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Uncertainty in Seismic Interpretation
The Framework Reflects the Processing Steps of the Entire Interpretation Pipeline

Uncertainty in Seismic Interpretation
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Uncertainty in Seismic Interpretation
The Framework Reflects the Processing Steps of the Entire Interpretation Pipeline

Characterizing Interpretational Uncertainty
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Characterizing Interpretational Uncertainty
Interpretational Uncertainty as the Probability of Interpretations Representing the Ground Truth

Characterizing Interpretational Uncertainty

* Uncertainty varies w.r.t. individual interpretations: Probability Distribution of

Interpretations
p(Ylay) > p(Y|ay)

a,
Y: ground truth, «a: interpretations '/E
* Interpretations vary due to expertise hierarchy ay m\

E.g., Expert: a;, Non-expert: a,
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Comparison between Interpretations from Different Levels of Expertise
Interpretation Requires Higher Budgets for Domain Experts than Non-experts

Expert Interpretation Costs Higher than Non-expert Interpretation
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Comparison between Interpretations from Different Levels of Expertise
Training with Non-expert Labels Generalizes Worse than Training with Expert Labels

Training with only non-expert labels leads to degraded generalizability

Model 4  Expert
generalizability

Non-expert

Model

Training j i

® o¥la) > p(¥la)

Training j i
Center for Energy & Geo Processing

6 of 17 Ce [Interpretation Distribution-aware Expert Labeling] | [Chen Zhou] | [Nov 08, 2023]

o Expert labels (a;)
Seismic volume .

v

v

Gr Georgia
Tech.




Sample Selection for Expert Interpretation to Enhance Generalizability
Bridging the Generalization Gap between Training with all Non-expert Labels versus Expert Labels

Objective: To achieve generalization like expert labels by leveraging non-experts on selectively sampled data.
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Interpretations from Different Levels of Expertise
Fault Labeling Dataset with Expert and Non-expert Labels

Fault Labeling Dataset with Different Expertise Levels

Details:
e 400 sections of F3 block
« 1 expert, 8 non-experts

Expertise Hierarchy Fault Labeling Examples
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Sample Selection for Expert Interpretation to Enhance Generalizability
We Integrate Interpretation Distribution Estimation in Sample Selection

Contributions: Integrating Interpretation Distribution Estimation in Sample Selection to Reduce Expert Efforts
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Our Framework for Interpretation Distribution Estimation and Fault Detection
Label Distribution Training with the Expert and Non-experts

Label Distribution Training with the Expert and Non-experts

* Interpretation distribution p(Y|a) parameterized
by labels: = /\— .
* 1 expert, 8 non-experts ‘
« Assume p(Y|aexpert) is the highest e ooy Sostide, sorsget

* Predicted distribution p(Y|«; {1, 6) parameterized

by the model: Loss [+
* /A:mean Training u
« 0:std.
o

Initial
training set Predicted Interpretation
distribution distribution

We learn a model that estimates interpretation distribution to
characterize interpretational uncertainty
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Our Framework for Interpretation Distribution Estimation and Fault Detection

Estimating Interpretation Distribution durin

g Sample Selection for Expert Labeling

Estimating Interpretation Distribution during Sample Selection for Expert Labeling

« Select samples of which probabilities p(Y|
of non-expert’s interpretations are low.

« Label these samples by the expert.
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We utilize the predicted distribution to select samples for
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Results
Training with all Non-expert Labels Sows Degraded Generalizability Compared to all Expert Labels

Training with all Expert Labels versus all Non-expert Labels

Expert
Model % 0.6084
generalizability
(averaged Ngr‘s'gfl(%ert
mloUs) .
Training with all non-expert labels Training with all expert labels Manual interpretation
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Results
Our Method Enhances Generalization and Outperforms the Baseline

Comparison between Interpretation Distribution-aware and Random-based Selection
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Results
Our Method Matches or Outperforms the Baseline

Interpretation Distribution-aware and Random-based Expert Labeling
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Results
Our Method Matches or Outperforms the Baseline

Qualitative Results — Ambiguous Training Sample Selection by our Framework

Variation of labels by non-experts Labels by the expert

Sample selection

Interpretation distribution-aware expert labeling select
samples with high interpretational uncertainty.
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« Training with non-expert versus expert interpretations shows significant generalization gap.

 We introduce an interpretation distribution-aware sample selection approach to characterize
interpretational uncertainty.

 We demonstrate that the generalization gap can be mitigated by our proposed sample selection with
reduced expert labeling efforts.
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