Interpretation, and Applications of Gradients
Part 4: Gradients as Expectancy-Mismatch
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Objectives
Objectives in Part IV

Case Study: Expectancy-Mismatch

* Interpret gradients as Expectancy-Mismatch
» Define expectancy-mismatch utilizing saliency
« Demonstrate counterfactual manifolds as expectancy-mismatch

« Human Visual Saliency
* Image Quality Assessment
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Saliency
Saliency in Literature

General-purpose Saliency algorithm

- Feature 1
Weights I
. Fusion
Feature 2
Weights
Feature 3

Bottom-Up Saliency : Innovation is in designing features and fusion

Top-Down Saliency : Innovation is in designing weights

(

Color, Intensity, Faces, text,

Orientation [1]

object detectors

[1]
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Saliency
Our Goal: Introduce Implicit Saliency in Neural Networks

General-purpose Saliency algorithm

—— Feature 1
Weights
: Fusion
Feature 2
Weights
: Feature 3

Bottom-Up Saliency : Innovation is in designing features and fusion

Features that

Top-Down Saliency : Innovation is in designing weights
are new and

\ unexpected

Color, Intensit SEiDe S (novel) na

| P Y. object detectors scene are
Orientation [1] (] salient

Gr Georgia
Tech.
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks
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0,
At Inference, construct local contrastive manifolds

6,

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks
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At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment
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Stochastic Surprisal: An Inferential

?frontiers | Measurement of Free Energy in Neural
in Neuroscience Networks

-
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Contrast class 1

Similar to introspective learning! ‘ l(0|x)§

Mean of
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. gradients is
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Contrast class 1
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Similar to introspective learning!

Contrast class N ®
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Expectancy-Mismatch

Our Goal: Introduce Expectancy-Mismatch in Neural Networks
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Variance of

__ gradients Point-wise
is the Multiplication
mismatch!

Saliency Map

Mean of
projected
gradients is
the
expectancy!
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Wrong class 1

Saliency Map

Wrong class N

Gradients in the k" layer: Pseudo-saliency maps
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L‘ P Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.



Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

cSaliency
Deriving Gradient-based Implicit Saliency

SCAN ME

1 th Conv Layer C Ypred 0 1 0 0

W
CrossEntropy | | " - " "
N ~ )| || || ||| xR
Loss - . n .
g 0| [0 1] [0
0| |0 0| [1F

Backpropagation Q unexpected stimuli vectoy

R Pseudo
Saliency
Maps
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Implicit Saliency
Deriving Gradient-based Implicit Saliency

[ th Conv Layer (] Ypred
""'/' ’ @
CrossEntropy
N ~ | ¢
Loss
——

Backpropagation

Mean
of the R Pseudo

Saliency Maps

Saliency

R Pseudo
N
Maps

Variance
of the R Pseudo

Saliency Maps
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks
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O Feed-forward expectation features:
« Edges and textures
» Without specific localization

O Proposed expectation-mismatch Saliency:

» Localized saliency maps
» Highly correlated with ground truth

Input Image ~ Groundtruth Proposed  Feed-forward
Method feature
ResNet-18 ResNet-34 ResNet-50 ResNet-101
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Experiments

SCAN ME

Contrastive Saliency outperforms explanation methods like GradCAM and Guided Backprop

NSS CC
Networks ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101 | ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101
GradCam 0.7657 0.7545 0.7203 0.7335 (0.3496 (.3396 0.3190 0.3210
GBP 0.3862 0.4191 0.3898 0.3415 0.2474 0.2453 0.2443 0.2233
Contrastive Saliency | 0.8274 0.8018 0.7659 0.7981 0.4132 0.4112 0.3868 0.4051

&
Input Image . =
S
GradCam ' |
e Y
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Experiments

SCAN ME

Compare performance of unsupervised Contrastive Saliency model against existing saliency

models

Contrastive Saliency is unsupervised!

‘ Training data

Saliency Models Training data

SalGan SALICON
:> Deep ML-Net SALICON
Neural Networks DeepGazell SALICON
ShallowDeep SALICON/iISUN
Existing Learning based methods
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SCAN ME

Compare performance of unsupervised Contrastive Saliency model against existing saliency

models

Input Image

Groundtruth  PTOP
Method

B

osed SalGan

ML-Net

DeepGazell

ShallowDeep

<

v

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural

networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.

Precise Comprehensive
NSS .
Sal | Deep ML Shallow | Contrastive Sal Deep ML Shallow | Contrastive
Gan Gazell Net Deep Saliency Gan Gazell Net Deep Saliency
0.8977 | 0.6214 (.5431 | 0.9306 0.7981 0.6280 | 0.5927 | 0.4481 (.5120 ().4051
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Robustness Analysis

143 of 166 %%;(m
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NSS cC
Gaussian Sal Deep ML Shallow | Contrastive Sal Deep ML Shallow | Contrastive
Blur Gan Gazell Net Deep Saliency Gan Gazell Net Deep Saliency
r=10 0.8977 | 0.6214 | 0.5431 | 0.9306 0.7981 0.6280 | 0.5927 | 0.4481 0.5120 (.4051
r=250 1]0.2239|10.3436 | ] 0.2484 | | 0.2025| 1 0.1793 |] 0.2731 | ] 0.3954 | | 0.2940 | | 0.1840 | | 0.1432
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks
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At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment
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Image Quality Assessment
What is IQA?

Image Quality Assessment
Algorithm :
DIQaM [1]

Bad
Quality

0.0

Lighthouse image with level 5 lossy

Stochastic Surprisal: An Inferential

Networks

The given image is
somewhat OK quality

m——) Score : 0.58

Good
Quality

1.0
I

compression from TID 2013 dataset |
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Image Quality Assessment
Expectancy-Mismatch in Dataset Construction

Expectancy-Mismatch arises during
Dataset Construction

Subjective experiments for TID2008

* Subjects are shown a reference image in a
controlled setting

« Based on the reference image, they are asked to
pick one of the images on the top that differs least
from the reference image

» Reference image sets the expectancy
amongromagesnreper | © 1 NE task of subjectively picking the least mis-
oo e s s o o matched image is IQA

sample image in the bottom part.
Chick mouse on it.

Image set

Start new experiment |

~
/T \\
Sk
Q 101

Please do not think too much. For
each selection use up to 2-3

seconds. This requires Fine-grained Analysis!

If itis difficult to select (images
quality is comparable) click on any

of them.
Path to the image database
| \idos
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Image Quality Assessment
Expectancy-Mismatch in Dataset Construction

Expectancy-Mismatch arises during
Dataset Construction

Subjective experiments for TID2008

This requires Fine-grained Analysis on the
part of the subjects!

Among two images in the upper

poct ¥ o soean seed Ve Our Goal: To determine if a trained 1QA

image that differs less from the
sample image in the bottom part.

Ciok mouse on . detector understands the fine-grained nature
D WS RS of expectancy-mismatch in quality

seconds.

Image set

Start new experiment |

~
/T \\
Sk
Q 101

If itis difficult to select (images
quality is comparable) click on any

of them.
Path to the image database
| \idos
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
GradCAM in IQA

SCAN ME

GradCAM explanation for Why 0.58?

The given image is
somewhat OK quality

0.58
. . : B
Lighthouse image with level 5 lossy Quzclli ‘ gl?;)”c: Add heatmap
compression from TID 2013 dataset y y Explain blue
00 s | 4 Yellow, red, green
i t f f f } i
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Image Quallty Assessment _.r_;- Stochastic Surprisal: An Inferential

Measurement of Free Energy in Neural
GradCAM in IQA

) "'-:""- Networks

SCAN ME

GradCAM explanation may not be useful for fine-grained analysis

Grad-CAM explanation tells us
that the quality score was
decided based on all parts of
the image and specifically
based on the base of the
lighthouse -

Georgia
Tech.
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

—

Why 0.58,
rather than 1?

Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
——+—+—+—F+—+—+—+—+—  Quality
150 of 166 B A 20tk [Tutorial @ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] HLOLIVES /o Georgia
l m 5 . . - \&‘3&& ). Gl" Tech.
Kuala Lumpicr rabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural D =<

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.



Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

—

Why 0.58,
rather than 0.757

Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
——+—+—+—+—+—+—+—+—  Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

Why 0.58,
rather than 0.57

Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
———+—+—F+—+—+—+—+— Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

mmp DIQaM:

Lege Why 0.58,
rather than 0.257
Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
———=—+—F—+—+—+—+— Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

-

= = i 2 | 2 - B s -
Distorted Image - Grad-CAM : Why 0.58, rather Why 0.58, rather Why 0.58, rather Why 0.58, rather
IQA Score 0.58 Why 0.58? than 1? than 0.75? than 0.5 than 0.25

f .
] Bt oe

Distorted Image - Grad-CAM : Why 0.48, rather Why 0.48, rather Why 0.48, rather Why 0.48, rather

IQA Score 0.48 Why 0.48? than 1? than 0.75? than 0.5 than 0.25
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Objectives
Takeaways from Part IV

e Part I: Gradients in Neural Networks
e Part 2: Gradients as Information
» Part 3: Gradients as Uncertainty

« Part 4: Gradients as Expectancy-Mismatch
* Presented a case study of utilizing both the contrastive manifolds and manifold traversal perspectives
* Human Visual Saliency is a by-product of expectancy-mismatch

» Neural networks that have never explicitly learned human salient regions have implicitly been trained to
use them in tasks

» Using Contrastive explanations in IQA provides a fine-grained analysis of neural network’s perception of
quality

 Part 5: Conclusion and Future Directions
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