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ABSTRACT
Optical Coherence Tomography (OCT) imaging has emerged
as an indispensable tool in the screening and management of
retinal diseases, including age-related macular degeneration
(AMD) and diabetic retinopathy (DR). OCT facilitates cross-
sectional visualization of structural changes within the pos-
terior segment of the eye, encompassing layers such as the
retina and choroid. OCT images have proven instrumental
in the detection of various biomarkers associated with these
diseases. As part of this challenge, our objective was to iden-
tify the presence or absence of six distinct biomarkers within
a given OCT B-Scan (Multi-Label Classification). In pursuit
of this goal, we explored different models based on convolu-
tion neural networks and transformers. A comparative analy-
sis of the performance metrics across these models was con-
ducted. Our findings elucidate that the optimal performance
was achieved by leveraging the InceptionNet V3 architecture
[1] as the backbone. This work was done as part of the IEEE
SPS VIP CUP 2023.

Index Terms— OCT, InceptionNet, ResNet,

1. INTRODUCTION

Ophthalmic clinical trials, designed to assess the effective-
ness of treatments, are meticulously conducted with prede-
fined objectives and a structured set of procedures established
prior to trial initiation. This meticulous approach carried out
during [2] ensures controlled data collection, tracking gradual
changes in the condition of afflicted eyes. The dataset com-
prises both 1D clinical measurements and volumetric 3D opti-
cal coherence tomography (OCT) images. These 3D OCT im-
ages are analyzed by medical professionals to discern struc-
tural biomarkers for each patient. In conjunction with clinical
measurements, these findings inform personalized treatment
decisions for individual patients.

The OCT Dataset provided by the organizers, [2], stands
out due to its comprehensive inclusion of multiple biomarkers
as output labels, facilitating further medical diagnostic proce-
dures. This distinguishes it from other OCT datasets, such
as the Kermany Dataset [3]. The latter aims as classifying
the image as one of the following biomarkers - Choroidal
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Neovascularization (CNV), Diabetic Macular Edema (DME),
Drusen, and Normal.

In recent times, the remarkable advancements in deep
learning have exerted a substantial influence on the domain
of medical science. While the standard practice primarily re-
volves around assessing the generalizability of these models,
the focus of this competition is to focus both on generaliza-
tion and personalization capabilities. Generalization aims to
develop algorithms that can show good performance across
diverse set of patients and scenarios, providing standard so-
lutions that can be applied widely whereas personalization,
in contrast, tries to tailor algorithms to individual patients
based on their unique characteristics, diagnosis and treatment
planning.

The intricacies of personalization, as opposed to general-
ization, pose a distinctive set of challenges in the context of
healthcare algorithms. Within optical coherence tomography
(OCT) scans, variations between patients during different vis-
its can be minimal, while the presentation of the same disease
can vary significantly among individuals.

The evaluation metric employed in this challenge is the
macro-average F1 Score, encompassing all biomarkers, and
applied to both generalization and personalization tasks. A
more detailed explanation of this metric can be found in Sec-
tion 7.

In Section 2, a comprehensive discussion on the dataset is
provided. 3 delves into a review of pertinent literature, show-
casing key works that have previously explored this domain.
In Section 4, we expand on different approaches we used.
Section 5 offers an in-depth examination of the Inception-
Net v3 architecture, dissecting its components and function-
alities. Our training methodologies, including the techniques
and parameters adopted, are outlined in Section 6. Subse-
quently, in Section 7, we delineate the outcomes of our ex-
periments, placing particular emphasis on the most optimal
results achieved. The report culminates in Section 8, where
we point out our observations and potential avenues for fu-
ture research.

2. DATASET

The OLIVES OCT dataset [2] provided by the organizers
is derived from two distinct clinical trials, namely PRIME



Fig. 1. a diseased oct image.

and TREX-DME. Common Biomarkers and Clinical Labels
formed the basis for training and testing.

2.1. Structural Biomarkers

In this competition, our primary goal is the detection of
’biomarkers,’ objective indicators of a patient’s medical con-
dition distinct from subjective symptoms. These biomarkers
may serve as endpoints for diagnoisis or may be used for
furthur medical diagnosis. The evaluation was based on six
biomarkers which are as follows : Intraretinal Hyperreflec-
tive Foci (IRHRF), Partially Attached Vitreous Face (PAVF),
Fully Attached Vitreous Face (FAVF), Intraretinal Fluid (IRF)
and Diffuse Retinal Thickening or Diabetic Macular Edema
(DRT/ME) Vitreous Debris (VD). In addition, 4 clinical la-
bels namely, CST (Central subfield thickness),Best-corrected
visual acuity (BCVA) , Eye ID and Patient ID were provided
were provided

2.2. Train and Test

Each patient visit yields a collection of 49 OCT B-scans.
In total, we have access to 78,819 B-scans; however, only
9,408 of these images are accompanied by biomarker out-
puts, which we employed for training InceptionNet V3. The
test dataset, sourced from a distinct trial, comprises 3,871
images with corresponding biomarker output. All images in
both the training and testing datasets were accompanied by
Clinical Labels

3. RELATED WORK

We chose to use InceptionNet V3 based on the work of
[3]. They effectively used it to classify eye images into four
types. Another growing trend in this field is the use of self-
supervised learning, wherein other modes of data are used as

’pseudo-labels’ for training.
In the study by [4], the authors employed contrastive

learning. They minimized the loss function for samples with
the same pseudo-label. These labels were derived from clini-
cal measures such as BCVA, CST, and the eye ID.

Another study by [5] took a different approach to pseudo-
labeling. They framed it as an anomaly detection problem,
using a severity score as the pseudo-label. They trained an
autoencoder on the Kermany dataset [3] using the GradCON
method [6]. They defined the severity score as −Lrecon +
αLgrad Where Lrecon represents the autoencoder’s reconstruc-
tion loss, and Lgrad denotes a gradient-based loss function.
With these scores, they segmented the OLIVES dataset [2]
into distinct bins. These bins were used as pseudo-labels for
training. Lastly, they trained a linear layer atop the pre-trained
model while preserving the initial weights.

4. OUR APPROACH

We experimented pre-training various model backbones us-
ing the Kermany dataset[3] followed by training a linear layer
while keeping the backbone’s weights fixed. However, these
models didn’t produce the expected improvements. One
potential reason might be the inherent noise and irregular
padding present in the Kermany dataset[3]. This is in contrast
to the OLIVES dataset[2], which doesn’t exhibit such noise.

As part of our extensive experimentation, we explored
a diverse array of model architectures, encompassing well-
established ones such as ResNet, EfficientNet, ResNext,
as well as venturing into the realm of transformer-based
models, including ViT, DeiT, DiNo, among others. In our
pursuit of improved performance, we even devised custom
attention-augmented architectures built upon the foundation
of existing CNN-based models, which yielded modest en-
hancements over the baseline. Furthermore, we diligently
embraced the approaches recommended by the competition
organizers. This included the adoption of the multi-modal
guided loss approach and the integration of semi-supervised
Contrastive Learning into our framework. Remarkably, our
experimentation revealed that the architecture yielding the
most impressive results was InceptionNet V3 [1]. This model
distinguished itself through its unique architecture, capable
of capturing features at multiple scales by employing kernels
of varying sizes and executing parallel convolutions.

In our preliminary experimentation, we modified the first
convolutional layer to accommodate a single-channel input.
Subsequently, to leverage the temporal coherence between se-
quential B-Scans, we assembled three consectuive B scans,
creating a tri-channel image for model input. When we in-
tegrated this approach with InceptionNet V3 and ResNet18
[7], and initialized the architectures with ImageNet Pretrained
Weights, there was a discernible enhancement in the F1 Score,
with an increment of around 2%. Pursuing this line of inquiry
further, we duplicated the same image thrice, resulting in an-



Fig. 2. Network architecture. [1]

other tri-channel input image. The outcome exhibited an even
superior performance, yielding an increase of 3.5% ResNet18
Baseline. This suggests that the tri-channel input principally
facilitates the optimization of pretrained weights, rather than
capitalizing on temporal coherence.

5. ARCHITECTURE

InceptionNet V3 [1], represents an advanced and optimized
iteration of the Inception Net model. This architecture com-
prises multiple inception modules, with the fundamental
module consisting of four parallel layers. Among these lay-
ers, three are convolutional layers employing kernel sizes
of 1, 3, and 5, while the fourth involves a 3x3 max pooling
operation. The noteworthy enhancements incorporated in
InceptionNet V3 are as follows:

a) Factorization of Convolution: In this approach, larger
convolution kernels, such as a 5x5, are replaced with two con-
secutive 3x3 convolutional layers.

b) Spatially Separable Convolution: Instead of using stan-
dard nxn convolutions, spatially separable convolutions are
employed, comprising nx1 and 1xn convolution operations.
These help in decreasing the parameter count.

c) Efficient Grid Size Reduction: A novel strategy is
adopted for grid size reduction. Rather than employing pool-
ing layers directly, the model utilizes two parallel blocks
involving convolutional and pooling layers. Subsequently,
the output features from these blocks are concatenated.

In its entirety, the final model encompasses 42 layers, a
bit more than it’s predecessor. It has around 25 million pa-
rameters. The output of the backbone architecture is a 2048-
dimensional vector, which is then connected to a Fully Con-
nected Neural Network with 6 nodes corresponding to the
number of biomarkers.

6. TRAINING

All models were trained on a single Nvidia Tesla V100-
SXM3 GPU, equipped with 32 GB of RAM. The training
process spanned 75 epochs, utilizing the Stochastic Gradi-
ent Descent (SGD) optimization algorithm with a learning
rate of 1e-3, a momentum value of 0.9, and a weight decay
parameter set to 1e-4. During training, a batch size of 64
was employed. The entire codebase was developed in Py-
Torch, using the starter code provided by the organizers.To
quantify the model’s performance, the Binary Cross Entropy
Loss metric was adopted, applied after the application of the
sigmoid function to the model outputs. Notably, the Training
Loss for the best performing InceptionNet model achieved
during the training phase was recorded at 0.06.

7. EVALUATION AND RESULT

To assess the performance of our biomarker detection models,
the evaluation criterion employed is the macro-averaged F1-
score. This metric is computed as follows:

F1 score = 2 · Precision · Recall
Precision + Recall

In terms of True Positives (TP), False Positives (FP), and
False Negatives (FN), it can be expressed as:

F1 score =
TP

TP + 1
2 (FP + FN)

The macro-averaged F1 score, often referred to as the
macro F1 score, is subsequently determined through the cal-
culation of the arithmetic mean, or unweighted mean, of all
the individual class-specific F1 scores.



Table 1. Comparison across various models
Model Phase 1 score Phase 2 score

InceptionNet v3 (single channel) 0.649 -
InceptionNet v3 (Tri-channel) 0.672 0.7682

ResNet18 (single channel) 0.63 -
ResNet18 (Tri-channel) 0.652 0.7616

InceptionNet v4 (Tri-Channel) 0.659 0.7617

In phase 1, the F1 score was calculated across the en-
tire dataset and averaged across the 6 biomarkers whereas in
phase 2, the f1 score was averaged with respect to each set
of slices associated with an individual patient. This approach
tests the personalisation of the model.

Results from the test set revealed a good performance
from the InceptionNet V3 model. During the phase 1 evalua-
tion, the model achieved a Macro Average F1 Score of 0.672.
Additionally, across all patients during the phase 2 evaluation,
the model registered an Average F1 Macro Score of 0.7682.
Other architectures like ResNet [7] and InceptionNet V4 [8]
also demonstrated significant efficacy. The comprehensive re-
sults, encompassing the top-performing models (inclusive of
single-channel inputs), are detailed in Table 1

8. REMARKS AND FUTURE WORK

In our exploratory analysis, we observed that adopting a tri-
channel input, as opposed to a single-channel configuration,
yielded superior results, primarily because this facilitated the
effective utilization of pretrained weights. Notably, the In-
ceptionNet v3 architecture demonstrated a substantially en-
hanced performance relative to the ResNet18 models. A sig-
nificant portion of our time was directed towards the integra-
tion of the Supervised Contrastive Learning Method [4] as all
of the 78,000 images could be utilized. However, for reasons
yet to be ascertained, its empirical performance did not paral-
lel our anticipations, falling short of the supervised learning
algorithm. Our forays into Transformer-Based Techniques,
albeit rigorous, did not culminate in noteworthy results. Even
the incorporation of pretrained models failed to rectify this.
A plausible hypothesis for this outcome could be the rela-
tively diminutive size of our dataset, which might not be ad-
equate for the complexities inherent to transformer architec-
tures. Looking forward, a promising avenue for elevating the
efficacy of Self-Supervised Learning could be the adoption of
the Dino methodology [9]. This approach, grounded in recent
advances, may provide the breakthrough needed for the next
phase of our research.
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