Interpretation, and Applications of Gradients Part 3: Gradients as Uncertainty

Objectives Objectives in Part 3

- Interpret gradients as Uncertainty
- Uncertainty Applications
 - Anomaly Detection
 - Out-of-Distribution Detection
 - Adversarial Image Detection
 - Corruption Detection

What is Uncertainty?

Uncertainty is a model knowing that it does not know

A simple example: More the training data, lesser the uncertainty

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

When is Uncertainty an Issue?

Uncertainty is a model knowing that it does not know

- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high
- On OOD data, uncertainty is not easy to quantify

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Guo, Chuan, et al. "On calibration of modern neural networks." *International conference on machine learning*. PMLR, 2017.

Uncertainty Two Types of Uncertainty

Two major types of uncertainty: Uncertainty in data and uncertainty in model, together termed as prediction Uncertainty

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A survey of uncertainty in deep neural networks. *arXiv preprint arXiv:2107.03342*.

Uncertainty Quantification in Neural Networks

Via Ensembles¹ Network $f_1(\theta)$ Dog Cat Horse Bird Network $f_2(\theta)$ Dog Cat Horse Bird Network $f_N(\theta)$ Dog Cat Horse Bird

Variation within outputs Var(y) is the uncertainty. Commonly referred to as **Prediction Uncertainty.**

A 30th CP28 Kuala Lumpur

89 of 166

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using deep ensembles." *Advances in neural information processing systems* 30 (2017).

Uncertainty Quantification in Neural Networks

Via Single pass methods¹

Uncertainty quantification using a single network and a single pass

Calculate distance from some trained clusters

Does not require multiple networks! However, does requires multiple data points at inference!

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a single deep deterministic neural network. In *International conference on machine learning* (pp. 9690-9700). PMLR.

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Backpropagated Gradient Representations for Anomaly Detection

Gukyeong Kwon, PhD Amazon AWS

Mohit Prabhushankar, PhD Postdoc, Georgia Tech

Ghassan AlRegib, PhD Professor, Georgia Tech

Anomalies

Finding Rare Events in Normal Patterns

Backpropagated Gradient Representations for Anomaly Detection

'Anomalies are patterns in data that do not conform to a well defined notion of normal behavior'^[1]

Statistical Definition:

- Normal data are generated from a stationary process P_N
- Anomalies are generated from a different process $P_A \neq P_N$

Goal: Detect ϕ_1

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages

Anomalies Steps for Anomaly Detection

Backpropagated Gradient Representations for Anomaly Detection

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

- Step 1 ensures that patches from natural images live close to a low dimensional manifold
- Step 2 designs distance functions that detect *implausibility* based on constraints

Constraining Manifolds

General Constraints

Backpropagated Gradient Representations for Anomaly Detection

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, "Latent space autoregression for novelty detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Constraining Manifolds

Gradient-based Constraints

Backpropagated Gradient Representations for Anomaly Detection

Activation Constraints

Activation-based representation (Data perspective)

e.g. Reconstruction error (\mathcal{L})

How much of the input does not correspond to the learned information?

Gradient Constraints

Gradient-based Representation (Model perspective)

 $\begin{array}{c} W \\ \overline{\partial W} \\ \overline{\partial W} \\ \overline{\partial W} \end{array} \end{array} \begin{array}{c} W' \\ W' \\ \overline{\partial W} \\ \overline{\partial W} \end{array}$

How much **model update** is required by the input?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Constraining Manifolds Advantages of Gradient-based Constraints

Backpropagated Gradient Representations for Anomaly Detection

- Gradients provide directional information to characterize anomalies
- Gradients from different layers capture abnormality at different levels of data abstraction

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

GradCON: Gradient Constraint

Gradient-based Constraints

99 of 166

Backpropagated Gradient Representations for Anomaly Detection

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data

[Tutorial@ICIP'23] | [Ghassan AIRegib and Mohit Prabhushankar] | [Oct 8, 2023]

GradCON: Gradient Constraint

Activations vs Gradients

Backpropagated Gradient Representations for Anomaly Detection

AUROC Results

Abnormal "class" detection (CIFAR-10)

100 of 166

Normal Abnormal

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon	0.659	0.356	0.640	0.555	0.695	0.554	0.549	0.478	0.695	0.357	0.554
+ Grad	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE -	Recon	0.553	0.608	0.437	0.546	0.393	0.531	0.489	0.515	0.552	0.631	0.526
	Latent	0.634	0.442	0.640	0.497	0.743	0.515	0.745	0.527	0.674	0.416	0.583
VAF	Recon	0.556	0.606	0.438	0.548	0.392	0.543	0.496	0.518	0.552	0.631	0.528
L Crad	Latent	0.586	0.396	0.618	0.476	0.719	0.474	0.698	0.537	0.586	0.413	0.550
T Grau.	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

- (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- (CAE vs. VAE) Performance sacrifice from the latent constraint
- (VAE vs. VAE + Grad) Complementary features from the gradient constraint

GradCON: Gradient Constraint

Aberrant Condition Detection

Recon: Reconstruction error, Grad: Gradient loss

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Abnormal "condition" detection (CURE-TSR)

101 of 166

Normal

Abnormal

GradCON Applicability

Estimating Disease Severity

 $SS_2 > SS_1$

 SS_2

Severity Manifolds

Severe

Disease

Manifold

Moderate Disease

Manifold

Learned Manifold : Healthy OCT

SS = Severity Score

 SS_1

- Define severity with respect to distance from a healthy manifold.
- This distance can be regarded as a severity score.

How to measure severity score?

 Define severity as: "the degree to which a sample appears anomalous relative to the distribution of healthy images."

Experimental Plan

 Investigate model responses that can act as good surrogate for severity score

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," in *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, Oct. 16-19 2022

Backpropagated Gradient Representations for Anomaly Detection

Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics

- 9408 images labeled with complete biomarker data
- Every image associated with vector indicating presence/absence of 16 potential biomarkers
- 5 biomarkers exist with sufficient balanced quantities
 - Develop 5 biomarker test sets (PAVF, FAVF, IRF, DME, and IRHRF)

https://github.com/olivesgatech

OLIVES Dataset https://arxiv.org/pdf/2209.11195.pdf

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," in *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, Oct. 16-19 2022

GradCON Applicability

Estimating Disease Severity

Backpropagated Gradient Representations for Anomaly Detection

<u>ldea</u>

- Constrain gradients of in-distribution class
- Make gradients sensitive to progressively anomalous data

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," in *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, Oct. 16-19 2022

GradCON Applicability Estimating Disease Severity

Severity Labels used to select positive and negative pairs for weakly-supervised contrastive learning

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," in *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, Oct. 16-19 2022

Georgia

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

IEEE Access

Probing the Purview of Neural Networks via Gradient Analysis

Jinsol Lee, PhD Candidate

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Uncertainty in Neural Networks Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Uncertainty in Neural Networks Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

P = Predicted class Q_1 = Contrast class 1 Q_2 = Contrast class 2

However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth
- We backpropagate all contrast classes - $Q_1, Q_2 \dots Q_N$ by backpropagating N one-hot vectors
- Higher the distance, higher the uncertainty score

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Toy Manifold Example

How is this different from Part 2?

Probing the Purview of Neural Networks via Gradient Analysis

Part 3: Uncertainty

 $l(\theta|x)^{0}_{\theta_{0}}$

 In Part 2: Activations of learned manifold are weighted by gradients w.r.t. activations to extract information and provide explanations In Part 3: Statistics of gradients w.r.t. the weights (energy) will be directly used as features

Uncertainty in Neural Networks Deriving Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Uncertainty in Neural Networks Utilizing Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

MNIST: In-distribution, SUN: Out-of-Distribution

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Uncertainty in OOD Setting

Probing the Purview of Neural Networks via Gradient Analysis

Squared L2 distances for different parameter sets

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Experimental Setup

Probing the Purview of Neural Networks via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect adversarial, noisy, and OOD data

Step 1: Train a deep network $f(\cdot)$ on some **training distribution Step 2:** Introduce challenging (adversarial, noisy, OOD) data **Step 3:** Derive **gradient uncertainty** on both trained and challenge data **Step 4: Train** a classifier $H(\cdot)$ to **detect** challenging from trained data **Step 5:** At test time, data is passed through $f(\cdot)$ and then $H(\cdot)$ to obtain a **Reliability classification**

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Uncertainty in Adversarial Setting

Vulnerable DNNs in the real world

Probing the Purview of Neural Networks via Gradient Analysis

=

"gibbon"

99.3% confidence

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

noise

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE Access 11 (2023): 32716-32732.

 $+.007 \times$

"panda"

57.7% confidence

Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks via Gradient Analysis

MODEL	ATTACKS	BASELINE	LID	M(V)	M(P)	M(FE)	M(P+FE)	OURS
	FGSM	51.20	90.06	81.69	84.25	99.95	99.95	93.45
	BIM	49.94	99.21	87.09	89.20	100.0	100.0	96.19
DECNET	C&W	53.40	76.47	74.51	75.71	92.78	92.79	97.07
RESIDET	PGD	50.03	67.48	56.27	57.57	65.23	75.98	95.82
	ITERLL	60.40	85.17	62.32	64.10	85.10	92.10	98.17
	SEMANTIC	52.29	86.25	64.18	65.79	83.95	84.38	90.15
4	FGSM	52.76	98.23	86.88	87.24	99.98	99.97	96.83
	BIM	49.67	100.0	89.19	89.17	100.0	100.0	96.85
DEMORNER	C&W	54.53	80.58	75.77	76.16	90.83	90.76	97.05
DENSENET	PGD	49.87	83.01	70.39	66.52	86.94	83.61	96.77
	ITERLL	55.43	83.16	70.17	66.61	83.20	77.84	98.53
	SEMANTIC	53.54	81.41	62.16	62.15	67.98	67.29	89.55

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

Georgia

Uncertainty in Detecting Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

Same application as Anomaly Detection, except there is no need for an additional AE network!

CIFAR-10-C

CURE-TSR

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Uncertainty in Detecting Challenging Conditions

aset	Method		Mah	-		
Dat	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0
υ	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0
s-10-0	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96
IFAF	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83
A08.45	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53
E-TSF	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70
CURE	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90
U	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88
_	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91

Probing the Purview of Neural Networks via Gradient Analysis

119 of 166

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

Georgia

Uncertainty in Detecting Challenging Conditions

aset	Method	Mahalanobis [12] / Ours					
Dat	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5	
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99	
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0	
5	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0	
t-10-0	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96	
IFAR	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87	
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92	
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0	
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83	
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81	
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65	
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53	
S-TSF	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70	
URE	Exposure	74.90 / 88.13	99.96 / 96.78	<mark>99.99</mark> / 99.26	100.0 / 99.80	100.0 / 99.90	
Ŭ	Snow	28.11 / 61.34	61.28 / 80.52	<mark>89</mark> .89 / 91.30	99.34 / 96.13	99.98 / 97.66	
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88	
	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91	

Probing the Purview of Neural Networks via Gradient Analysis

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

Georgia

Out-of-Distribution Detection

Probing the Purview of Neural Networks via Gradient Analysis

Goal: To detect that these datasets are not part of training

SVHN

CIFAR10

TinyImageNet

LSUN

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR
In	Out	Baseline [5] / ODI	obis (P+FE) [7] / Ours	
CIFAR-10	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98
	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87
SVHN	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11
	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Out-of-Distribution Detection

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR			
In	Out	Baseline [5] / ODI	Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours				
CIFAR-10	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98			
	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66			
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87			
SVHN	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11			
	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93			
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21			

Numbers

SVHN

Objects, natural scenes

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Out-of-Distribution Detection

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR
In	Out	Baseline [5] / ODI	obis (P+FE) [7] / Ours	
CIFAR-10	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98
	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87
SVHN	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11
	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Objectives Takeaways from Part III

- Part I: Gradients in Neural Networks
- Part 2: Gradients as Information
- Part 3: Gradients as Uncertainty
 - Defining Uncertainty in the context of Neural Networks
 - Anomaly Detection
 - GradCON: Gradient Constraints
 - Out-of-Distribution Detection
 - Adversarial Detection
 - Corruption Detection
- Part 4: Gradients as Expectancy-Mismatch
- Part 5: Conclusion and Future Directions

