Interpretation, and Applications of Gradients Part 4: Gradients as Expectancy-Mismatch

Objectives Objectives in Part IV

Case Study: Expectancy-Mismatch

- Interpret gradients as Expectancy-Mismatch
 - Define expectancy-mismatch utilizing saliency
 - Demonstrate counterfactual manifolds as expectancy-mismatch
- Human Visual Saliency
- Image Quality Assessment

Saliency

Saliency in Literature

Bottom-Up Saliency : Innovation is in designing features and fusion

[1] Judd, Tilke, Frédo Durand, and Antonio Torralba. "A benchmark of computational models of saliency to predict human fixations." (2012).

Saliency

Our Goal: Introduce Implicit Saliency in Neural Networks

Bottom-Up Saliency : Innovation is in designing features and fusion

[1] Judd, Tilke, Frédo Durand, and Antonio Torralba. "A benchmark of computational models of saliency to predict human fixations." (2012).

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:

- 1. Human Visual Saliency
- 2. Image Quality Assessment

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:

- 1. Human Visual Saliency
- 2. Image Quality Assessment

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

133 of 166

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Georgia

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Similar to introspective learning!

Saliency Map

Gradients in the k^{th} layer: Pseudo-saliency maps

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

cSaliency

Deriving Gradient-based Implicit Saliency

SCAN ME

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

137 of 166

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

OI

Implicit Saliency

Deriving Gradient-based Implicit Saliency

SCAN ME

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

Input Image Groundtruth Proposed Feed-forward Method feature □ Feed-forward expectation features:

- Edges and textures
- Without specific localization
- □ Proposed expectation-mismatch Saliency:
 - Localized saliency maps
 - Highly correlated with ground truth

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural **Networks**

Contrastive Saliency outperforms explanation methods like GradCAM and Guided Backprop

Networks		N	ISS		CC			
	ResNet-18	ResNet-34	ResNet-50	ResNet-101	ResNet-18	ResNet-34	ResNet-50	ResNet-101
GradCam	0.7657	0.7545	0.7203	0.7335	0.3496	0.3396	0.3190	0.3210
GBP	0.3862	0.4191	0.3898	0.3415	0.2474	0.2453	0.2443	0.2233
Contrastive Saliency	0.8274	0.8018	0.7659	0.7981	0.4132	0.4112	0.3868	0.4051

GradCam

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

	S
SCAN ME	

Training data

SALICON

SALICON

SALICON

SALICON/iSUN

Saliency Models

SalGan

ML-Net

DeepGazell

ShallowDeep

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

Compare performance of unsupervised Contrastive Saliency model against existing saliency models

Existing Learning based methods

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural **Networks**

Compare performance of unsupervised Contrastive Saliency model against existing saliency models

NSS				CC					
Sal Gan	Deep GazeII	ML Net	Shallow	Contrastive Saliency	Sal Gan	Deep GazeII	ML Net	Shallow	Contrastive Saliency
0.8977	0.6214	0.5431	0.9306	0.7981	0.6280	0.5927	0.4481	0.5120	0.4051

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

Contrastive Saliency drops the least performance with noise added

			NSS			CC				
Gaussian Blur	Sal Gan	Deep GazeII	ML Net	Shallow Deep	Contrastive Saliency	Sal Gan	Deep GazeII	ML Net	Shallow Deep	Contrastive Saliency
r = 0	0.8977	0.6214	0.5431	0.9306	0.7981	0.6280	0.5927	0.4481	0.5120	0.4051
r = 50	$\downarrow 0.2239$	$\downarrow 0.3436$	$\downarrow 0.2484$	$\downarrow 0.2025$	$\downarrow 0.1793$	$\downarrow 0.2731$	$\downarrow 0.3954$	$\downarrow 0.2940$	$\downarrow 0.1840$	$\downarrow 0.1432$

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Our Goal: Introduce Expectancy-Mismatch in Neural Networks

At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:

- 1. Human Visual Saliency
- 2. Image Quality Assessment

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Image Quality Assessment What is IQA?

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

IQA is the objective Assessment of Subjective Quality

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] Bosse S, Maniry D, Müller K R, et al. Deep neural networks for no-reference and full-reference image quality assessment. IEEE Transactions on Image Processing, 2018, 27(1): 206-219.

Image Quality Assessment

Expectancy-Mismatch in Dataset Construction

Expectancy-Mismatch arises during Dataset Construction

- Subjects are shown a reference image in a controlled setting
- Based on the reference image, they are asked to pick one of the images on the top that differs least from the reference image
- Reference image sets the expectancy
- The task of subjectively picking the least mismatched image is IQA

This requires Fine-grained Analysis!

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] Ponomarenko, Nikolay, et al. "Image database TID2013: Peculiarities, results and perspectives." *Signal processing: Image communication* 30 (2015): 57-77

Image Quality Assessment

Expectancy-Mismatch in Dataset Construction

Expectancy-Mismatch arises during Dataset Construction

This requires **Fine-grained** Analysis on the part of the subjects!

Our Goal: To determine if a trained IQA detector understands the fine-grained nature of expectancy-mismatch in quality

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

[1] Ponomarenko, Nikolay, et al. "Image database TID2013: Peculiarities, results and perspectives." *Signal processing: Image communication* 30 (2015): 57-77

Image Quality Assessment GradCAM in IQA

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural **Networks**

GradCAM explanation for Why 0.58?

Lighthouse image with level 5 lossy compression from TID 2013 dataset

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Image Quality Assessment GradCAM in IQA

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

GradCAM explanation may not be useful for fine-grained analysis

Grad-CAM explanation tells us that the quality score was decided based on all parts of the image and specifically⁸ based on the base of the lighthouse

Lighthouse image with level 5 lossy compression from TID 2013 dataset

t Bad Quality 0.0

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

All the distortions in the foreground prevent a quality score of 1

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

The distortions on the lighthouse and houses prevent a higher score of 0.75

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

The quality of the lighthouse and sky is better than a score of 0.5

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

The sky, lighthouse, and cliff merit a quality higher than 0.25

Lighthouse image with level 5 lossy compression from TID 2013 dataset

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks

Contrastive IQA elicits the fine-grained decisions made by the network

Distorted Image -	Grad-CAM :	Why 0.58, rather	Why 0.58, rather	Why 0.58, rather	Why 0.58, rather
Distorted Image - IQA Score 0.48	Grad-CAM : Why 0.48?	Why 0.48, rather than 1?	Why 0.48, rather than 0.75?	Why 0.48, rather than 0.5	Why 0.48, rather than 0.25

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Objectives Takeaways from Part IV

- Part I: Gradients in Neural Networks
- Part 2: Gradients as Information
- Part 3: Gradients as Uncertainty
- Part 4: Gradients as Expectancy-Mismatch
 - Presented a case study of utilizing both the contrastive manifolds and manifold traversal perspectives
 - Human Visual Saliency is a by-product of expectancy-mismatch
 - Neural networks that have never explicitly learned human salient regions have implicitly been trained to use them in tasks
 - Using Contrastive explanations in IQA provides a fine-grained analysis of neural network's perception of quality
- Part 5: Conclusion and Future Directions

