developing *transparent* models that can explain *why they predict what they predict* to humans

Explainability is useful in:

Explanations

Visual Explanations

- Medical: help doctors diagnose
- Seismic: help interpreters label seismic data
- Autonomous Systems: build appropriate trust and confidence

Deep models act as algorithms that take data and output something **without** being able to **explain** their methodology

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

Algorithm

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

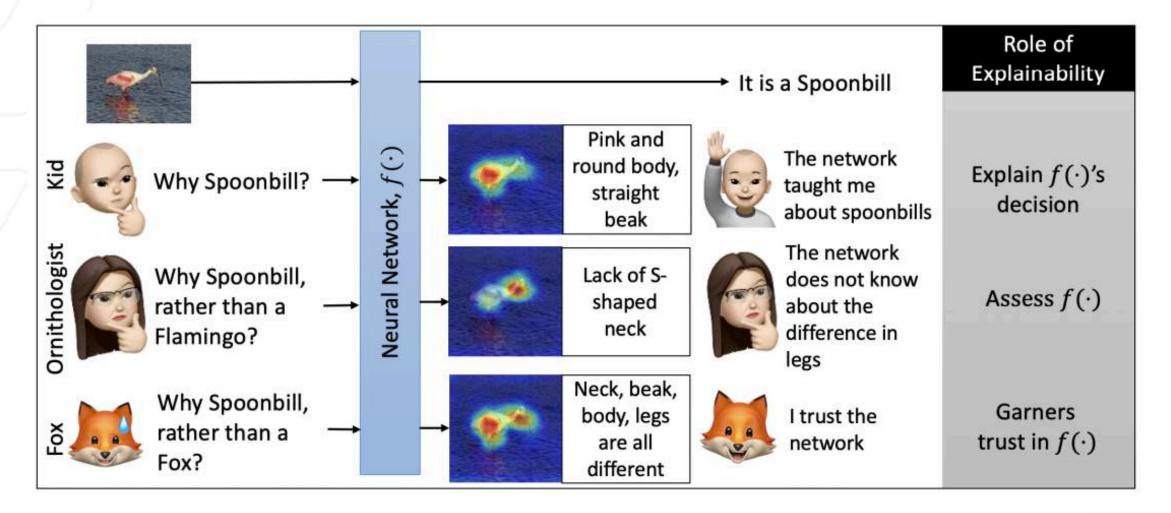
Output

44 of 166

Explanations

Role of Explanations – context and relevance

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

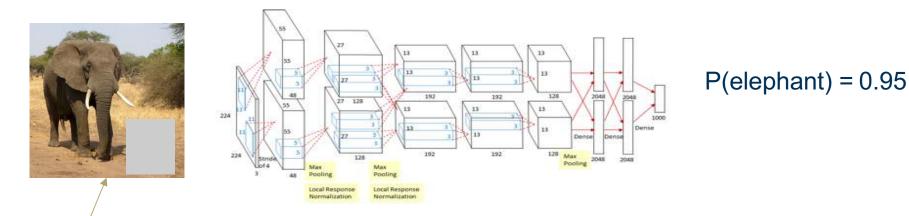
AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, *39*(4), 59-72.

Georgia

Explanations Input Saliency via Occlusions

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted probabilities change



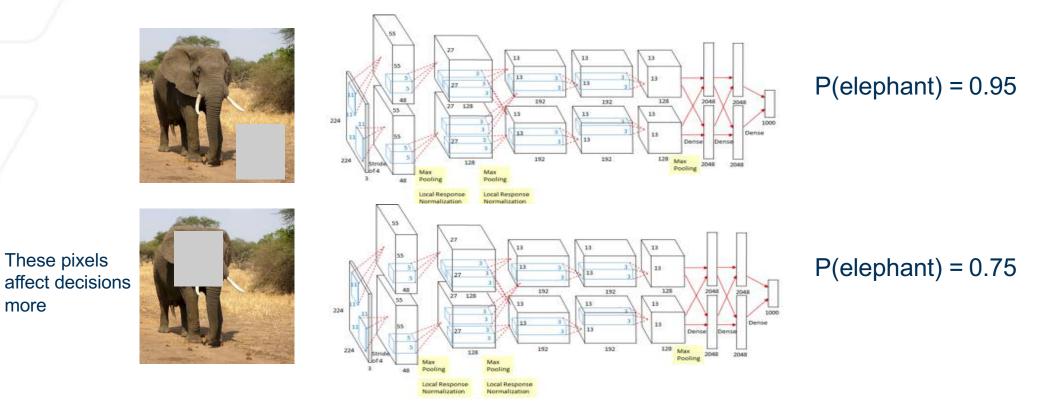
A gray patch or patch of average pixel value of the dataset Note: not a black patch because the input images are centered to zero in the preprocessing.

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Explanations Input Saliency via Occlusions

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted probabilities change



more

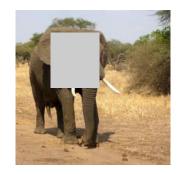
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

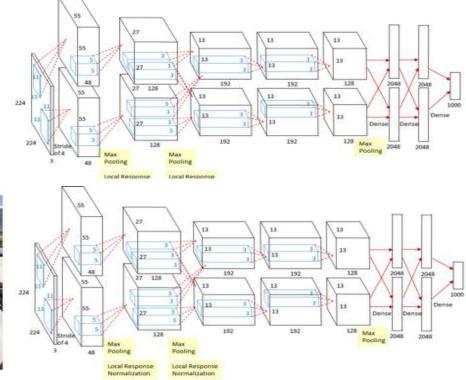
Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Explanations Input Saliency via Occlusions

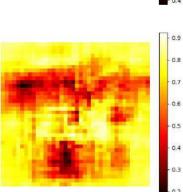
Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

The network is trained with image- labels, but it is sensitive to the common visual regions in images





African elephant, Loxodonta africana

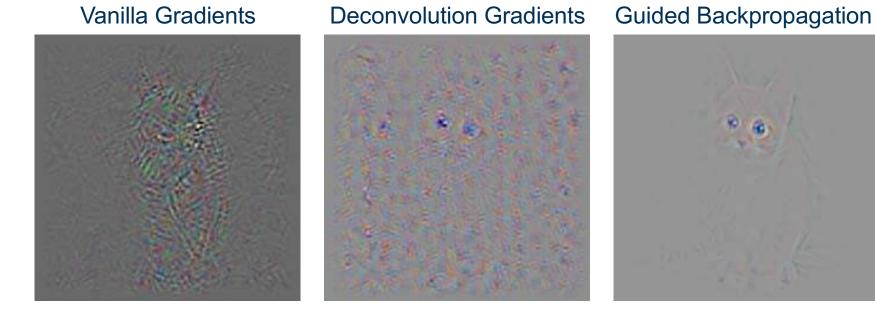


[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Gradients provide a one-shot means of perturbing the input that changes the output

Input



However, localization remains an issue

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Explanatory Paradigms in Neural Networks: Towards Relevant and

Contextual Explanations

SCAN ME

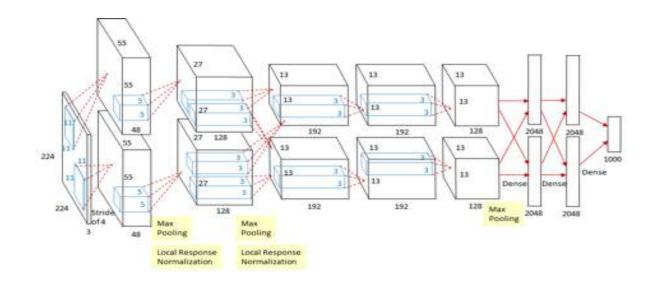
Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

Gradient and Activation-based Explanations GradCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output. Activations provide the localization.

- To find the important activations that are responsible for a particular class
- We want the activations:
 - Class-discriminative to reflect decisionmaking
 - **Preserve spatial information** to ensure spatial coverage of important regions



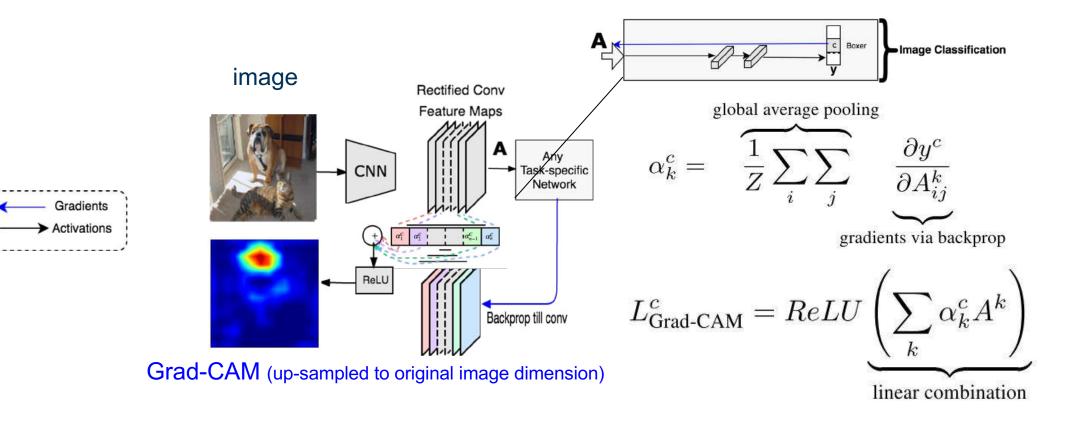
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradientbased localization." *Proceedings of the IEEE international conference on computer vision*. 2017.

Gradient and Activation-based Explanations GradCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN to assign importance values to each activation for a particular decision of interest.



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradientbased localization." *Proceedings of the IEEE international conference on computer vision*. 2017.

Gradient and Activation-based Explanations GradCAM

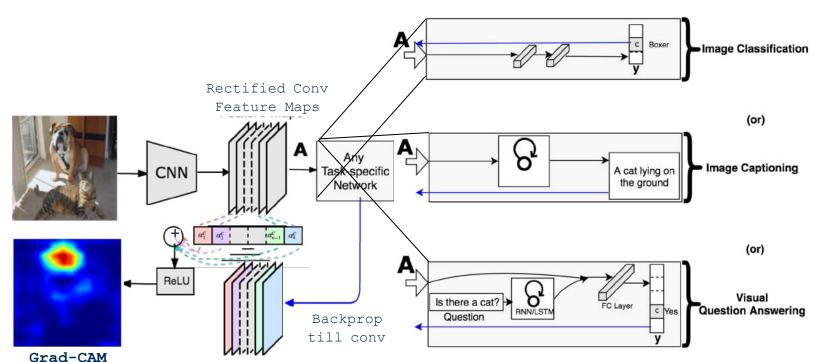
Grad-CAM generalizes to any task:

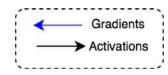
- Image classification
- Image captioning

• etc.

Visual question answering

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations





[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

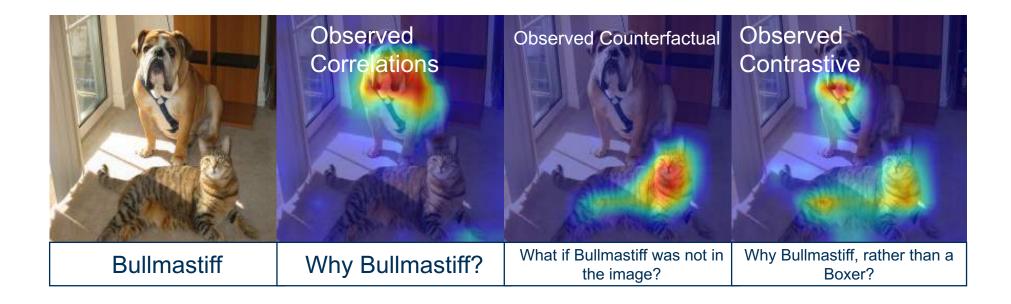
Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradientbased localization." Proceedings of the IEEE international conference on computer vision. 2017.

Gradient and Activation-based Explanations

Explanatory Paradigms

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

GradCAM provides answers to '*Why P*?' questions. But different stakeholders require relevant and contextual explanations



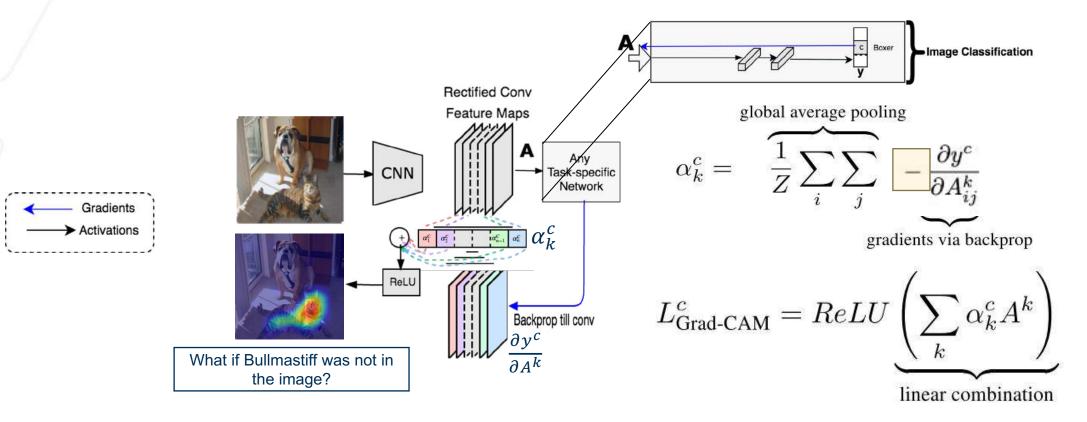
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.

Gradient and Activation-based Explanations

CounterfactualCAM: What if this region were absent in the image?

In GradCAM, global average pool the negative of gradients to obtain α^c for each kernel k



Negating the gradients effectively removes these regions from analysis

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradientbased localization." *Proceedings of the IEEE international conference on computer vision*. 2017.

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

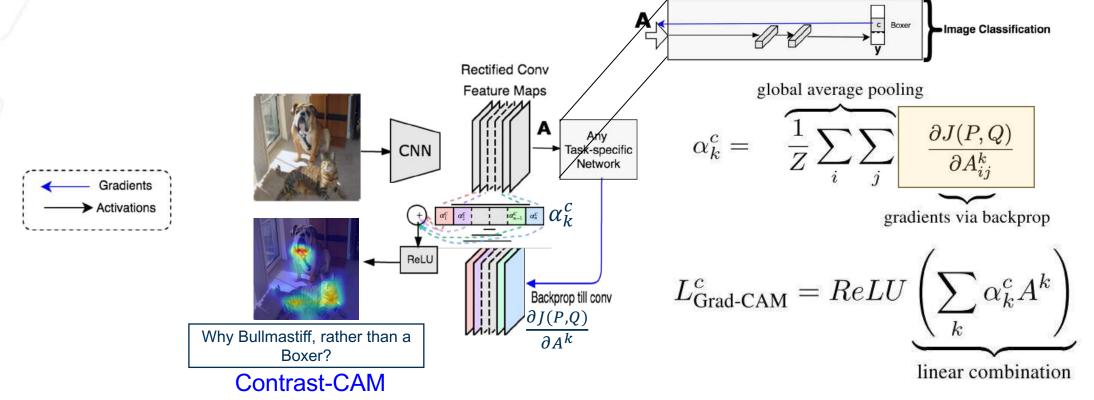
SCAN ME

Gradient and Activation-based Explanations

ContrastCAM: Why P, rather than Q?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to last conv layer



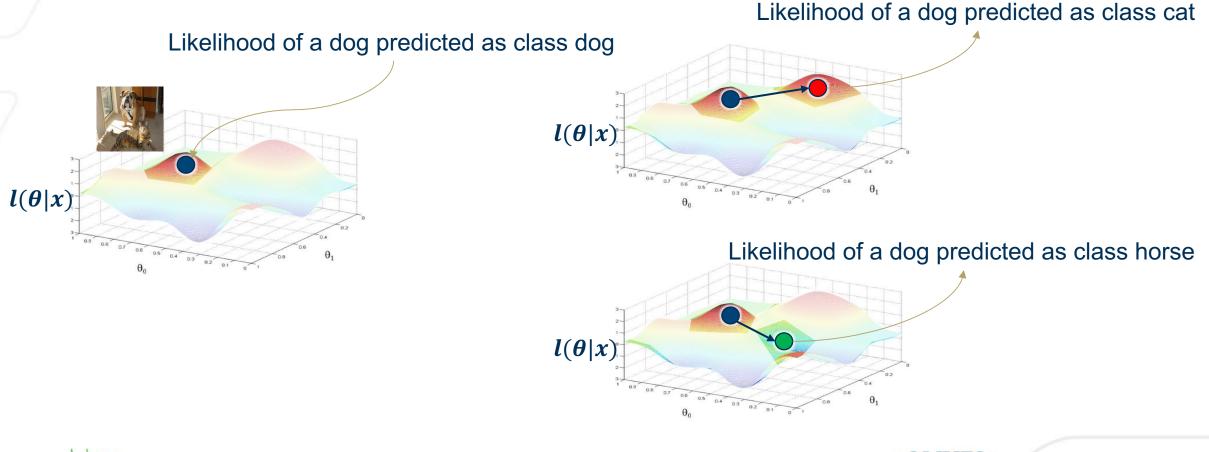
Backpropagating the loss highlights the differences between classes P and Q.

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Gr Georgia Tech

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

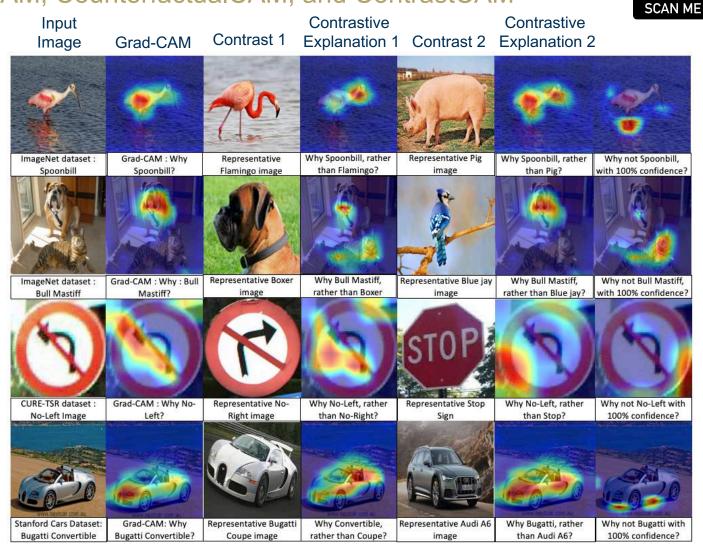
The contrast classes are unlikely, but the gradients provide information about contrast classes



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Gradient and Activation-based Explanations Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

SCAN ME Contrastive Contrastive Input Contrast 1 Explanation 1 Contrast 2 Explanation 2 Grad-CAM Image Why Spoonbill, rather ImageNet dataset : Grad-CAM : Why Representative **Representative Pig** Why Spoonbill, rather Why not Spoonbill Spoonbil Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence? Representative Boxer Why Bull Mastiff, Representative Blue jay Why Bull Mastiff, Grad-CAM : Why : Bull Why not Bull Mastiff ImageNet dataset : rather than Boxer rather than Blue jay? with 100% confidence? **Bull Mastiff** Mastiff? image image CURE-TSR dataset : Grad-CAM : Why No-Why No-Left, rather Representative No-Why No-Left, rather **Representative Stop** Why not No-Left with No-Left Image Left? **Right** image than No-Right? than Stop? 100% confidence? Sign Grad-CAM: Why Why Bugatti, rather Stanford Cars Dataset: Representative Bugatti Why Convertible, Representative Audi A6 Why not Bugatti with **Bugatti Convertible?** 100% confidence? **Bugatti Convertible** Coupe image rather than Coupe? image than Audi A6?

Gradient and Activation-based Explanations

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Human Interpretable

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

SCAN ME Contrastive Contrastive Input Contrast 1 Explanation 1 Contrast 2 Explanation 2 Grad-CAM Image Why Spoonbill, rather ImageNet dataset : Grad-CAM : Why Representative **Representative Pig** Why Spoonbill, rather Why not Spoonbill Spoonbil Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence? Representative Boxer Why Bull Mastiff, Grad-CAM : Why : Bull Representative Blue jay Why Bull Mastiff, Why not Bull Mastiff ImageNet dataset : rather than Boxer image with 100% confidence? **Bull Mastiff** Mastiff? image rather than Blue jay? CURE-TSR dataset : Grad-CAM : Why No-Why No-Left, rather Representative No-Why No-Left, rather **Representative Stop** Why not No-Left with No-Left Image Left? **Right** image than No-Right? Sign than Stop? 100% confidence? Grad-CAM: Why Representative Audi A6 Stanford Cars Dataset: Representative Bugatti Why Convertible, Why Bugatti, rather Why not Bugatti with **Bugatti Convertible?** rather than Coupe? than Audi A6? 100% confidence? **Bugatti Convertible** Coupe image image

Gradient and Activation-based Explanations

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

> Human Interpretable

Same as Grad-CAM

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

SCAN ME Contrastive Contrastive Input Contrast 1 Explanation 1 Contrast 2 Explanation 2 Grad-CAM Image Why Spoonbill, rather ImageNet dataset : Grad-CAM : Why Representative **Representative Pig** Why Spoonbill, rather Why not Spoonbill Spoonbil Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence? Representative Boxer Why Bull Mastiff, Why not Bull Mastiff Grad-CAM : Why : Bull Representative Blue jay Why Bull Mastiff, mageNet dataset : image rather than Boxer rather than Blue jay? with 100% confidence? **Bull Mastiff** Mastiff? image CURE-TSR dataset : Grad-CAM : Why No-Representative No-Why No-Left, rather Why No-Left, rather Why not No-Left with **Representative Stop** No-Left Image Left? **Right** image than No-Right? than Stop? 100% confidence? Sign Grad-CAM: Why Representative Audi A6 Stanford Cars Dataset: Representative Bugatti Why Convertible, Why Bugatti, rather Why not Bugatti with **Bugatti Convertible?** rather than Coupe? than Audi A6? 100% confidence? **Bugatti Convertible** Coupe image image

Gradient and Activation-based Explanations

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

> Human Interpretable

Same as Grad-CAM

Not Human Interpretable

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

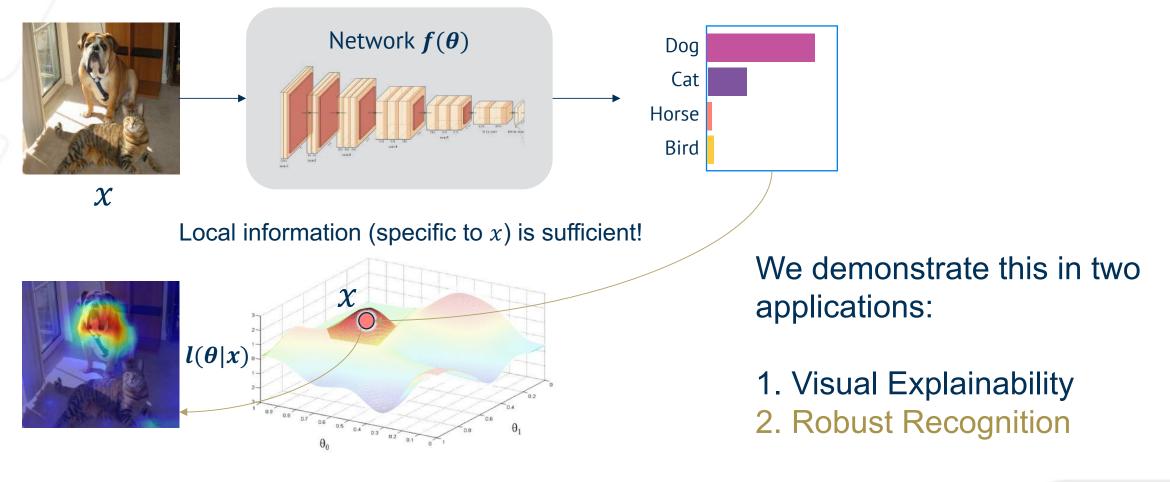
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Applicability of Gradient Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-atfisher-information-2720c40867d8

Introspective Learning: A Two-Stage Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD Postdoc

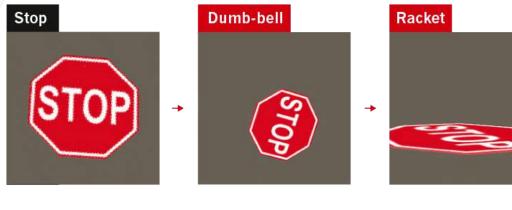
Ghassan AlRegib, PhD Professor

Robustness in Neural Networks

Why Robustness?

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they are too different from the types of image used to train the network.



Even natural images can fool a DNN, because it might focus on the picture's colour, texture or background rather than picking out the salient features a human would recognize.

onature

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

65 of 166

Robustness in Neural Networks Why Robustness?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

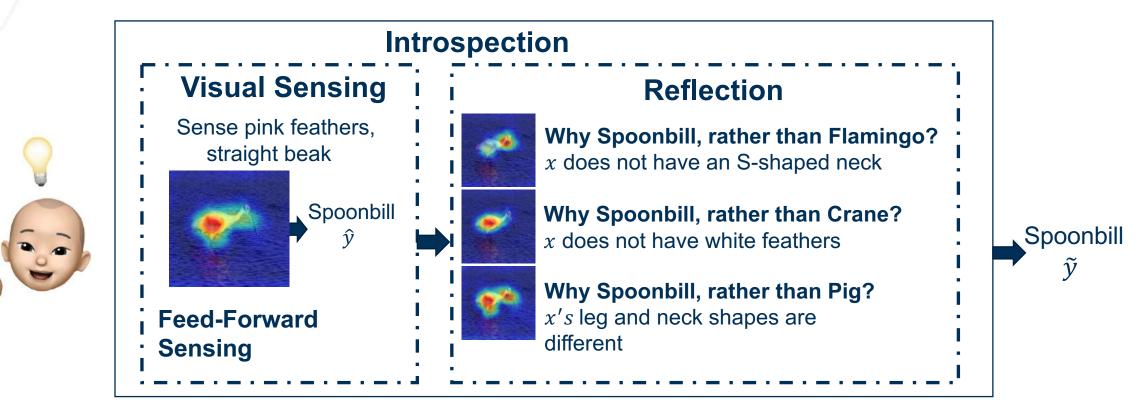
How would humans resolve this challenge?

We Introspect!

- Why am I being shown this slide?
- Why images of muffins rather than pastries?
- What if the dog was a bull mastiff?

Introspection What is Introspection?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Introspection Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted questions.

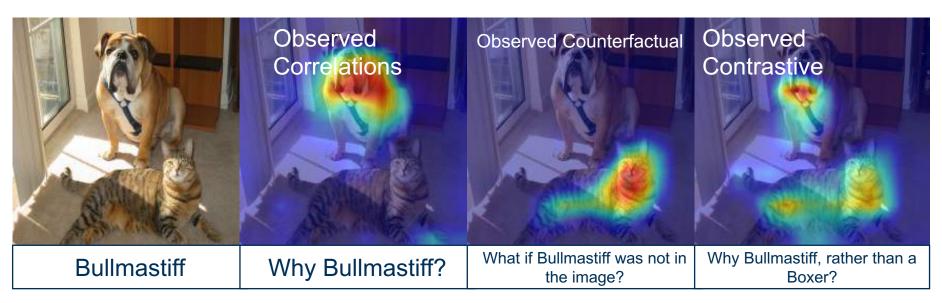
What are the possible targeted questions?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Introspection Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



What are the possible targeted questions?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form `Why *P*, rather than *Q*? 'where *P* is a network prediction and *Q* is the introspective class.

Technical Definition : Given a network f(x), a datum x, and the network's prediction $f(x) = \hat{y}$, introspection in $f(\cdot)$ is the measurement of change induced in the network parameters when a label Q is introduced as the label for x..

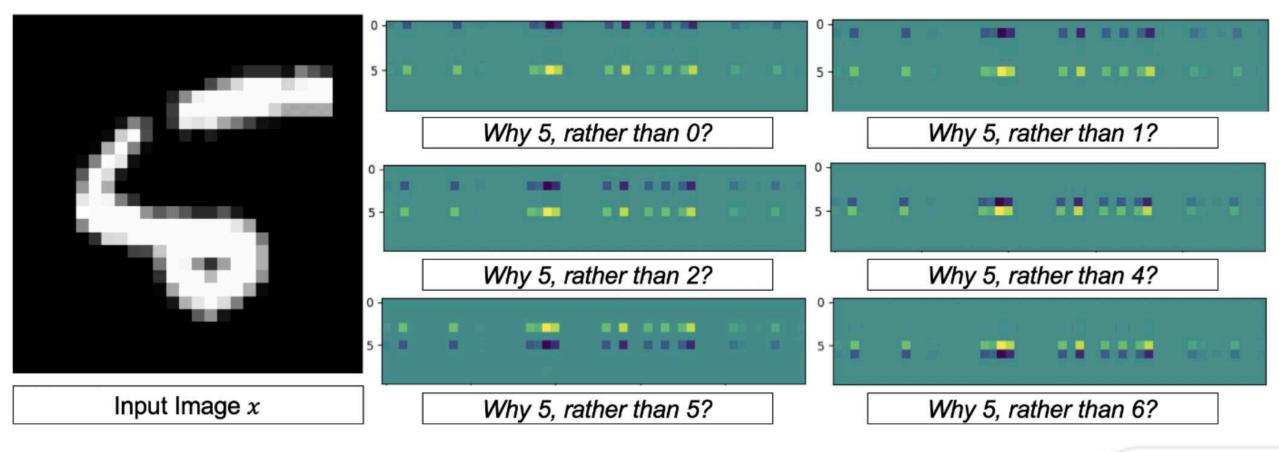
70 of 166

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022.

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

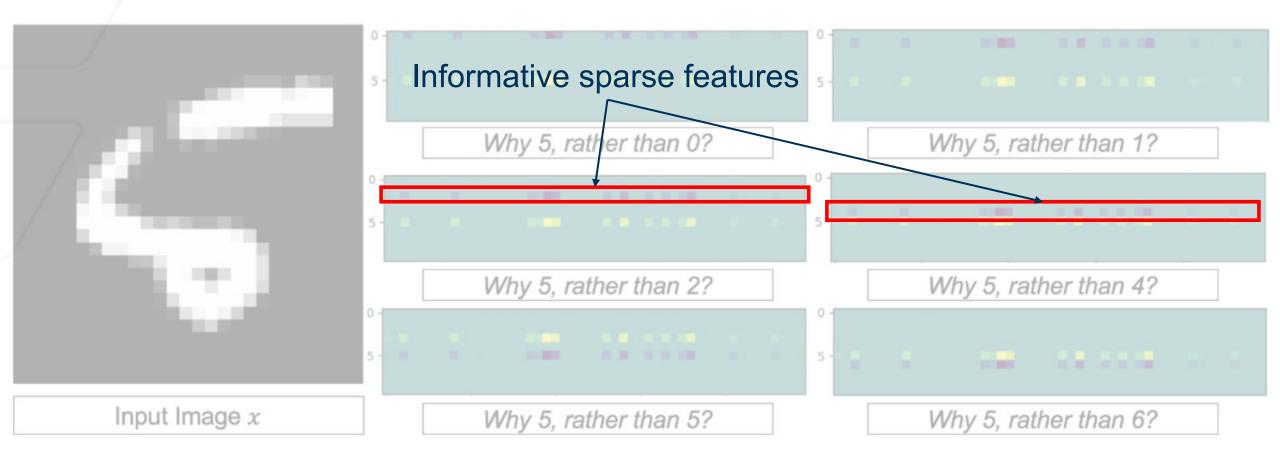
For a well-trained network, the gradients are sparse and informative



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspective Learning: A Two-stage **Approach for Inference in Neural Networks**

For a well-trained network, the gradients are sparse and informative

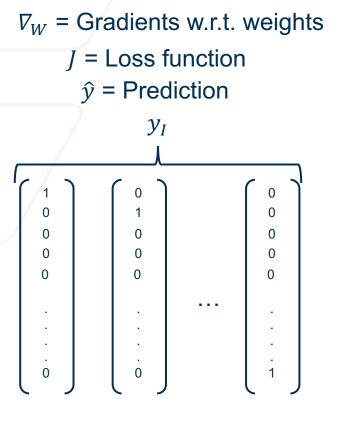


[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspection Gradients as Features

Introspective Learning: A Two-stage **Approach for Inference in Neural Networks**

For a well-trained network, the gradients are robust



Lemma1:
$$\nabla_W J(y_I, \hat{y}) = -\nabla_W y_I + \nabla_W \log\left(1 + \frac{y_{\hat{y}}}{2}\right).$$

Any change in class requires change in relationship between y_I and \hat{y}

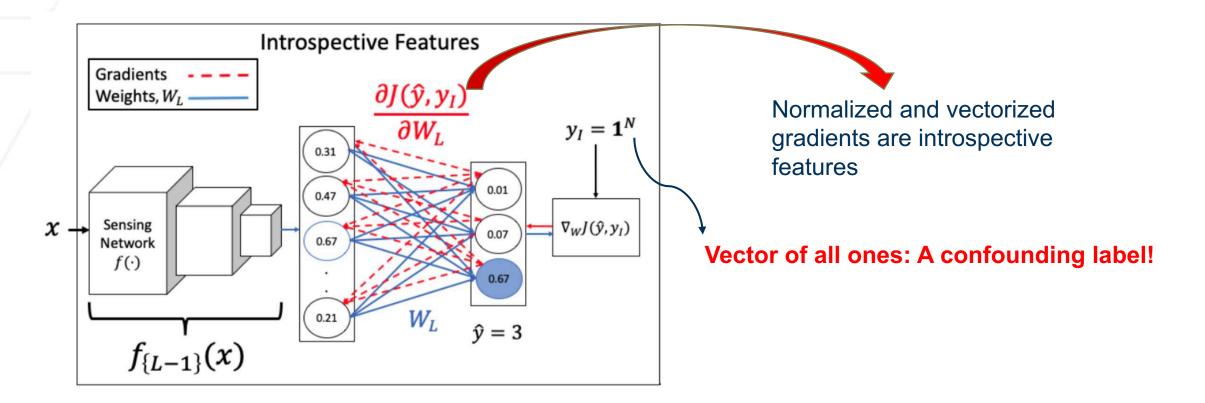
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

73 of 166

Introspection Deriving Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

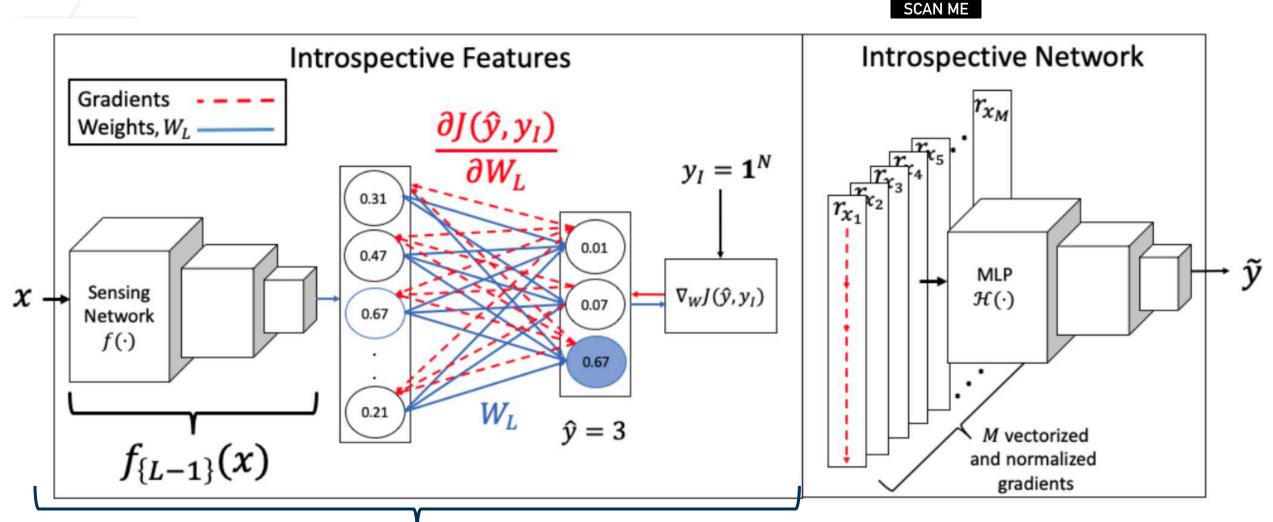


[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspection Utilizing Gradient Features

75 of 166

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



Introspective Features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspection When is Introspection Useful?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

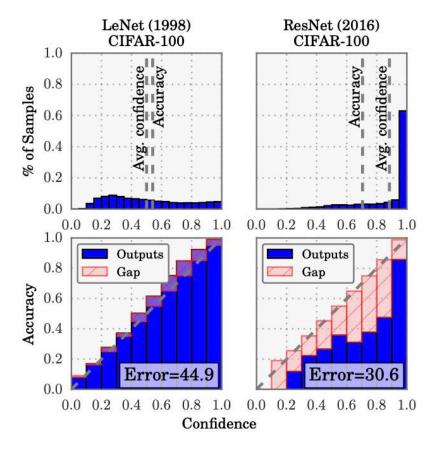
[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Calibration

A note on Calibration..

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Calibration occurs when there is mismatch between a network's confidence and its accuracy

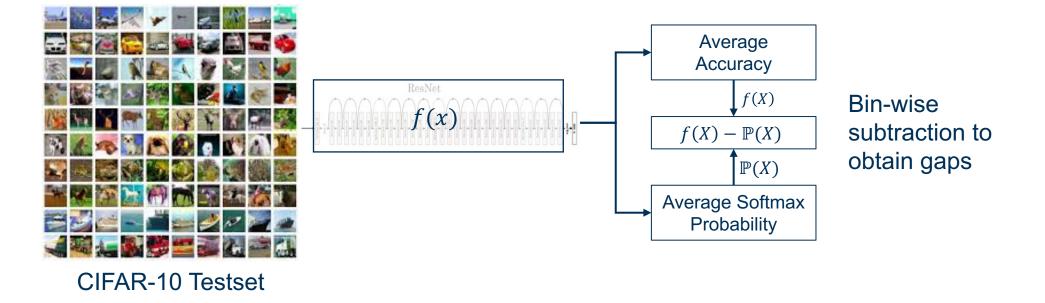


- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Calibration occurs when there is mismatch between a network's confidence and its accuracy



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

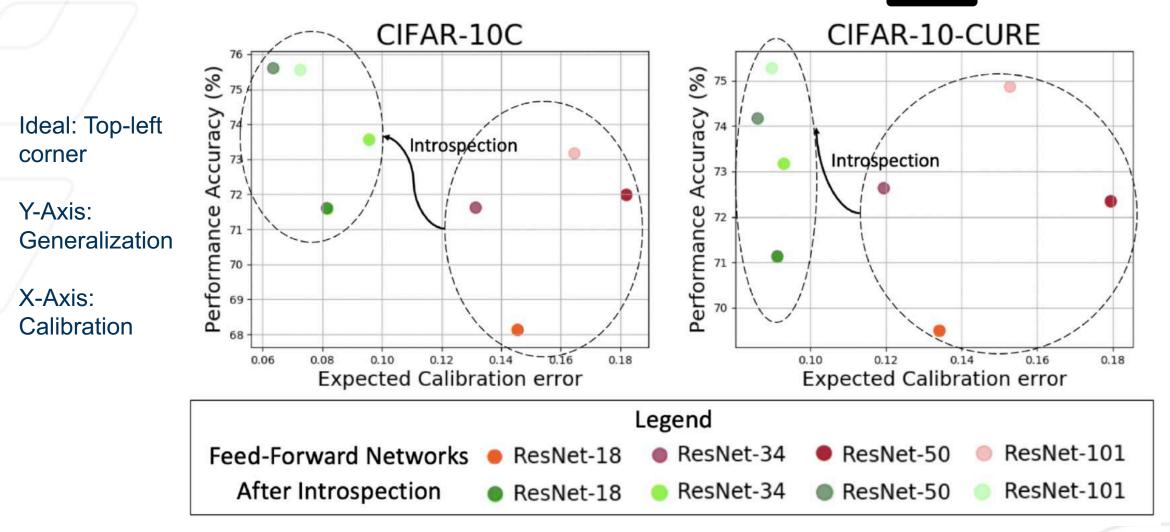
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Jeorgia

Introspection in Neural Networks

Generalization and Calibration results

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing robustness techniques.

METHODS		ACCURACY
ResNet-18	FEED-FORWARD	67.89%
	INTROSPECTIVE	71.4%
DENOISING	FEED-FORWARD	65.02%
	INTROSPECTIVE	68.86%
Adversarial Train (27)	FEED-FORWARD	68.02%
	INTROSPECTIVE	70.86%
SIMCLR (19)	FEED-FORWARD	70.28%
nanda versione societe d'Annais Verten (CALLESCOLO) 🗩	INTROSPECTIVE	73.32%
Augment Noise (23)	FEED-FORWARD	76.86%
	INTROSPECTIVE	77.98%
AUGMIX (23)	FEED-FORWARD	89.85%
nan antara - Garanan gadaara - Tarana a	INTROSPECTIVE	89.89%

Introspection is a **plug-in approach** that works on all networks and on any downstream task!

80 of 166

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active Learning, and Image Quality Assessment!

Table 13: Performance of Contrastive Features against Feed-Forward Features and other ImageQuality Estimators. Top 2 results in each row are highlighted.

Database	PSNR HA	IW SSIM	SR SIM	FSIMc	Per SIM	CSV	SUM MER	Feed-Forward UNIQUE	Introspective UNIQUE
					Outlier	Ratio (C	R , ↓)		
MULTI	0.013	0.013	0.000	0.016	0.004	0.000	0.000	0.000	0.000
TID13	0.615	0.701	0.632	0.728	0.655	0.687	0.620	0.640	0.620
				Root M	ean Squ	are Erro	or (RMS	5E, ↓)	
MULTI	11.320	10.049	8.686	10.794	9.898	9.895	8.212	9.258	7.943
TID13	0.652	0.688	0.619	0.687	0.643	0.647	0.630	0.615	0.596
			Pear	son Linea	r Correl	lation C	oefficien	t (PLCC, ↑)	
MUT	0.801	0.847	0.888	0.821	0.852	0.852	0.901	0.872	0.908
MULTI	-1	-1	0	-1	-1	-1	-1	-1	
TID13	0.851	0.832	0.866	0.832	0.855	0.853	0.861	0.869	0.877
TID13	-1	-1	0	-1	-1	-1	0	0	
			Spear	man's Ra	nk Corr	elation (Coefficie	nt (SRCC, ↑)	
MITT	0.715	0.884	0.867	0.867	0.818	0.849	0.884	0.867	0.887
MULTI	-1	0	0	0	-1	-1	0	0	
TID13	0.847	0.778	0.807	0.851	0.854	0.846	0.856	0.860	0.865
	-1	-1	-1	-1	0	-1	0	0	
			Ken	dall's Ra	nk Corr	elation (Coefficie	nt (KRCC)	
MUTT	0.532	0.702	0.678	0.677	0.624	0.655	0.698	0.679	0.702
MULTI	-1	0	0	0	-1	0	0	0	
TID13	0.666	0.598	0.641	0.667	0.678	0.654	0.667	0.667	0.677
IIDIS	0	-1	-1	0	0	0	0	0	

Table 2: Recognition accuracy of Active Learning strategies.

Methods	Architecture	Origina	l Testset	Gaussian Noise	
		R-18	R-34	R-18	R-34
Entropy (31)	Feed-Forward	0.365	0.358	0.244	0.249
	Introspective	0.365	0.359	0.258	0.255
Least (34)	Feed-Forward	0.371	0.359	0.252	0.25
	Introspective	0.373	0.362	0.264	0.26
	Feed-Forward	0.38	0.369	0.251	0.253
Margin (32)	Introspective	0.381	0.373	0.265	0.263
RALD (24)	Feed-Forward	0.393	0.368	0.26	0.253
	Introspective	0.396	0.375	0.273	0.263
BADGE (33)	Feed-Forward	0.388	0.37	0.25	0.247
	Introspective	0.39	0.37	0.265	0.260

Table 3: Out-of-distribution Detection of existing techniques compared between feed-forward and introspective networks.

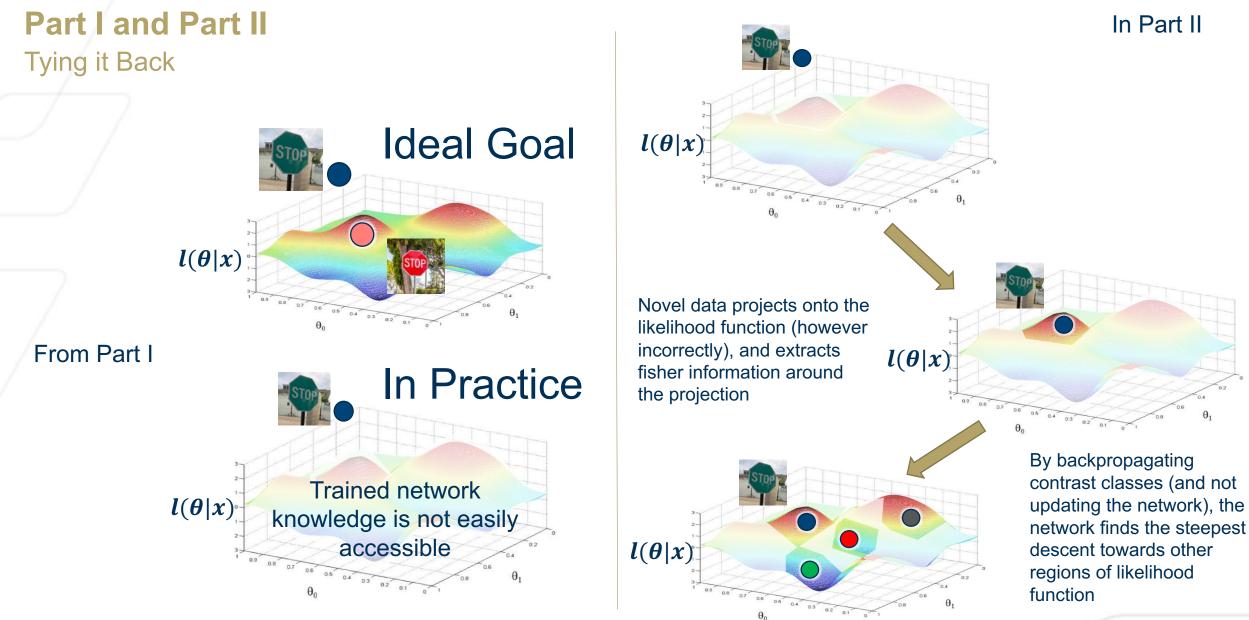
Methods	OOD Datasets	FPR (95% at TPR) ↓	Detection Error ↓	AUROC			
		Feed-Forward/Introspective					
	Textures	58.74/19.66	18.04/7.49	88.56/97.79			
MSP (35)	SVHN	61.41/51.27	16.92/15.67	89.39/91.2			
	Places365	58.04/54.43	17.01/15.07	89.39/91.3			
	LSUN-C	27.95 /27.5	9.42/10.29	96.07/95.73			
1.220	Textures	52.3/9.31	22.17/6.12	84.91/ 91.9			
ODIN 🤁	SVHN	66.81/48.52	23.51/15.86	83.52/91.07			
	Places365	42.21/51.87	16.23/15.71	91.06/90.95			
	LSUN-C	6.59/23.66	5.54/10.2	98.74/ 95.87			

81 of 166

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Objectives Takeaways from Part II

- Part I: Gradients in Neural Networks
- Part 2: Gradients as Information
 - Gradients approximate Fisher Information: They provide a methodology to infer information about the statistics of underlying manifolds using samples
 - Fisher information in gradients allow them to be utilized in explanations
 - The versatile information encoded in gradients allow for visualizing correlations, counterfactuals, and contrastives within the same GradCAM framework
 - Contrastive information can be used to train a second stage that is more robust under noise conditions in Introspective Learning
- Part 3: Gradients as Uncertainty
- Part 4: Gradients as Expectancy-Mismatch
- Part 5: Conclusion and Future Directions



[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

