ML4Seismic Partners Meeting 2023 Interpretation Distribution-aware Sample Selection for Reducing Expert Labeling Efforts

Chen Zhou, Jorge Quesada, Mohit Prabhushankar, and Ghassan AlRegib

Uncertainty in Seismic Interpretation The Framework Reflects the Processing Steps of the Entire Interpretation Pipeline

Uncertainty in Seismic Interpretation

Uncertainty in Seismic Interpretation

The Framework Reflects the Processing Steps of the Entire Interpretation Pipeline

Characterizing Interpretational Uncertainty

Interpretational Uncertainty as the Probability of Interpretations Representing the Ground Truth

Characterizing Interpretational Uncertainty

Characterizing Interpretational Uncertainty

• Uncertainty varies w.r.t. individual interpretations:

 $p(Y|\alpha_1) > p(Y|\alpha_2)$

- *Y*: ground truth, α : interpretations
- Interpretations vary due to expertise hierarchy
 - E.g., Expert: α_1 , Non-expert: α_2

Comparison between Interpretations from Different Levels of Expertise Interpretation Requires Higher Budgets for Domain Experts than Non-experts

Expert Interpretation Costs Higher than Non-expert Interpretation

i = 0

<complex-block>

Interpretation by **domain experts**

• Expensive and labor intensive

Interpretation by crowd **non-experts**

• Less expensive

5 of 17

Comparison between Interpretations from Different Levels of Expertise Training with Non-expert Labels Generalizes Worse than Training with Expert Labels

Training with only non-expert labels leads to degraded generalizability

[Interpretation Distribution-aware Expert Labeling] | [Chen Zhou] | [Nov 08, 2023]

6 of 17

Sample Selection for Expert Interpretation to Enhance Generalizability Bridging the Generalization Gap between Training with all Non-expert Labels versus Expert Labels

Objective: To achieve generalization like expert labels by leveraging non-experts on selectively sampled data.

Interpretations from Different Levels of Expertise Fault Labeling Dataset with Expert and Non-expert Labels

Fault Labeling Dataset with Different Expertise Levels

Details:

- 400 sections of F3 block
- 1 expert, 8 non-experts

Expertise Hierarchy

Non-expert labels

[Interpretation Distribution-aware Expert Labeling] | [Chen Zhou] | [Nov 08, 2023]

Y. Alaudah, P. Michalowicz, M. Alfarraj, G. AlRegib, "A Machine Learning Benchmark for Facies Classification," in Interpretation 2019

Sample Selection for Expert Interpretation to Enhance Generalizability We Integrate Interpretation Distribution Estimation in Sample Selection

Contributions: Integrating Interpretation Distribution Estimation in Sample Selection to Reduce Expert Efforts

9 of 17

Our Framework for Interpretation Distribution Estimation and Fault Detection Label Distribution Training with the Expert and Non-experts

Label Distribution Training with the Expert and Non-experts

We learn a model that estimates interpretation distribution to characterize interpretational uncertainty

10 of 17

Our Framework for Interpretation Distribution Estimation and Fault Detection Estimating Interpretation Distribution during Sample Selection for Expert Labeling

Estimating Interpretation Distribution during Sample Selection for Expert Labeling

- Select samples of which probabilities $p(Y|\alpha; \hat{\mu}, \hat{\sigma})$ of **non-expert's** interpretations are **low**.
- Label these samples by the expert.

We utilize the **predicted distribution** to **select samples** for **expert labeling**

11 of 17

Results

Training with all Non-expert Labels Sows Degraded Generalizability Compared to all Expert Labels

Training with all Expert Labels versus all Non-expert Labels

Training with all non-expert labels

Training with all expert labels

Manual interpretation

Results Our Method Enhances Generalization and Outperforms the Baseline

Comparison between Interpretation Distribution-aware and Random-based Selection

13 of 17

Results Our Method Matches or Outperforms the Baseline

Interpretation Distribution-aware and Random-based Expert Labeling

22% expert

Interpretation distribution-aware expert labeling

Random-based expert labeling

Interpretation distributionaware expert labeling matches or improves over random-based labeling **baseline**.

Manual interpretation

14 of 17

[Interpretation Distribution-aware Expert Labeling] | [Chen Zhou] | [Nov 08, 2023]

IL TO IL

Results Our Method Matches or Outperforms the Baseline

Qualitative Results – Ambiguous Training Sample Selection by our Framework

Sample selection

Variation of labels by non-experts

Labels by the expert

Interpretation distribution-aware expert labeling select samples with high interpretational uncertainty.

15 of 17

Conclusion

• Training with non-expert versus expert interpretations shows significant generalization gap.

- We introduce an **interpretation distribution-aware** sample **selection** approach to characterize interpretational uncertainty.
- We demonstrate that the generalization gap can be mitigated by our proposed sample selection with reduced expert labeling efforts.

Thanks for Listening Questions?

ML4SEISMIC

17 of 17

