ML4Seismic Partners Meeting 2023 Exploiting Structures of Data for Application Specific Representations

Kiran Kokilepersaud, Mohit Prabhushankar, and Ghassan AlRegib

Introduction Deep Learning is Trending Towards Large Generalized Models

Large Generalized Model – One model **should** transfer to **any task**

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... & Girshick, R. (2023). Segment anything. *arXiv preprint arXiv:2304.02643*

Introduction Generalized Models Rely on the Quality of the Produced Representation

3 of 27

Introduction Generalized Representations Oftentimes do not Perform as Intended

Seismic Data

Introduction What is a Good Representation?

Bengio et. al – "captures the posterior distribution of the *underlying explanatory factors* for the observed input."

Explanatory Factors = Any component of the data distribution that results in variation between samples.

Introduction

Traditional Representation Learning does not Incorporate Explanatory Factors

Contrastive learning is one popular representation learning approach.

Introduction What are Higher Level Representational Factors?

Higher level explanatory factors exist in a variety of different domains.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. *IEEE transactions on pattern analysis and machine intelligence*, *35*(8), 1798-1828.

Introduction

Novelty of Our Work

Optical Coherence Tomography (OCT)

Structures of application domain can reveal *underlying components* of data distribution.

We can exploit this for *application-specific* representation learning.

Fisheye

Seismic

Example Application Clinical Representations

Medical representations should reflect the interaction clinical and biomarker factors.

Optical Coherence Tomography (OCT)

Fisheye

Seismic

Medical Example Application Medical data is organized into biomarkers and clinical data

Clinical Data = Data collected naturally during *routine clinical assessment*.

Biomarkers = Direct *indicators of disease* that have to be interpreted from OCT scans.

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th, 2023] Kokilepersaud, K., Corona, S. T., Prabhushankar, M., AlRegib, G., & Wykoff, C. (2023). Clinically Labeled Contrastive Learning for OCT Biomarker Classification. *IEEE Journal of Biomedical and Health Informatics*.

Medical Example Application There Exists Relationships between Biomarkers and Clinical Data

Can we shape representations on clinical data that will improve performance for biomarker detection?.

Clinical data is much **more prevalent** than biomarker data.

Clinical data **shares** correlations with biomarker data.

Medical Example Application

Shape Clinical Representations for Downstream Biomarker Detection

Performance Metrics Averaged Across All Biomarkers					
Method	AUROC	Precision	Sensitivity	Specificity	
PCL [10]	$.676 \pm .002$.676	.572	.681	
SimCLR [8]	$.761 \pm .003$.748	.591	.779	
Moco v2 [9]	$.737 \pm .002$.734	.597	.711	
Eye ID	$.802 \pm .001$.769	.701	.741	
CST	$.793 \pm .001$.792	.601	.803	
BCVA	$.801 \pm .001$.785	.640	.792	
BCVA + Eye ID	$.804 \pm .002$.756	.723	.708	
BCVA + CST	$.807 \pm .001$.783	.643	.789	
CST + Eye ID	$.819 \pm .001$.756	.694	.732	
BCVA + CST + Eye ID	$.817 \pm .001$.776	.677	.764	

Clinical representations out-perform SOTA approaches.

Averaged Multi-Label AUROC with varying Biomarker Access					
Method	25%	50%	75%	100%	
Supervised	$.703 \pm .002$	$.716 \pm .003$	$.719 \pm .002$	$.722 \pm .005$	
PCL [10]	$.675 \pm .003$	$.681 \pm .004$	$.683 \pm .002$	$.681 \pm .002$	
SimCLR [8]	$.679 \pm .004$	$.709 \pm .006$	$.718 \pm .003$	$.727 \pm .002$	
Moco v2 [9]	$.709 \pm .006$	$.722 \pm .002$	$.732 \pm .001$	$.734 \pm .002$	
Eye ID	$.754 \pm .005$	$.778 \pm .003$	$.789 \pm .001$	$.795 \pm .001$	
CST	$.694 \pm .004$	$.721 \pm .003$	$.739 \pm .001$	$.749 \pm .001$	
BCVA	$.760 \pm .009$	$.788 \pm .001$	$.783 \pm .001$	$.790 \pm .001$	
BCVA + Eye ID	$.761 \pm .004$	$.786 \pm .004$	$.794 \pm .002$	$.795 \pm .002$	
BCVA + CST	712 ± 005	751 ± 007	773 ± 006	782 ± 001	
CST + Eye ID	.766 \pm .013	$.786 \pm .003$.803 \pm .004	$.806 \pm .003$	
BCVA + CST + Eye ID	$.747 \pm .005$	$.778 \pm .003$	$.802 \pm .004$	$.806 \pm .002$	

Clinical representations formed from **multiple distributions are more robust** to lesser available data.

Example Application FishEye Representations

Fisheye representations should reflect both the semantic context and distortion.

Optical Coherence Tomography (OCT)

Fisheye

Seismic

Fisheye Example Application Fisheye data exhibits changes as a function of distortion

Semantic performance **worsens further from center** (higher distortion). Can we constrain representations that **account** for this effect?

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th, 2023]

Kokilepersaud, K., Prabhushankar, M., Yarici, Y., AlRegib, G., & Parchami, A. (2023). Exploiting the Distortion-Semantic Interaction in Fisheye Data. *IEEE Open Journal of Signal Processing*.

Fisheye Example Application

Constrain Representations based on both Distortion and Semantic Information

Standard

 Semantic class loss for training.

Proposed

 Introduce loss that balances both semantic and distortion information.

 $M_H = High \ Distortion \ Manifold, M_L = Low \ Distortion \ Manifold \ M_S = Semantic \ Context \ Manifold \ Y_C = Class \ Label , Y_{DC} = Distortion \ Class \ Label \ L_C = Class \ Loss, L_{DC} = Distortion \ Class \ Loss$

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th , 2023]

Fisheye Example Application Extract Labels with Respect to Semantic Class and Distortion Class

Fisheye Example Application Use Combined Contrastive Loss Across Generated Labels

 $L_{DC} = Supervised Contrastive Loss on Distortion Labels$ $L_C = Supervised Contrastive Loss on Class Labels$

Fisheye Example Application

Performance Improves with Representations that Reflect Both Fisheye Components

- Alpha controls balance between semantic and distortion information in loss: $\alpha L_{C} + (1 \alpha) L_{DC}$
- Equal weight on both losses performed best
- Both semantic and distortion information important for fisheye representations

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th , 2023]

What are good application specific representations for Seismic?

Optical Coherence Tomography (OCT)

Fisheye

Seismic

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th, 2023]

Connection to Seismic

Seismic can benefit From Representations based on Seismic-Specific Considerations

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th, 2023] Kong, Q., Wang, R., Walter, W. R., Pyle, M., Koper, K., & Schmandt, B. (2022). Combining Deep Learning With Physics Based Features in Explosion-Earthquake Discrimination. *Geophysical Research*

Letters, 49(13), e2022GL098645.

Connection Seismic Factors of Variation Exist within Seismic Volumes

Different structures entirely

Similar structures, but still fine-grained differences

[Application Specific Representations] | [Kiran Kokilepersaud] | [November 8th , 2023]

Connection to Seismic Seismic Structures Exist within a Single Modality

Ideally want model to: 1) Associate close slices together 2) Learn fine-grained structural differences

23 of 27

Seismic Example Application

Use Volumetric Contrastive Loss

 $L_{VH} = Volume Hard encourages attention to fine - grained differences between similar structures <math>L_V = Volume tric Contrastive Loss encourages close slices in the volume have similar embeddings$

Seismic Example Application Volumetric Labels Improve Performance

Observations

Using volumetric contrastive learning led to improvement in performance Further opportunities exist for understanding seismic-specific representations

Method	MIOU
SimCLR	.6913
Volumetric Loss	.6980

Ground Truth

25 of 27

Conclusion

Application Specific

- Medical representations can be better shaped by components relating to clinical information
- Fisheye-specific representations can be better shaped by the interaction of both semantic and distortion based information
- Seismic representations have potential opportunities as well as volumetric positional information

Overall

• Every domain of data potentially has easily accessible distributions that can shape representations to better reflect the *underlying distribution* of data in the domain.

Publications and Code

1. Kokilepersaud, K., Prabhushankar, M., & AlRegib, G. (2022, August). Volumetric supervised contrastive learning for seismic semantic segmentation. In *Second International Meeting for Applied Geoscience & Energy* (pp. 1699-1703). Society of Exploration Geophysicists and American Association of Petroleum Geologists.

2. Kokilepersaud, K., Prabhushankar, M., AlRegib, G., Corona, S. T., & Wykoff, C. (2022, October). Gradient-based severity labeling for biomarker classification in oct. In *2022 IEEE International Conference on Image Processing (ICIP)* (pp. 3416-3420). IEEE.

3. Kokilepersaud, K., Corona, S. T., Prabhushankar, M., AlRegib, G., & Wykoff, C. (2023). Clinically Labeled Contrastive Learning for OCT Biomarker Classification. *IEEE Journal of Biomedical and Health Informatics*.

4. Kokilepersaud, K., Prabhushankar, M., Yarici, Y., AlRegib, G., & Parchami, A. (2023). Exploiting the Distortion-Semantic Interaction in Fisheye Data. *IEEE Open Journal of Signal Processing*.

5. K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Leveraging Image Perturbations for Medical Contrastive Learning," *Journal of Biomedical and Health Informatics Special Issue on Machine Learning Technologies for Biomedical Signals Processing*, submitted on Sept. 30, 2023.

For more OLIVES content, please visit:

