Visual Explainability in Machine Learning Lecture 3: Visual Explanations I

Ghassan AlRegib, PhD Professor Mohit Prabhushankar, PhD Postdoctoral Fellow

Omni Lab for Intelligent Visual Engineering and Science (OLIVES) School of Electrical and Computer Engineering Georgia Institute of Technology {alregib, mohit.p}@gatech.edu Dec 5, 2023

Short Course Materials

Accessible Online

https://alregib.ece.gatech.edu/spseducation-short-course/ {alregib, mohit.p}@gatech.edu

Title: Visual Explainability in Machine Learning

Presented by: Ghassan AlRegib, and Mohit Prabhushankar

Omni Lab for Intelligent Visual Engineering and Science (OLIVES)

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, USA

https://alregib.ece.gatech.edu/

2 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Short Course

Course Outline

Day 1: Define and Detail; Day 2: Evaluate; Day 3: Reassess

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations
 - Visualizing filters
 - Visualizing activations
 - Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation
- Takeaways

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations
 - Visualizing filters
 - Visualizing activations
 - Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation
- Takeaways

Explanations Human-centric Explanations

Explanations can be characterized based on the knowledge of the audience they cater to

Lecture 3: Indirect and Direct Explanations

Lecture 4: Targeted Explanations

6 of 45

CELEBRATING 75 YEARS

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual explanations." *IEEE Signal Processing Magazine* 39.4 (2022): 59-72.

Explanations Indirect Explanations

Indirect explanations visually analyze network parameters and features and indirectly explain the output

- Required knowledge to understand explanations:
 Models, model parameters, and training data
- Required Knowledge to obtain explanations: Models, model parameters, and training data
- Explanations audience: Researchers and Engineers building the models
- Explanatory chronology: Initially, all Explainability techniques were indirect

Methods	Indirect	Direct	Targeted
Deconvolution [21]	\checkmark	_	_
Inverted Representations [22]	\checkmark	_	_
Guided-Backpropagation [18]	_	\checkmark	_
SmoothGrad [17]	_	\checkmark	_
LIME [39]	_	\checkmark	_
CAM [24]	—	\checkmark	-
Graph-CNN [23]	\checkmark	_	_
GradCAM [12]	_	_	\checkmark
TCAV [40]	_	\checkmark	_
GradCAM++ [16]	_	_	\checkmark
RISE [35]	_	\checkmark	_
Causal-CAM [15]	_	—	\checkmark
Counterfactual-CAM [12]	_	_	\checkmark
Goyal et al. [26]	_	_	\checkmark
CEM [29]	_	_	\checkmark
Contrast-CAM [13]	_	_	\checkmark
Contrastive reasoning [14]	_	_	\checkmark

7 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual explanations." *IEEE Signal Processing Magazine* 39.4 (2022): 59-72.

Definition

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations

• Visualizing filters

- Visualizing activations
- Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation

Visualizing Filters in the First Layer

Filters are looking for *low-level* oriented edges, color blobs, textures, background etc.

- 64 filters in the first convolutional layer
- Filter size: 11 x 11 x 3 (visualized as RGB images)

9 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012)

Visualizing Filters in the First Layer

Filters in the first convolutional layers across different architectures learn similar patterns

AlexNet: 64 x 3 x 11 x 11

10 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012)

Visualizing Filters in the Intermediate Layers

Filters in higher convolutional layers are not as interpretable as filters in the first layer

Visualizing the filters (raw weights)

Conv layer 2 weights 20 x 16 x 7 x 7 (visualize as 16 grayscale images)

Conv layer 3 weights 20 x 20 x 7 x 7 (visualize as 20 grayscale images)

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012)

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations
 - Visualizing filters
 - Visualizing activations
 - Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation
- Takeaways

Visualizing Activations in the Intermediate Layers I

Higher layers are activated by semantic concepts rather than features

Intermediate layers:

- Weights: not very interpretable
- Activations: interpretable

The filter in green box is activated when it sees a wheel

However, it is irrational to explain billions of parameters by individual activation inspection

Conv 5 layer of AlexNet

13 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Yosinski et al, "Understanding Neural Networks Through Deep Visualization", ICML DL Workshop 2014.

Visualizing Activations in the Intermediate Layers II: Maximally Activating Patches

Visualize patterns in images that cause the maximum activations of certain neurons

- Maximally Activating Patches:
 - Image patches in the input that cause the maximum activations of certain filters
- Obtaining Maximally Activating Patches:
 - Pick activations in a layer
 - Feed forward images through the network, record values of the chosen channel
 - Visualize image patches that correspond to maximal activation

Each row corresponds to a particular neuron in conv5

14 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Gr Georgia Tech

Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015

Visualizing Activations in the Intermediate Layers III: DeconvNet

Train a decoder network using activations from a given intermediate layer

Left: Deconvolution network, Right: Convolutional encoder

- **DeconvNet:** An additional deconvolution network is added to map features back into input space
- Instead of directly visualizing patches from the input images, reconstruct maximally activating patches

15 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Matthew D Zeiler and Rob Fergus, "Visualizing and understanding convolutional networks," in European conference on computer vision. Springer, 2014, pp. 818–833

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations
 - Visualizing filters
 - Visualizing activations
 - Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation
- Takeaways

Visualizing Last Layer Activations

Last layer activations consist of class-specific information

- We can group the images that have similar classspecific information by exploring last layer activations
- Last layer activations (embedding):
 - 4096-dimensional feature vector for an image (layer immediately before the classifier)
 - Representations of entire input images instead of specific patches
 - Similar embeddings correspond to same classes of input images

Visualizing Last Layer Activations

Last layer activations consist of class-specific information

- Last layer activations (embedding):
 - 4096-dimensional feature vector for an image (layer immediately before the classifier)
 - Representations of *entire input images* instead of specific patches
 - Similar embeddings correspond to same classes of input images
- Feed forward images through the network, collect the final layer feature vectors
- Visualize input images that have similar last layer embeddings

Visualizing Last Layer Activations I: Nearest Neighbor Samples

Explanations refer to retrieving the nearest neighbors (from train set) of given test image

L2 Nearest neighbors in

Test image L2 Nearest neighbors in **feature** space

The **features** of the two dogs **share L2 similarity** in feature space

•

 In image space, they are not L2-similar due to horizontally flipped poses

Visualizing Last Layer Activations II: Dimensionality Reduction

Explanations refer to retrieving the nearest neighbors (from train set) of given test image

- Last layer embedding:
 - 4096-dimensional feature vector for an image
- Visualize the "feature space" by reducing dimensionality of feature vectors from 4096 to 2 dimensions
 - Each 2-dim feature correspond to an input image

fully-connected 7

20 of 45

Van der Maaten and Hinton, "Visualizing Data using t-SNE", JMLR 2008

Visualizing Last Layer Activations II: Dimensionality Reduction

Explanations refer to retrieving the nearest neighbors (from train set) of given test image

- Last layer embedding:
 - 4096-dimensional feature vector for an image
- Dimensionality reduction using t-SNE (t-distributed stochastic neighbor embedding)
- Embed *high-dimensional data* points so that **locally, pairwise distances are conserved** i.e., similar classes end up in clusters, while dissimilar classes are separated

21 of 45

Van der Maaten and Hinton, "Visualizing Data using t-SNE", JMLR 2008

Summary

Indirect explanations require network knowledge from the humans interpreting the explanations

Indirect Explanations:

- Visualize weights (filters) in conv layers
- Retrieve maximally activating patches
- Reconstruct input images
- Retrieve nearest neighbor images in features space
- Compute last layer embeddings

Visualize, retrieve, reconstruct, and compute require the "technical know how"

Maximally activating patches

Nearest neighbor images

Last layer embeddings

22 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations
 - Visualizing filters
 - Visualizing activations
 - Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation
- Takeaways

Explanations Direct Explanations

Direct explanations highlight all regions in an image that lead to a decision

- Required knowledge to understand explanations: None
- Required knowledge to obtain explanations: Models, model parameters, and training data
- Explanations audience: Researchers and Engineers building the models
- Explanatory chronology: Most (existing) explanatory techniques are direct

Methods Indirect Direct Targeted Deconvolution [21] Inverted Representations [22] Guided-Backpropagation [18] SmoothGrad [17] LIME [39] CAM [24] Graph-CNN [23] GradCAM [12] TCAV [40] GradCAM++ [16] RISE [35] Causal-CAM [15] Counterfactual-CAM [12] \checkmark Goyal et al. [26] CEM [29] Contrast-CAM [13] Contrastive reasoning [14]

ELEBRATINC 75 VEAL

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual society explanations." IEEE Signal Processing Magazine 39.4 (2022): 59-72.

Definition

Saliency via Occlusion

Mask part of the image and check the change in predicted probabilities

A gray patch or patch of average pixel value of the dataset

Note: <u>Not</u> a black patch because the input images are centered to zero in the preprocessing (More in lecture 5)

25 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023] Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Saliency via Occlusion

Mask part of the image and check the change in predicted probabilities

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023] Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Saliency via Occlusion

Visualize the heatmap of pixels that cause decrease in probabilities when masked

African elephant, Loxodonta africana

go-kart

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023] Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

-08

- 0.7

0.6

Direct Explanations Saliency via Occlusion

Visualize the heatmap of pixels that cause decrease in probabilities when masked

African elephant, Loxodonta africana

Necessity property from Lecture 2: Features are said to be necessary if their deletion causes a misclassification

- Saliency via Occlusion is an approximation of necessity property and can objectively be evaluated as "good"
- However, the method is **computationally expensive**

28 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023] Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Outline

Lecture 3: Visual Explanations I

- Human-centric Explanations
- Indirect Explanations
 - Visualizing filters
 - Visualizing activations
 - Visualizing Last layer Embedding
- Direct Explanations
 - Intervention-based visualizations
 - Saliency Maps
 - Gradient-based visualizations
 - Vanilla Backpropagation
 - Deconvolution Backpropagation
 - Guided Backpropagation
- Takeaways

Saliency via Feature Importance

Finding alternatives to necessity property: Feature Importance

We define a new property called feature importance. A toy example:

In logistic regression, for each feature x_i , a weight w_i represents its importance

> $P(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$ $P(y = 0 | \mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x} + b)$

We want to generate pixel saliency maps by deep models as feature importance maps

Saliency via Feature Importance

Saliency, approximated by gradients w.r.t. input, can be obtained via backpropagation

- Highly non-linear mapping function $f_{\theta}: \mathcal{X} \to \mathcal{Y}:$ $\widehat{Y} = \varphi \left(\varphi \left(\varphi \left(X \left(W^{(1)} \right)^T + o(b^{(1)})^T \right) \left(W^{(2)} \right)^T + o(b^{(2)})^T \right) \left(W^{(3)} \right)^T + o(b^{(3)})^T \right)$
- Assume that we can 'linearize' the model using Taylor series

$$\widehat{Y} \approx X(W)^T + o(b)^T$$

$$W \approx \frac{\partial \widehat{Y}}{\partial X}$$

$$f(a)+rac{f'(a)}{1!}(x-a)+rac{f''(a)}{2!}(x-a)^2+rac{f'''(a)}{3!}(x-a)^3+\cdots,$$

Gradient-based Saliency via Backpropagation

Saliency, approximated by gradients w.r.t. input, can be obtained via backpropagation

Forward pass: Compute probabilities

Saliency map

Backward pass: Compute gradients Compute gradient of (unnormalized) class score with respect to image pixels

Then visualize the max of absolute value over RGB channels

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

32 of 45

 $\frac{\partial \hat{y}_c}{\partial X}$

Gradient-based Saliency via Backpropagation

Saliency, approximated by gradients w.r.t. input, can be obtained via backpropagation

33 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Gradient-based Saliency via Backpropagation

Saliency maps can be used to help unsupervised semantic segmentation

Note: The network is trained only for classification. But it is **sensitive** to the all class-related visual **regions/features** in images

34 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Gradient-based Saliency via Backpropagation

Saliency Maps can find biases

When all training wolf images have snow, network may use these snow pixels as salient regions for prediction

Wolf vs. dog classifier is actually a snow vs. nosnow classifier

(a) Husky classified as wolf

(b) Explanation snow pixels as salient regions

35 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023] Ribeiro et al, ""Why Should I Trust You?" Explaining the Predictions of Any Classifier", ACM KDD 2016

Vanilla Backpropagation

Method: Backpropagate by performing all the operations of the network (Unpooling, Filtering...). For ReLU non-linearities, **only pass gradients to regions of positive activations**

Saliency map by vanilla backprop

$$\label{eq:forward} \begin{split} \mathbf{Forwa} \\ h^{l+1} = \max\{0, h^l\} \end{split}$$

ward pass
$$h^l$$

2

-3

 $\frac{\partial L}{\partial h^l} = [\![h^l > 0]\!] \frac{\partial L}{\partial h^{l+1}} \quad \mbox{Backward pass:} \label{eq:backgroup}$

Gradients from the later layer

positive activations in the previous layer

36 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

Deconvnet Backpropagation

The way DeconvNet Backpropagation handles the ReLU non-linearities is different as they propose to **only propagate positive gradient**

Rectifying the backpropagation empirically produce better saliency visualizations

Saliency map by deconv backprop

Cleaner saliency map

We can think of **Deconvnet** as **rectified gradients propagation**

$$\frac{\partial L}{\partial h^l} = \begin{bmatrix} \frac{\partial L}{\partial h^{l+1}} > 0 \end{bmatrix} \frac{\partial L}{\partial h^{l+1}} \quad \text{Backward pass}$$

 -2
 3
 -1

 6
 -3
 1
 ∂L ∂h^{l+1}

 2
 -1
 3

Gradients from the later layer

positive gradient in the later layer

37 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

Guided Backpropagation

Guided backpropagation propose to **propagate positive gradient and rectified by positive activations**

Non-intuitive approach but **empirically** produce better saliency visualizations

 $h^{l+1} = \max\{0, h^l\}$

Forward pass
$$h^l$$

 $\frac{\partial L}{\partial h^{l}} = \llbracket h^{l} > 0 \rrbracket \llbracket \frac{\partial L}{\partial h^{l+1}} > 0 \rrbracket \frac{\partial L}{\partial h^{l+1}}$ Backward pass: guided backpropagation

positive gradient in

the later layer

positive activations in the previous layer

38 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

-1

-5

2

0

0

2

-3

0

6

0

5

-7

4

0

0

3

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

Saliency map by Guided backpropagation

 h^{l+1} Cleaner saliency map

5

0

4

-1

1

3

 ∂E

 $\overline{\partial h^{l+1}}$

1

2

0

6

2

0

0

2

3

-3

Guided vs Deconvnet vs Vanilla Backpropagation

Guided Backpropagation tends to be "cleanest"

Backprop Deconv

Guided Backprop

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

Summary

Direct explanations highlight all regions in an image that lead to a decision

- Intervention-based:
 - perturbing pixels and see how the decision change
 - Computationally expensive
- Gradient-based:
 - approximates feature importance by backpropagation
 - computationally efficient

However, direct explanations assume no knowledge from the audience either about the network or the data

Shortcomings in Guided Backpropagation

However, Guided Backpropagation explanations are not class-discriminative

GB explanation for "airliner"

GB explanation for "bus"

41 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Nie, et al. "A theoretical explanation for perplexing behaviors of backpropagation-based visualizations." International Conference on Machine Learning. PMLR, 2018.

42 of 45

CELEBRATING 75 YEARS

Shortcomings in Guided Backpropagation

Guided Backpropagation does not explain decisions; They reconstruct inputs

Conference on Machine Learning. PMLR, 2018.

Direct Explanations Shortcomings in Direct Explanations

Direct explanations highlight all pixels that lead to decision making; However, they provide no mechanism to choose targeted pixels based on class discriminability

Why Bullmastiff?

Why Tigercat?

We need Targeted Explanations!

43 of 45

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual explanations." *IEEE Signal Processing Magazine* 39.4 (2022): 59-72.

- There are **no "one size fits all" explanations** and techniques
- Indirect explanations requires knowledge of networks and data
 - They are only accessible to a few
- Direct explanations place no constraints on knowledge of the audience
 - Saliency via occlusion is a direct but computationally expensive explanation
 - Backpropagation assigns importance scores to pixels
 - Rectification can be performed on gradients to obtain deconvolution and guided backpropagation
- Guided backpropagation provides the cleanest explanations
 - However, it only reconstructs salient regions of the image without providing class-specific information

References

Lecture 3: Visual Explanations I

- AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards relevant and contextual explanations." *IEEE Signal Processing Magazine* 39.4 (2022): 59-72.
- Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012)
- Yosinski et al, "Understanding Neural Networks Through Deep Visualization", ICML DL Workshop 2014.
- Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015
- Matthew D Zeiler and Rob Fergus, "Visualizing and understanding convolutional networks," in European conference on computer vision. Springer, 2014, pp. 818– 833
- Van der Maaten and Hinton, "Visualizing Data using t-SNE", JMLR 2008
- Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014
- Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.
- Ribeiro et al, ""Why Should I Trust You?" Explaining the Predictions of Any Classifier", ACM KDD 2016
- Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015
- Nie, et al. "A theoretical explanation for perplexing behaviors of backpropagation-based visualizations." International Conference on Machine Learning. PMLR, 2018.

