Visual Explainability in Machine Learning Lecture 1: Introduction to Explainable AI

Ghassan AlRegib, PhD Professor Mohit Prabhushankar, PhD Postdoctoral Fellow

Omni Lab for Intelligent Visual Engineering and Science (OLIVES) School of Electrical and Computer Engineering Georgia Institute of Technology {alregib, mohit.p}@gatech.edu Dec 5, 2023

Short Course Materials

Accessible Online

https://alregib.ece.gatech.edu/spseducation-short-course/ {alregib, mohit.p}@gatech.edu

Title: Visual Explainability in Machine Learning

Presented by: Ghassan AlRegib, and Mohit Prabhushankar

Omni Lab for Intelligent Visual Engineering and Science (OLIVES)

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, USA

https://alregib.ece.gatech.edu/

2 of 58

Short Course Course Objectives

Accessible Explainability for All

- Impress on the importance of Explainability in AI systems as a function of humans (users, engineers, researchers, and policymakers) requiring it
- Define Explainability and characterize it based on its required properties, methodologies and the intended audience it caters to
- Detail popular visual explanatory techniques across multiple data modalities including natural images, biomedical and seismic images, and videos
- Expand on subjective and objective techniques to evaluate explanations
- Discuss accepted proxies for Explainability robustness and uncertainty
- Contrast against data-specific instantiations of Explainability
- Consider alternative data and explanation-centric training regimen
- Debate on the role of Visual Explainability through the lens of causality and Generative AI

Short Course

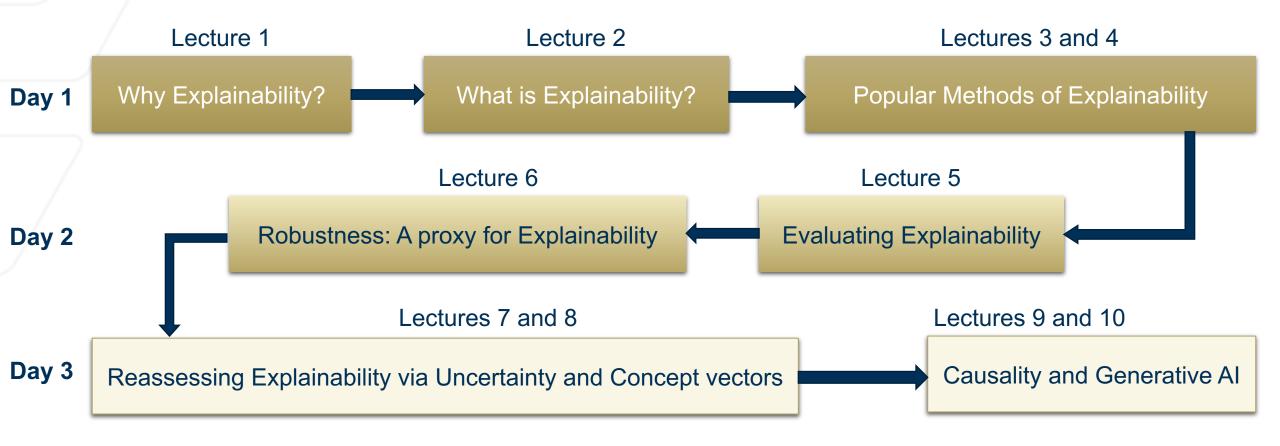
Course Outline

- Lecture 1: Introduction to Explainable AI
- Lecture 2: Basics of Explainability in Deep Learning
- Lecture 3: Visual Explanations I
- Lecture 4: Visual Explanations II
- Lecture 5: Evaluating Visual Explanations
- Lecture 6: Robustness as Explanatory Proxy
- Lecture 7: Rethinking Explanations via Uncertainty
- Lecture 8: Concept Vectors: Utility in Training and Testing
- Lecture 9: Causality and Explainability
- Lecture 10: Generative AI and the Future of Visual Explainability

Short Course

Course Outline

Day 1: Define and Detail; Day 2: Evaluate; Day 3: Reassess



Short Course Course Logistics

- 10 Lectures spanning three days
 - Day 1 (Tuesday, December 5, 2023): 4 Lectures
 - Day 2 (Wednesday, December 6, 2023): 2 Lectures
 - Day 3 (Thursday, December 7, 2023): 4 Lectures
- All course materials present at: https://alregib.ece.gatech.edu/sps-education-short-course/
- Presenter emails: {alregib, mohit.p}@gatech.edu

Lecture Outline

Lecture 1: Introduction to Explainable AI

- Artificial Intelligence
- Explainability
- Need for Explainability in AI systems
- Deep Learning
 - Training
- Foundation Models
 - Challenges in Foundation Models
- Challenges in Explainability
 - Technical Challenges
 - Functional Challenges
 - Operational Challenges
- Takeaways

Lecture Outline

Lecture 1: Introduction to Explainable AI

- Artificial Intelligence
- Explainability
- Need for Explainability in AI systems
- Deep Learning
 - Training
- Foundation Models
 - Challenges in Foundation Models
- Challenges in Explainability
 - Technical Challenges
 - Functional Challenges
 - Operational Challenges
- Takeaways

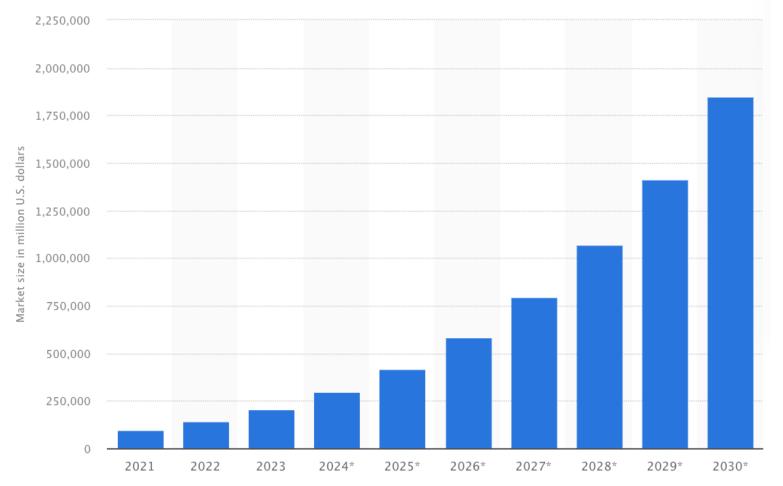
Artificial Intelligence Al in Everyday Life

Al systems are bringing about the 4th industrial revolution

Artificial Intelligence

Projected Growth of AI Sectors

Al market size worldwide in 2021 with a forecast until 2030 (in million U.S. dollars)



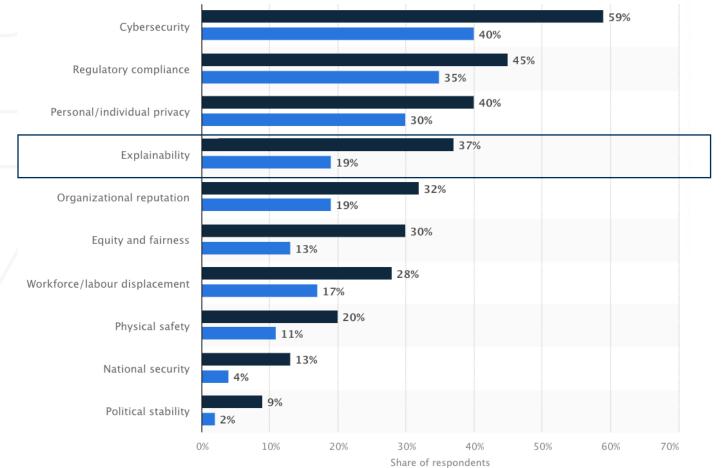
10 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

https://www.statista.com/statistics/1365145/artificial-intelligence-market-size/

Artificial Intelligence

Public Perception of Risks in Al



- Bar graph shows public perception of risks when adopting AI systems
- 59% of respondents in 2022 believe AI adoption poses a security risk to cybersecurity as opposed to 40% in 2019
- Explainability ranks fourth as a risk. Along with cybersecurity, it has seen the steepest increase in risk perception since 2019
- And since 2022, the billion parameter Al systems have nudged into the trillions

• 2019 • 2022

11 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

https://www.statista.com/statistics/1365145/artificial-intelligence-market-size/

Explanations What is Explainability?

> The ability of an entity to explain or justify its decisions or predictions in humanunderstandable terms

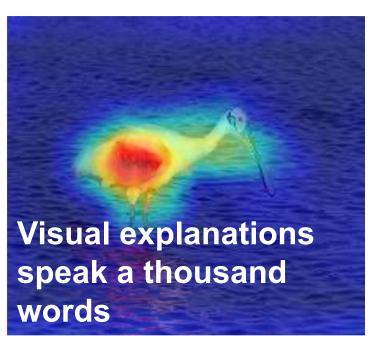
12 of 58

Explanations What is Visual Explainability?

Visual Explainability justifies decisions based on visual characteristics in a scene

This is a spoonbill because:

- It has a long, flat beak
- It is large and longlegged



Visual explanation

Natural language explanation

Lecture Outline

Lecture 1: Introduction to Explainable AI

- Artificial Intelligence
- Explainability
- Need for Explainability in AI systems
- Deep Learning
 - Training
- Foundation Models
 - Challenges in Foundation Models
- Challenges in Explainability
 - Technical Challenges
 - Functional Challenges
 - Operational Challenges
- Takeaways

Case Study: Autonomous Vehicles

Tesla driver dies in first fatal crash while using autopilot mode

The autopilot sensors on the Model S failed to distinguish a white tractor-trailer crossing the highway against a bright sky

Autopilot didn't detect the trailer as an obstacle (NHTSA investigation and Tesla statements)

- The National Highway Traffic Safety Administration (NHTSA) determined that a "lack of safeguards" contributed to the death
- 2. "Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied," Tesla said.

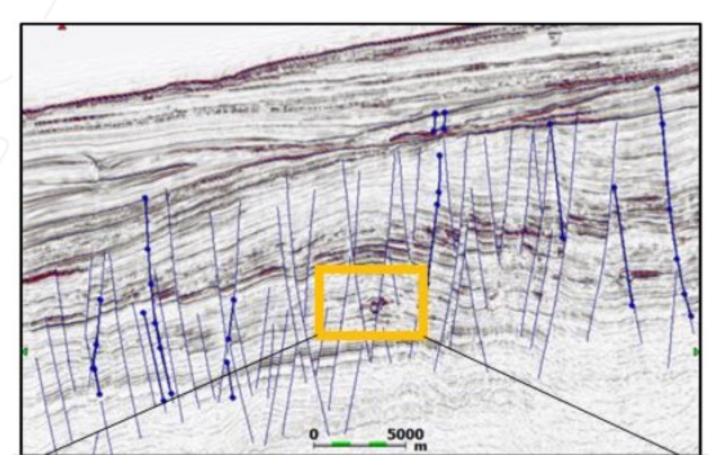
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Explanation

https://www.businessinsider.com/details-about-the-fatal-tesla-autopilot-accident-released-2017-6

Case Study: Seismic Fault Interpretations

Seismic Fault interpretation is essential for earthquake monitoring and carbon capture



- The lines indicate faults
- The yellow box is roughly 25 km²
- There are 5 interconnected faults within the box
- Each pixel is worth 500m²

Al systems assist Geophysicists in fault interpretations. They must **explain their decisions** down to the **pixel-level** with high accuracy!

Case Study: Adversarial Attacks

Adversarial attacks are engineered to intentionally mislead an AI system

- Widespread face recognition systems that use AI models can be attacked using adversarial eyeglasses
- Infrared dots act as adversaries for face
 authentication systems
- Small patches and posters on traffic signs cause autonomous vehicle perception modules to misclassify signs

Case Study: Bias mitigation in Finance

Al Systems excel at integrating seemingly inconsequential data to harm protected groups

• According to CFPB:

"A creditor employs facially neutral policies or practices that have an adverse effect or impact on a member of a protected class unless it meets a legitimate business need that cannot reasonably be achieved by means that are less disparate in their impact"

- For people shopping on Wayfair on credit, the following variables were the most correlated to repayment¹:
 - Borrower type of computer (Mac or PC)
 - Type of device (phone, tablet, PC)
 - Time of day you applied for credit (borrowing at 3am is not a good sign)
 - Your email domain (Gmail is a better risk than Hotmail)
 - Is your name part of your email (names are a good sign)

Each of the above variables are protected classes and using them is illegal to deny credit

18 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Berg, T., et al. "On the rise of the FinTechs—Credit scoring using digital footprints. Federal Deposit Insurance Corporation." *Center for Financial Research WP* 4 (2018): 2018

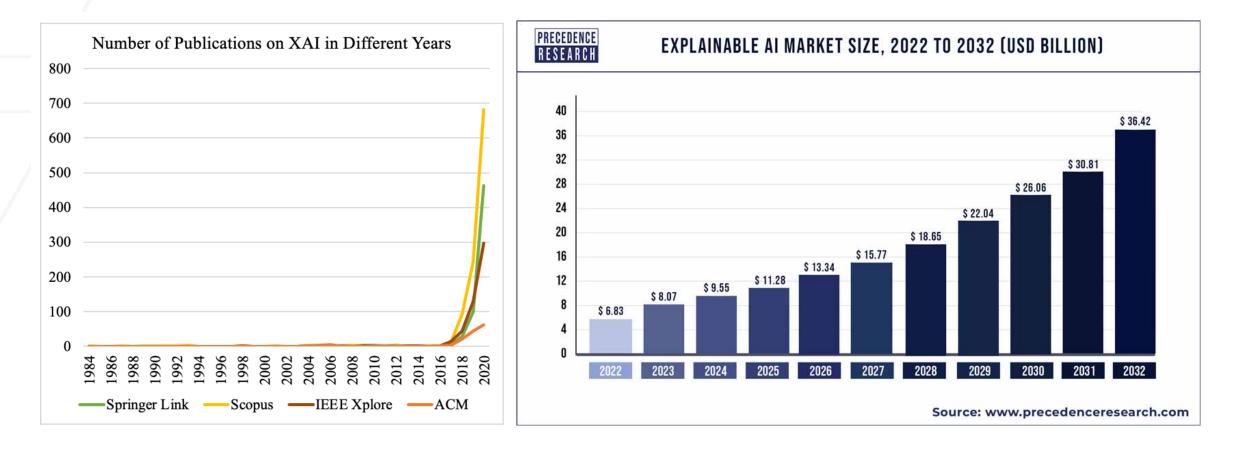
Required Explanations

There is no "One Size Fits All" Explanation

- Autonomous Vehicles require high-level semantic explanations
- Seismic interpretability requires low-level pixel explanations
- Medical images require structure-wise explanations
- Credit monitoring requires featurebased explanations
- Adversarial examples require ANY explanation!

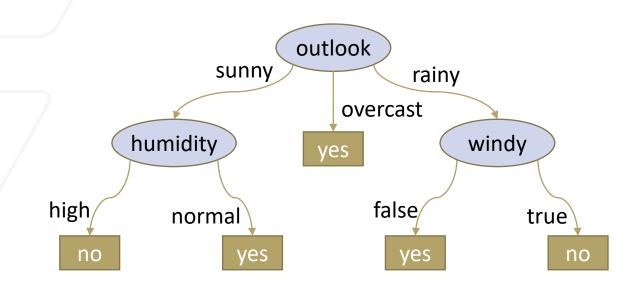
Research in Explainable AI

Research in Explainable AI has seen a tremendous growth and will continue to do so



Traditional Explainable AI

Al systems, traditionally, were logic-based handcrafted systems



Final decision tree computed based on data in table

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
Overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Traditional Explainable AI

CELEBRATING 75 YEAR

Al systems, traditionally, were logic-based handcrafted systems

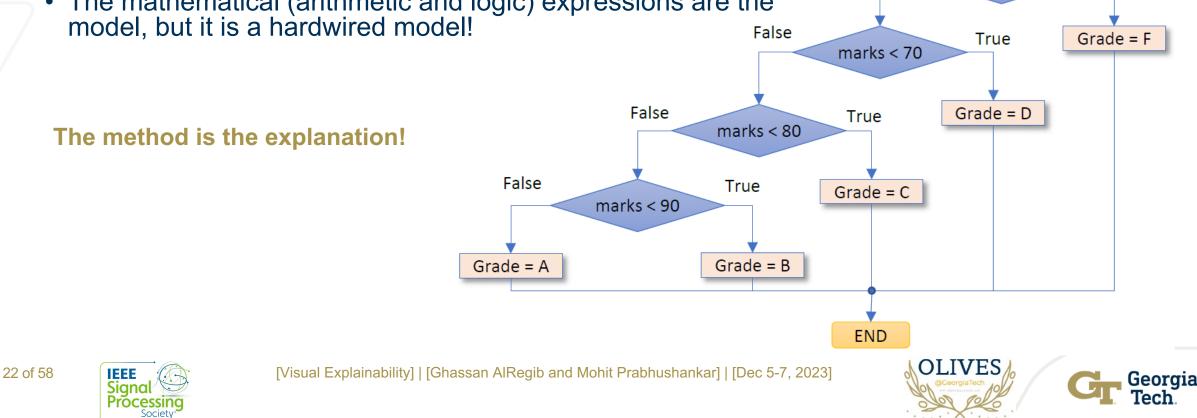
START

marks < 60

False

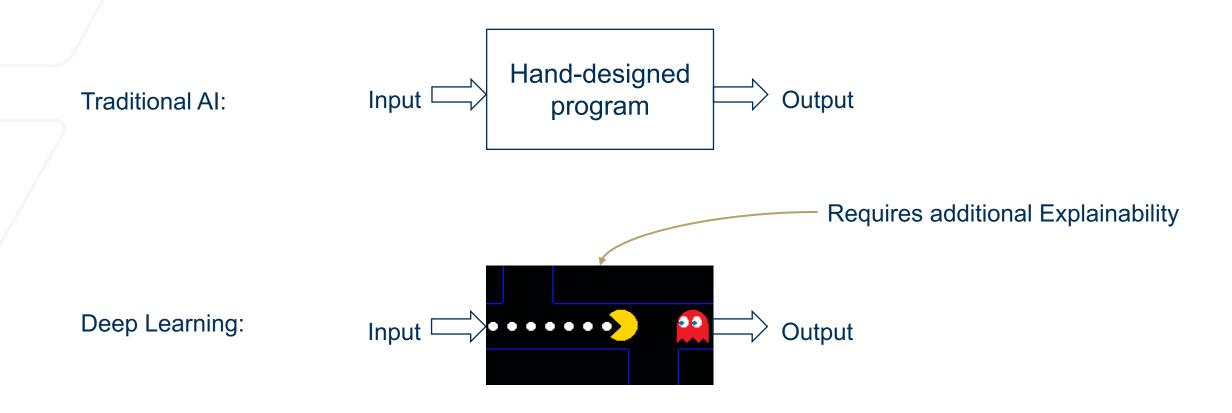
True

- A set of rules and mathematical expressions determined by subject matter experts to arrive at classification decision on new incidents.
- The mathematical (arithmetic and logic) expressions are the model, but it is a hardwired model!



Advent of Deep Learning

Deep Learning is an end-to-end trainable system with trillions of parameters

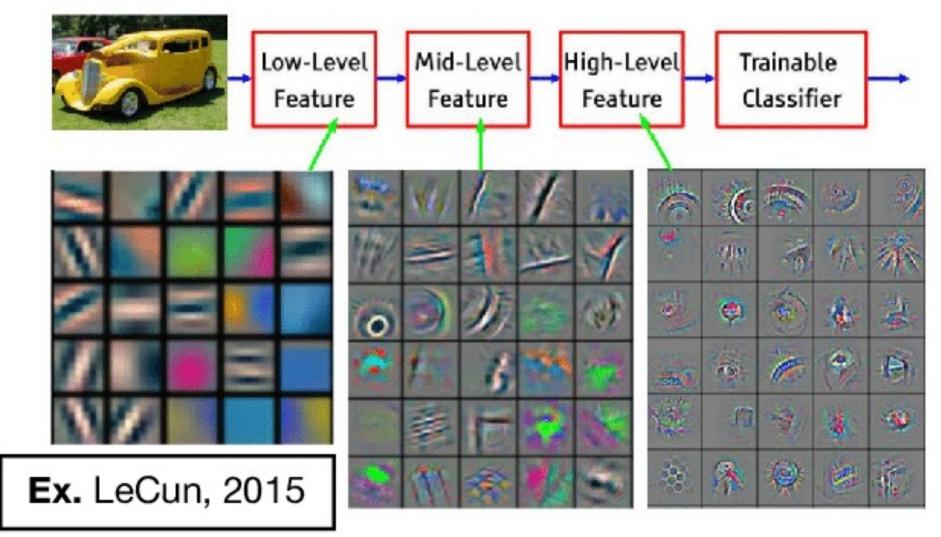


Lecture Outline

Lecture 1: Introduction to Explainable AI

- Artificial Intelligence
- Explainability
- Need for Explainability in AI systems
- Deep Learning
 - Training
- Foundation Models
 - Challenges in Foundation Models
- Challenges in Explainability
 - Technical Challenges
 - Functional Challenges
 - Operational Challenges
- Takeaways

Deep Learning Model Decomposition

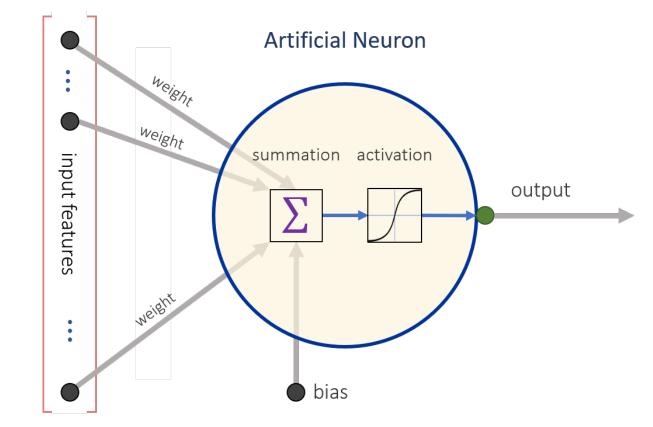


Deep Learning Model Decomposition

The underlying computational unit is the artificial neuron

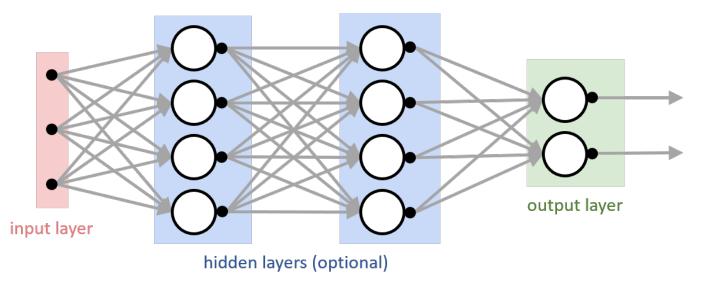
Artificial neurons consist of:

- A single output
- Multiple inputs
- Input weights
- A bias input
- An activation function



Deep Learning Model Decomposition

The underlying computational unit is the artificial neuron



Typically, a neuron is part of a network organized in layers:

• An input layer (Layer 0)

IEEE

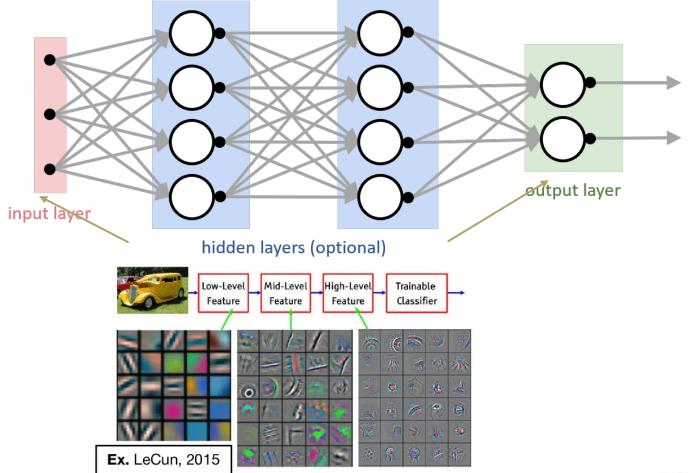
CELEBRATING 75 YEAR

- An output layer (Layer K)
- Zero or more hidden (middle) layers (Layers $1 \dots K 1$)

Deep Learning

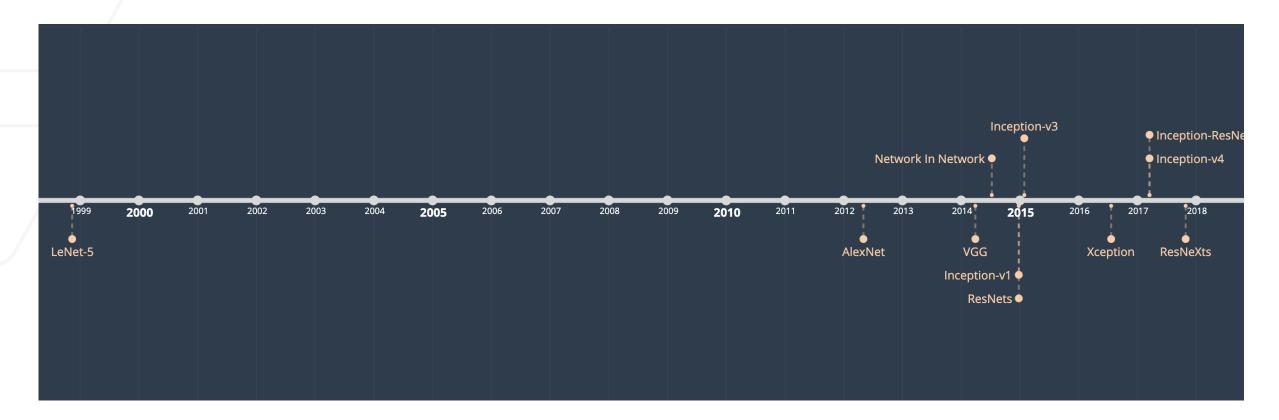
Convolutional Neural Networks

Utilizes the stationary property of images to extract features via convolution filters



Deep Learning Convolutional Neural Networks

Utilizes the stationary property of images to extract features via convolution filters

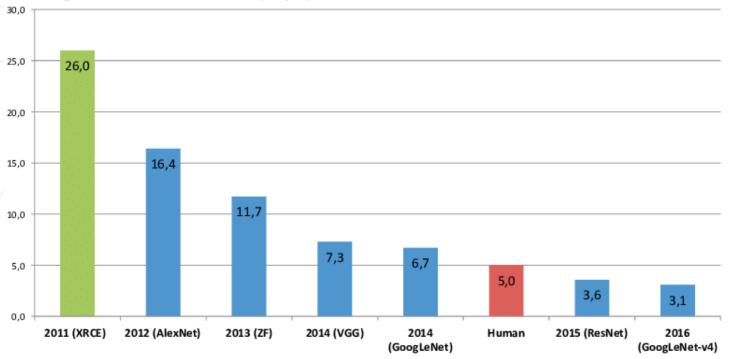


Deep Learning

Convolutional Neural Networks

Access to largescale datasets like ImageNet and GPU acceleration aided CNN research

ImageNet Classification Error (Top 5)

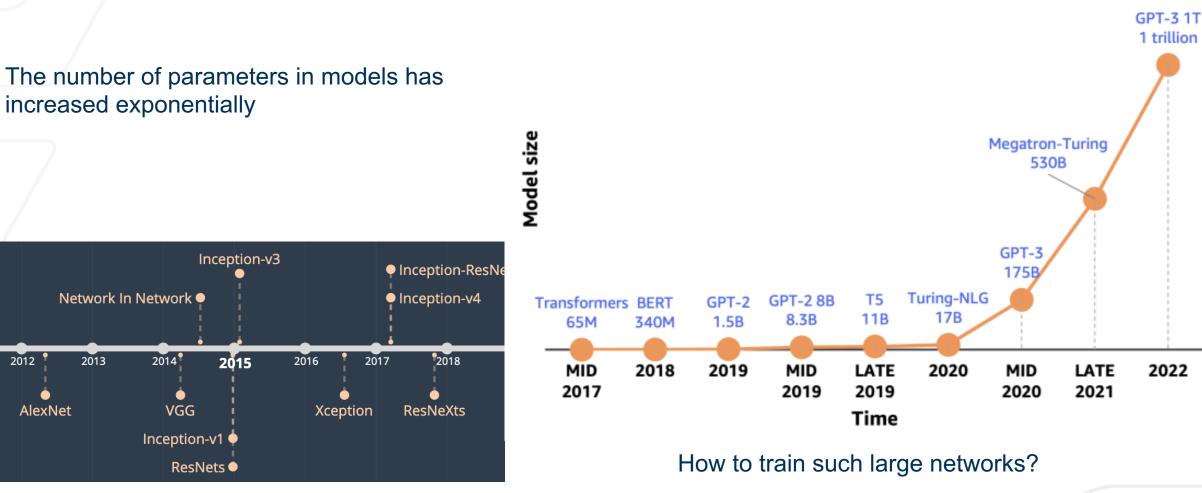


Imagenet: 1000 classes, 1.2M training images, 150K for testing

Deep Deep Deep Deep ... Deep Learning

Recent Advancements

15,000x increase in 5 years



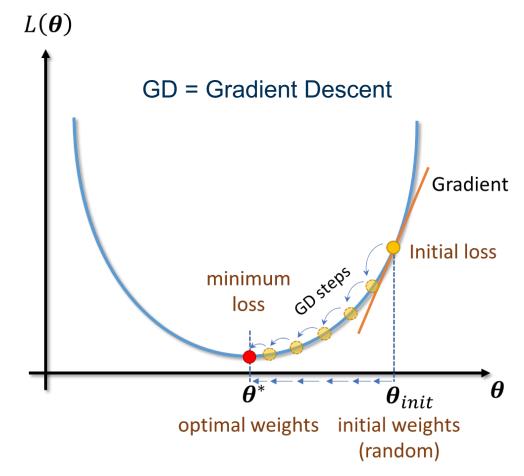
31 of 58

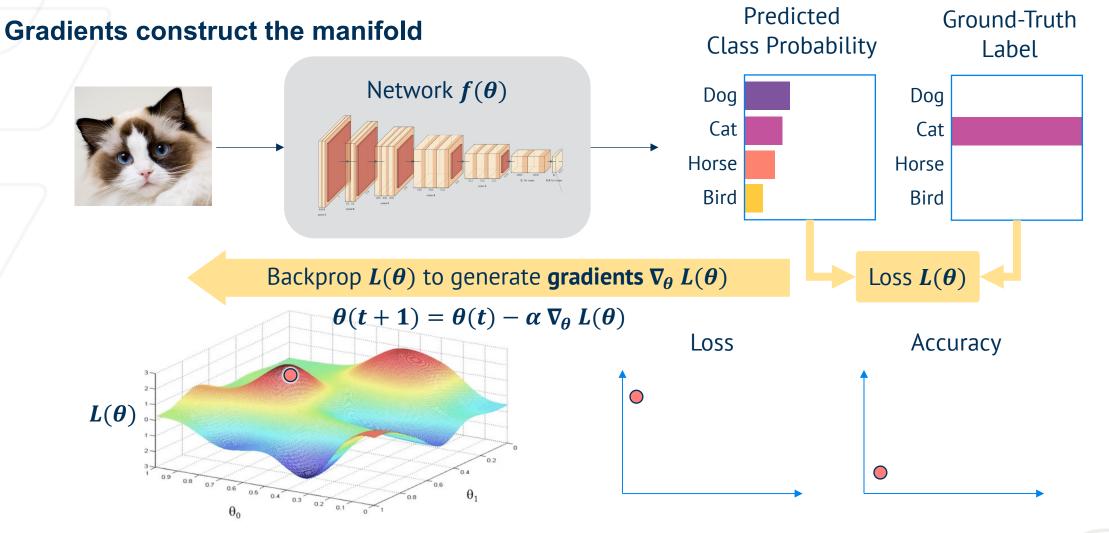
Deep Learning Training via Gradients

Iteratively reduce a loss function $L(\theta)$ to find the optimal parameters θ

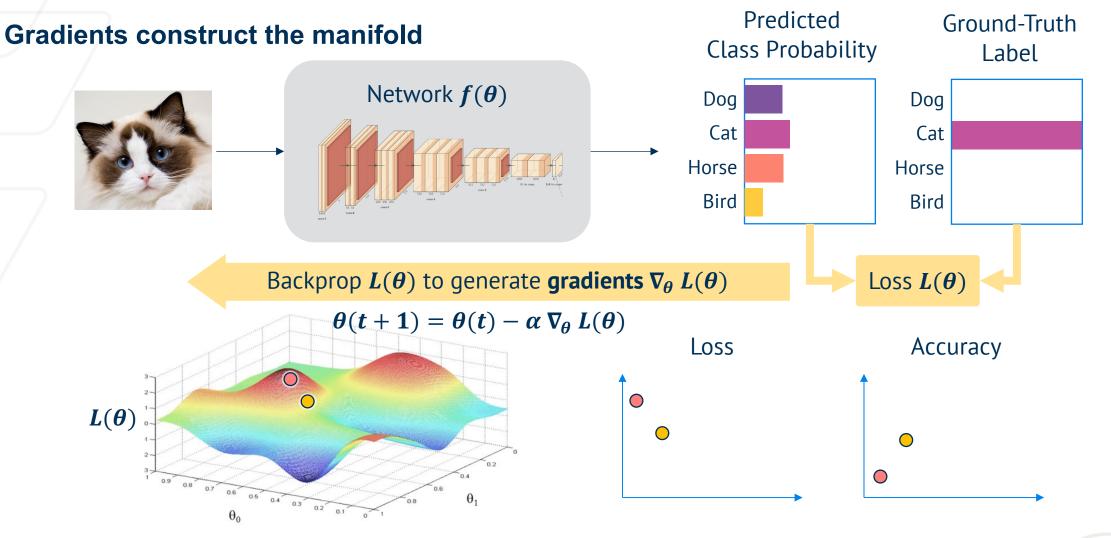
- θ is a combination of weights and biases
- Compute the gradients of a loss function iteratively and update the weights according to the update rule:

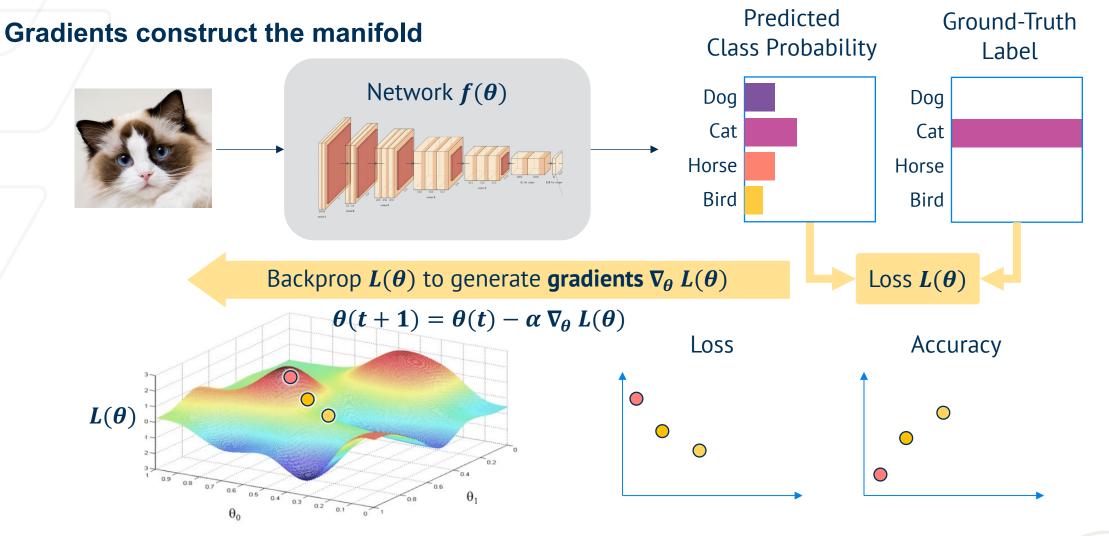
 $\begin{aligned} \theta(t+1) &= \theta(t) - \alpha \frac{\partial L(\theta)}{\partial \theta} \\ \theta &= \text{Weights, biases} \\ t &= \text{Iteration step} \\ \alpha &= \text{Step Length} \\ L(\theta) &= \text{Loss function between prediction and ground} \\ \frac{\partial L(\theta)}{\partial \theta} &= \text{Gradient w.r.t weights and biases} \end{aligned}$

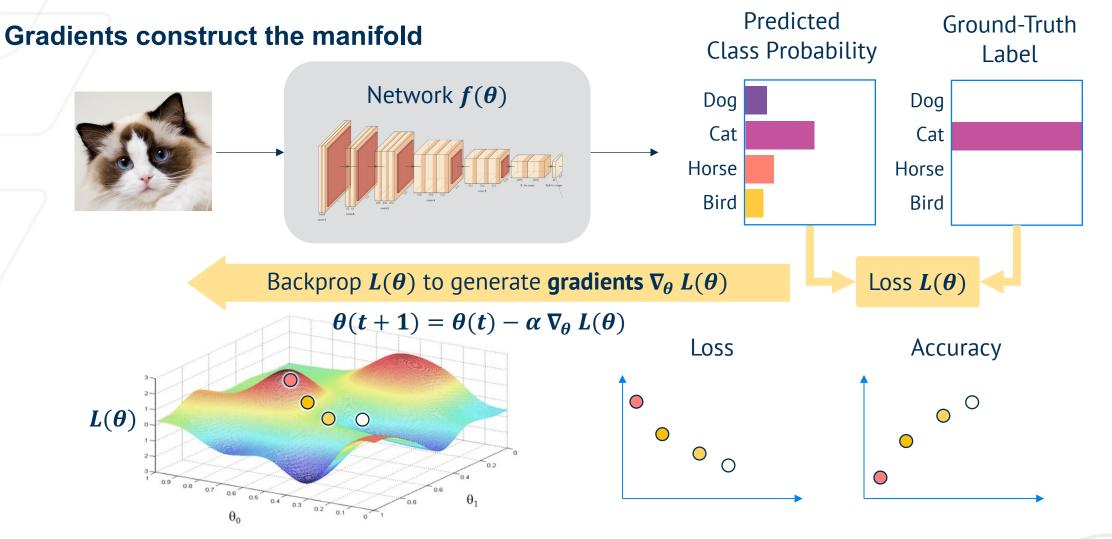




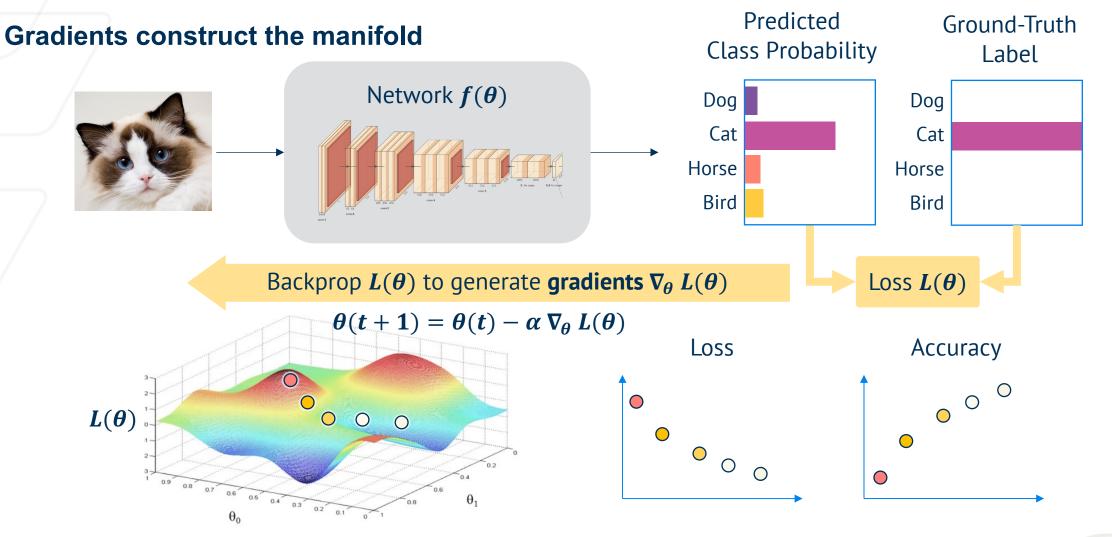
33 of 58





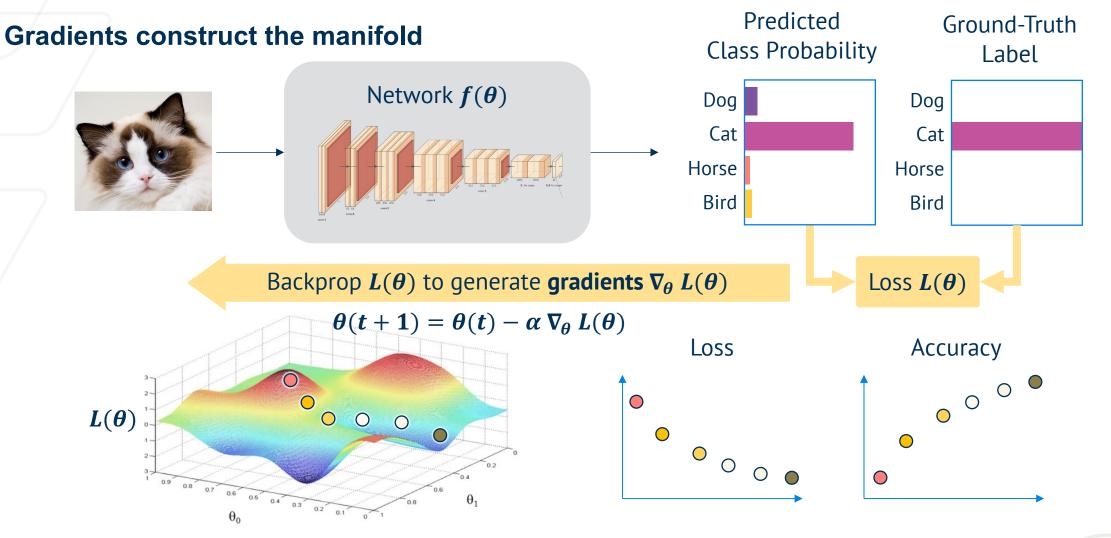


Deep Learning Gradient Descent in Action



[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Deep Learning Gradient Descent in Action



38 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Lecture Outline

Lecture 1: Introduction to Explainable AI

- Artificial Intelligence
- Explainability
- Need for Explainability in AI systems
- Deep Learning
 - Training
- Foundation Models
 - Challenges in Foundation Models
- Challenges in Explainability
 - Technical Challenges
 - Functional Challenges
 - Operational Challenges
- Takeaways

Deep Deep Deep Deep ... Deep Learning

Recent Advancements

Underlying features among different vision tasks are similar

Traditional Vision Tasks

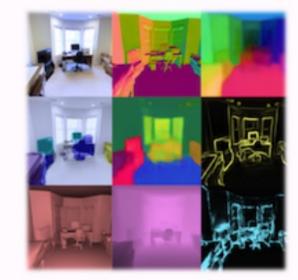


Image Recognition Object Detection Segmentation Edge Detection Keypoints Detection Surface Normals Reshading Curvature Uncertainty Depth

This similarity leads to Transfer Learning

40 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).

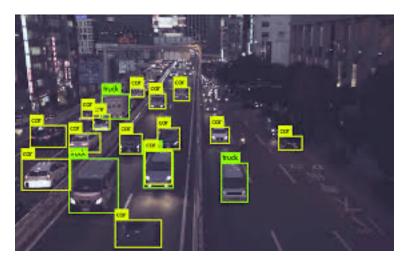
Transfer Learning What is Transfer Learning?

- Deep networks tend to learn common representations for various tasks in their earlier layers
- Can be exploited to transfer representations from networks trained on large datasets on one task (i.e., Image Classification on ImageNet) called the *source* to a different task called the *target* task
- Usually done by taking large pretrained network and then finetuning last layer (with all other layers frozen) on target dataset
- Pre-trained frozen backbone acts as a feature extractor while finetuned last layer acts to project the representations into the decision boundary for the target task
- Utility depends on how closely related the source and target datasets and/or tasks are

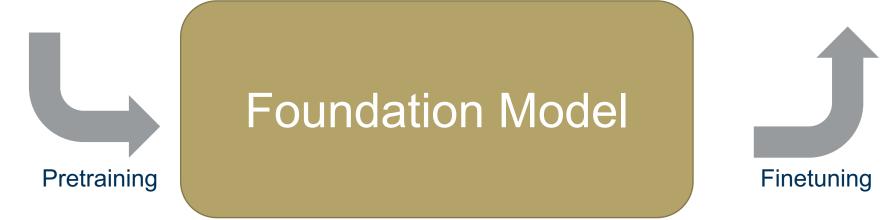
Transfer Learning

Foundation Models

Source: https://gluon-cv.mxnet.io/



<u>Source: https://www.move-lab.com/blog/tracking-</u> things-in-object-detection-videos



[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Source: https://www.saagie.com/blog/object-detection-part1/

Origin of the term Foundation Models

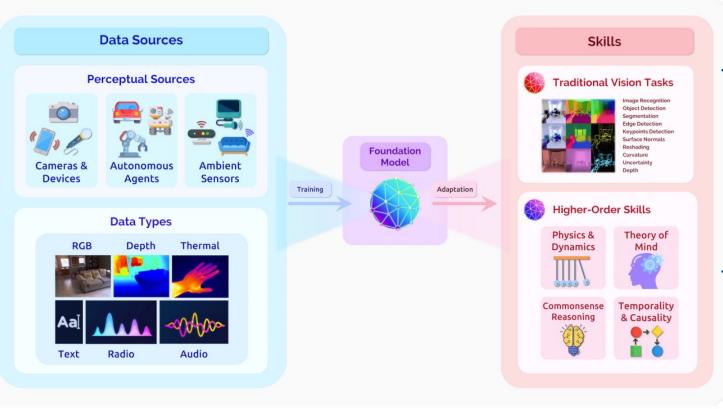
- Foundation models are like any other deep network that have employed transfer learning, except at scale
- Scale brings about emergent properties that are common between tasks
- Before 2019: Base architectures that powered multiple neural networks were ResNets, VGG etc.
- Since 2019: BERT, DALL-E, GPT, Flamingo
- Changes since 2019: Transformer architectures and Self-Supervision

43 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).

Origin of the term Foundation Models



'By harnessing self-supervision at scale, foundation models for vision have the potential to distill raw, multimodal sensory information into visual knowledge, which may effectively support traditional perception tasks and possibly enable new progress on challenging higher-order skills like temporal and commonsense reasoning These inputs can come from a diverse range of data sources and application domains, suggesting promise for applications in healthcare and embodied, interactive perception settings'

44 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).

Foundation Models Segment Anything Model

Segment Anything Model (SAM) released by Meta on April 5, 2023 was trained on Segment Anything 1 Billion dataset with 1.1 billion high-quality segmentation masks from 11 million images

45 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. "Segment anything." *arXiv preprint arXiv:2304.02643* (2023).

Challenges in Segment Anything Model

Case study: SAM on Fisheye cameras

Results from Zero-shot (using the trained model out of the box) Segment Anything Model on Woodscape dataset

Important context and objects are not segmented

46 of 58

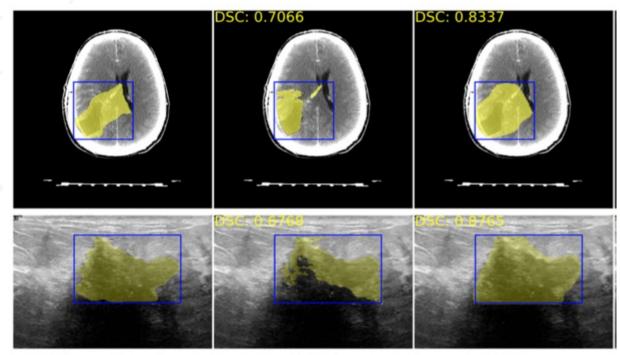
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Kokilepersaud, K., Prabhushankar, M., Yarici, Y., AlRegib, G., & Parchami, A. (2023). Exploiting the Distortion-Semantic Interaction in Fisheye Data. *IEEE Open Journal of Signal Processing*.

Challenges in Segment Anything Model

Case study: SAM on Medical images

Results from Zero-shot Segment Anything Model on various segmentation datasets



U-Net outperforms existing SAM

Ground Truth

47 of 58

SAM

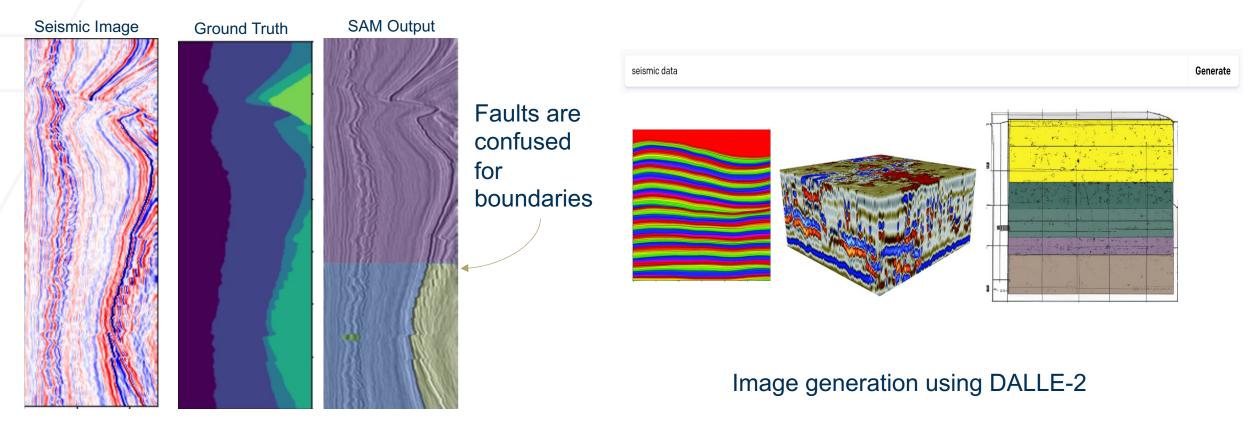
U-Net

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023] Ma, Jun, and Bo Wang. "Segment anything in medical images." *arXiv preprint arXiv:2304.12306* (2023).

Challenges in Segment Anything Model

Case study: SAM on Seismic Data

Results from Zero-shot (using the trained model out of the box) Segment Anything Model on F3 dataset



Challenges in Segment Anything Model

Case study: SAM on Seismic Data

Results from prompting Segment Anything Models on natural images

Everything detection

Ideal Prediction after prompting

Point prompts generated every 4X4 pixels

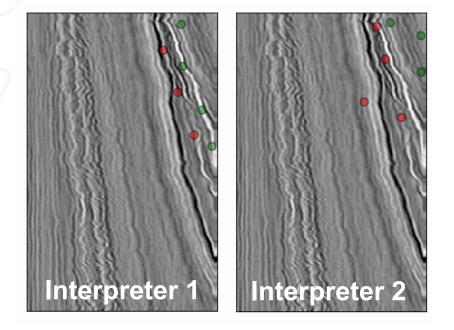
All objects segmented

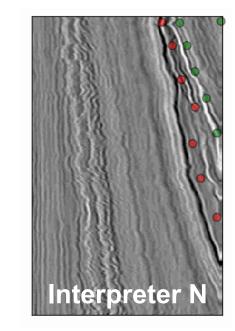
Manual prompting selects only one segment

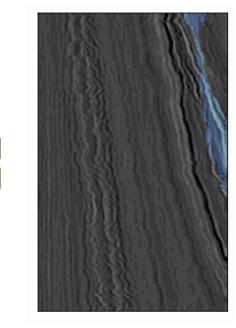
Challenges in Segment Anything Model

Since SAM is not understood, different people prompt differently and get different results

Results when prompting Segment Anything Models on seismic images





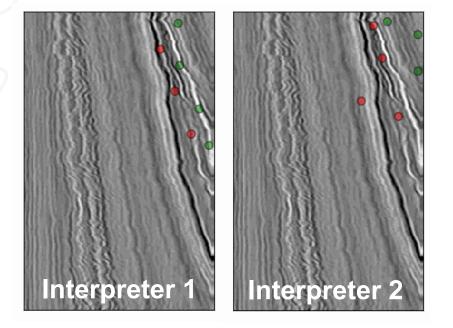


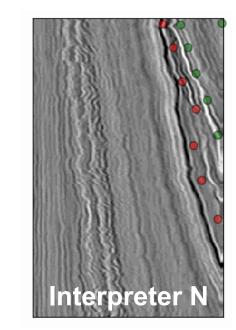
Variance of outputs from 6 prompters

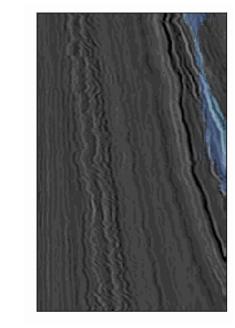
Challenges in Segment Anything Model

Since SAM is not understood, different people prompt differently and get different results

Results when prompting Segment Anything Models on seismic images







Variance of outputs from 6 prompters

Explanations are key to unlocking Neural Networks for Everybody!

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

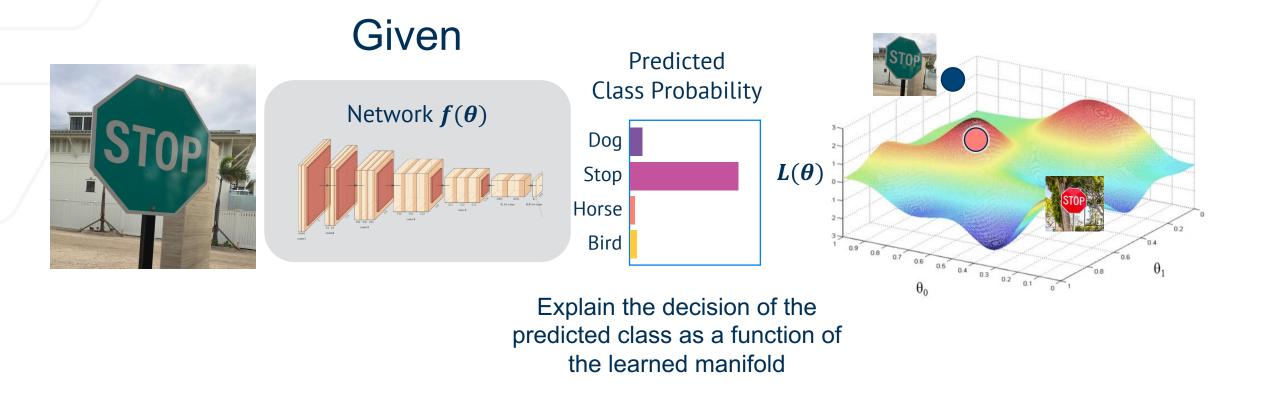
Lecture Outline

Lecture 1: Introduction to Explainable AI

- Artificial Intelligence
- Explainability
- Need for Explainability in AI systems
- Deep Learning
 - Training
- Foundation Models
 - Challenges in Foundation Models
- Challenges in Explainability
 - Technical Challenges
 - Functional Challenges
 - Operational Challenges
- Takeaways

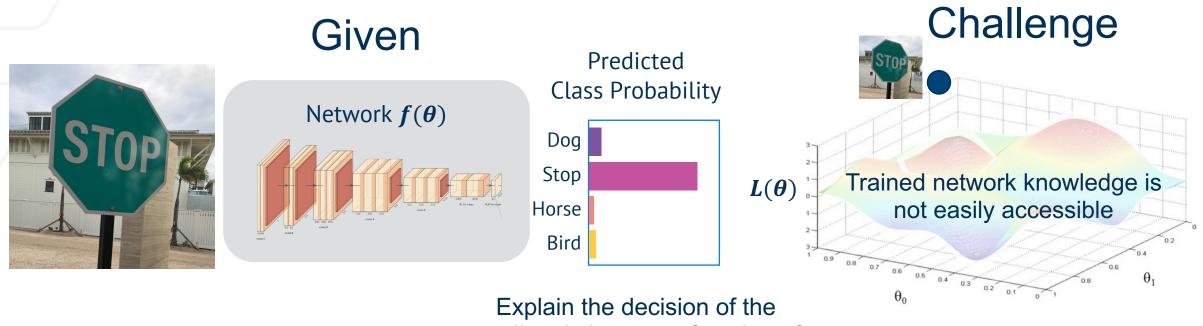
Technical challenges in Explainability

When explanations are required, we have access to a trained model, and a single data point



Technical challenges in Explainability

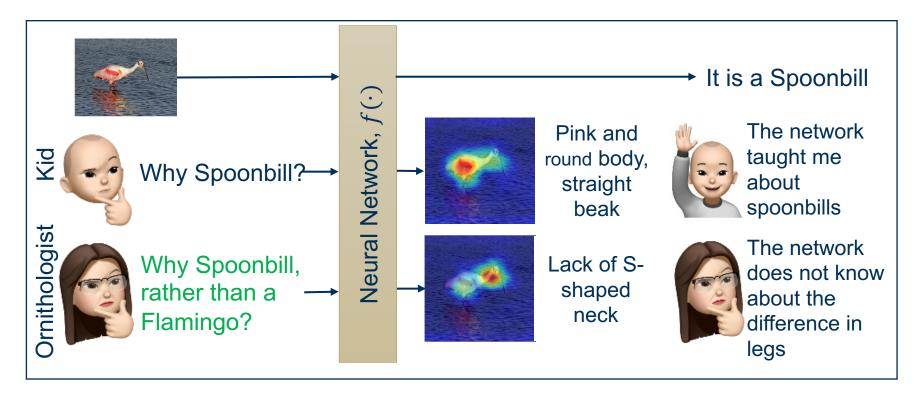
When explanations are required, we have access to a trained model, and a single data point



predicted class as a function of the learned manifold

Functional challenges in Explainability

The requirements from explanations are contextual; These requirements are determined by the audience



55 of 58

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual explanations." *IEEE Signal Processing Magazine* 39.4 (2022): 59-72.

Operational challenges in Explainability

Given a set of operational constraints, the goal is to find the best Explainability technique

I need a fast Explainabilty technique

Use GradCAM!

I need a contrastive technique

Use ContrastCAM!

I don't have access to model

I cannot retrain

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Takeaways Takeaways from Lecture 1

- Explainable AI is crucial for widespread adoption of Deep Learning based technologies
- Deep Learning architectures have far outpaced traditional models and Explainability techniques
- There are **no "one size fits all" explanations** and techniques
- The technical challenge in Explainability is to extract relevant information from trained neural networks
- The functional challenge is to cater relevant explanations to the audience
- The operational challenge is to identify the goals based on applications, requirements, and data

References

Lecture 1: Introduction to Explainable AI

- Berg, T., et al. "On the rise of the FinTechs—Credit scoring using digital footprints. Federal Deposit Insurance Corporation." *Center for Financial Research WP* 4 (2018): 2018
- Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).
- Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. "Segment anything." arXiv preprint arXiv:2304.02643 (2023).
- Kokilepersaud, K., Prabhushankar, M., Yarici, Y., AlRegib, G., & Parchami, A. (2023). Exploiting the Distortion-Semantic Interaction in Fisheye Data. *IEEE Open Journal of Signal Processing*.
- Ma, Jun, and Bo Wang. "Segment anything in medical images." arXiv preprint arXiv:2304.12306 (2023).
- AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual explanations." *IEEE Signal Processing Magazine* 39.4 (2022): 59-72.

