Visual Explainability in Machine Learning Lecture 6: Robustness as Explanatory Proxy

Ghassan AlRegib, PhD Professor Mohit Prabhushankar, PhD Postdoctoral Fellow

Omni Lab for Intelligent Visual Engineering and Science (OLIVES) School of Electrical and Computer Engineering Georgia Institute of Technology {alregib, mohit.p}@gatech.edu Dec 5, 2023

Short Course Materials

Accessible Online

https://alregib.ece.gatech.edu/spseducation-short-course/ {alregib, mohit.p}@gatech.edu

Title: Visual Explainability in Machine Learning

Presented by: Ghassan AlRegib, and Mohit Prabhushankar

Omni Lab for Intelligent Visual Engineering and Science (OLIVES)

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, USA

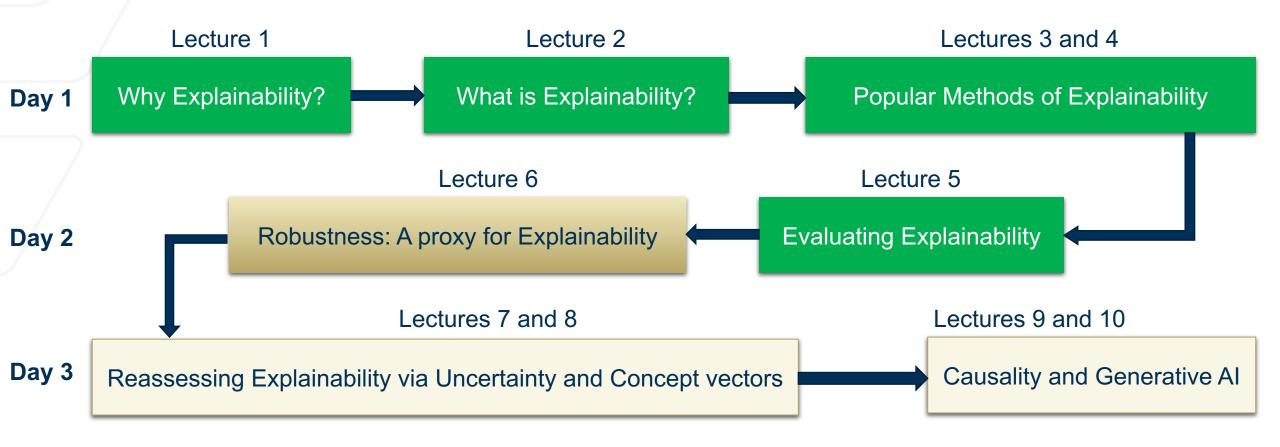
https://alregib.ece.gatech.edu/

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Short Course

Course Outline

Day 1: Define and Detail; Day 2: Evaluate; Day 3: Reassess



Outline

Lecture 6: Robustness as Explanatory Proxy

- Robustness and Explanations
- Deep Learning at Inference
 - Robustness under novel data
 - Challenges
 - Gradient Information
- Gradients as Robustness Features
 - Anomaly Detection
 - Out-of-Distribution Detection
 - Adversarial Detection
 - Corruption Detection
 - Gradients for Robust Predictions

Outline

Lecture 6: Robustness as Explanatory Proxy

Robustness and Explanations

- Deep Learning at Inference
 - Robustness under novel data
 - Challenges
 - Gradient Information
- Gradients as Robustness Features
 - Anomaly Detection
 - Out-of-Distribution Detection
 - Adversarial Detection
 - Corruption Detection
 - Gradients for Robust Predictions

Robustness and Explainability

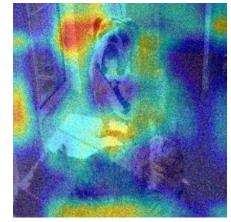
Robustness

Robustness: The ability of a system to make accurate predictions when encountering novel data

Assumption: More robust is the model, better is its Explainability¹

Distorted cat-dog

GradCAM from Swin Transformer



GradCAM from VGG-16

6 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

[1] Prabhushankar, Mohit, and Ghassan AlRegib. "Contrastive reasoning in neural networks." *arXiv* preprint arXiv:2103.12329 (2021).

Robustness and Explainability

Objective in Lecture 6: Gradients as Features for both Explainability and Robustness

Robustness: The ability of a system to make accurate predictions when encountering novel data

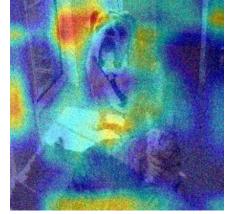
Features for Robustness

Assumption: More robust is the model, better is its Explainability¹

Distorted cat-dog



GradCAM from Swin Transformer



GradCAM from VGG-16

Features = Gradients

7 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

[1] Prabhushankar, Mohit, and Ghassan AlRegib. "Contrastive reasoning in neural networks." *arXiv* preprint arXiv:2103.12329 (2021).

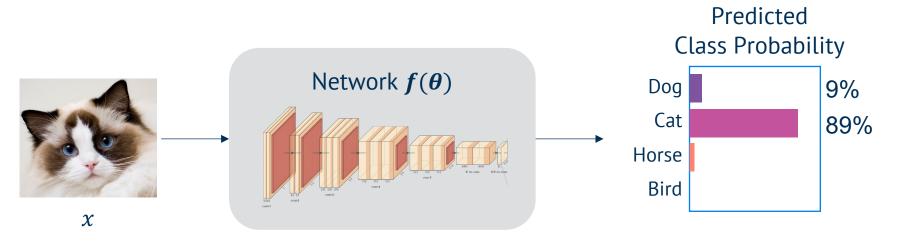
Outline

Lecture 6: Robustness as Explanatory Proxy

- Robustness and Explanations
- Deep Learning at Inference
 - Robustness under novel data
 - Challenges
 - Gradient Information
- Gradients as Robustness Features
 - Anomaly Detection
 - Out-of-Distribution Detection
 - Adversarial Detection
 - Corruption Detection
 - Gradients for Robust Predictions

Classification

Given : One network, One image. Required: Class Prediction

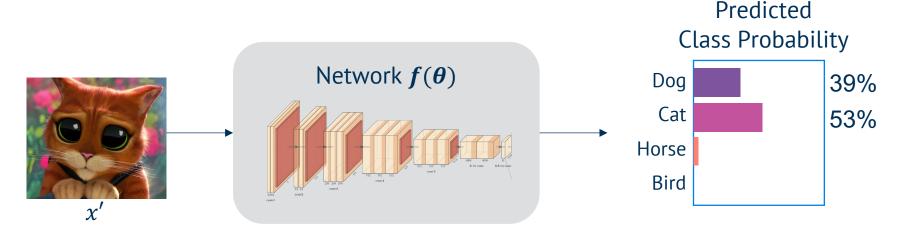


 $\hat{y} = f(x)$ $y = argmax_i \hat{y}$ $p(\hat{y}) = T(f(x))$ \hat{y} = Logits y = Predicted Class $p(\hat{y})$ = Probabilities $f(\cdot)$ = Trained Network χ = Training data

If $x \in \chi$, the data is **not novel**

Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel

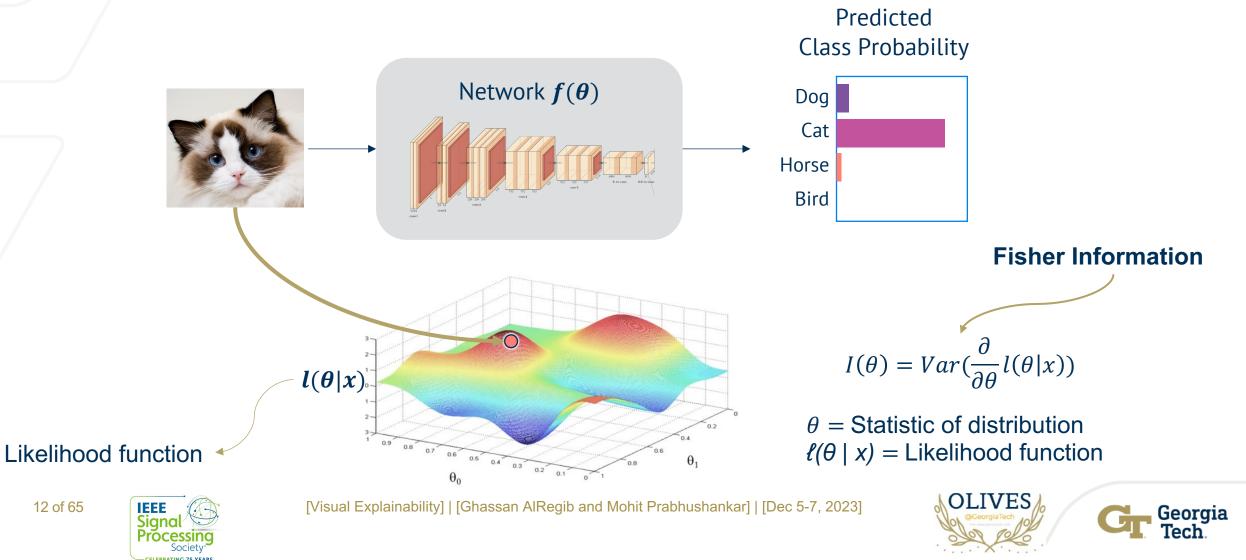


 $\begin{aligned} \hat{y} &= f(x' + \epsilon) & \hat{y} = \text{Logits} \\ y &= argmax_i \, \hat{y} & y = \text{Predicted Class} \\ p(\hat{y}) &= T(f(x' + \epsilon)) & p(\hat{y}) = \text{Probabilities} \\ f(\cdot) &= \text{Trained Network} \\ \chi &= \text{Training data} \\ \epsilon &= \text{Noise} \end{aligned}$

If $x \notin \chi$, the data is **novel**

Fisher Information

Colloquially, Fisher Information is the "surprise" in a system that observes an event



 $l(\theta|x)$

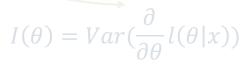
Information at Inference

Predicted Class Probability

At inference, given a single image from a single class, we can extract information about other classes

Likelihood function

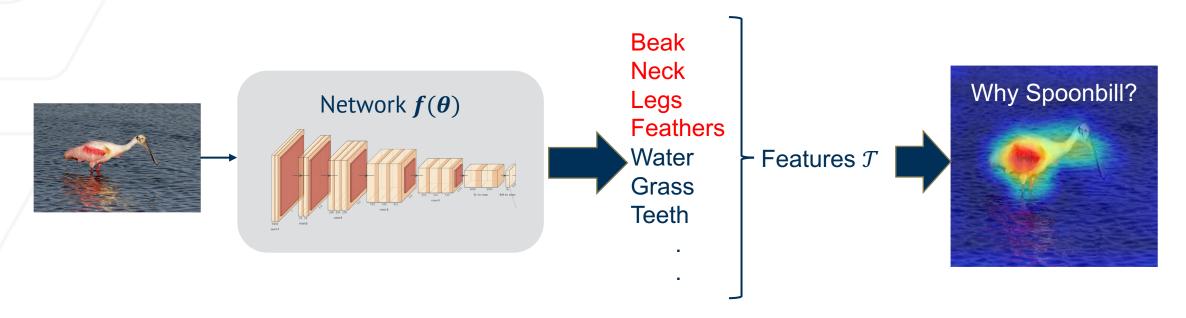
14 of 65



 θ = Statistic of distribution $\ell(\theta \mid x)$ = Likelihood function

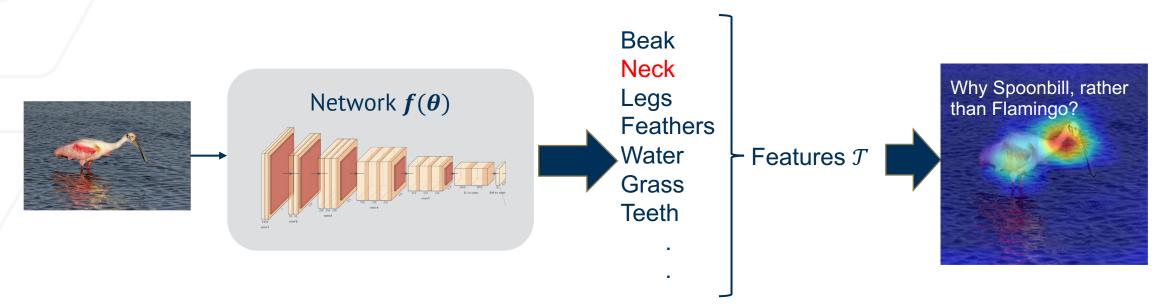
Case Study: Explainability

$\boldsymbol{\mathcal{T}}$ is the set of all features learned by a trained network



Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo



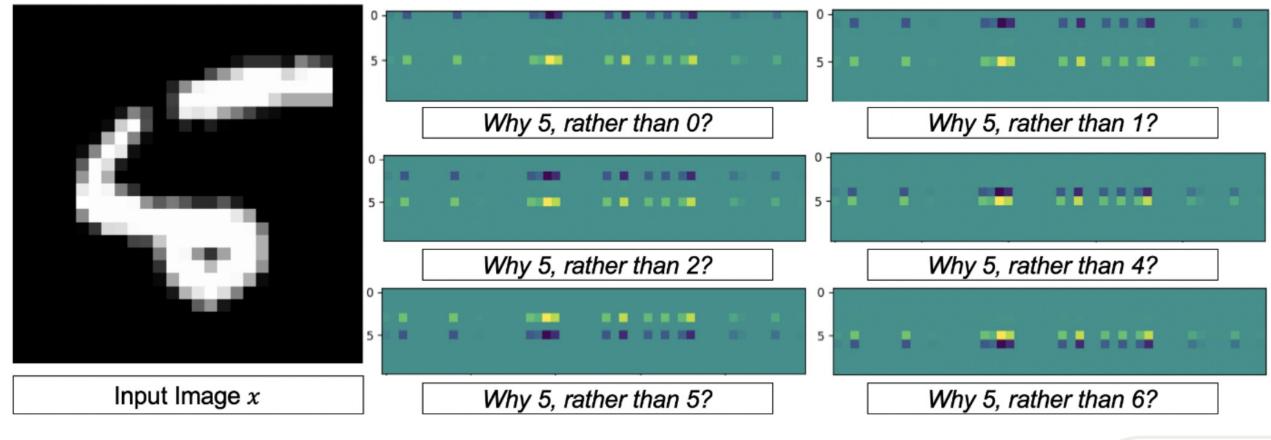
All the requisite Information is stored within $f(\theta)$ Goal: To show that gradients store this information and can be used as features for robust predictions

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Deep Learning at Inference Gradients as Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

For a well-trained network, the gradients are sparse and informative



20 of 65

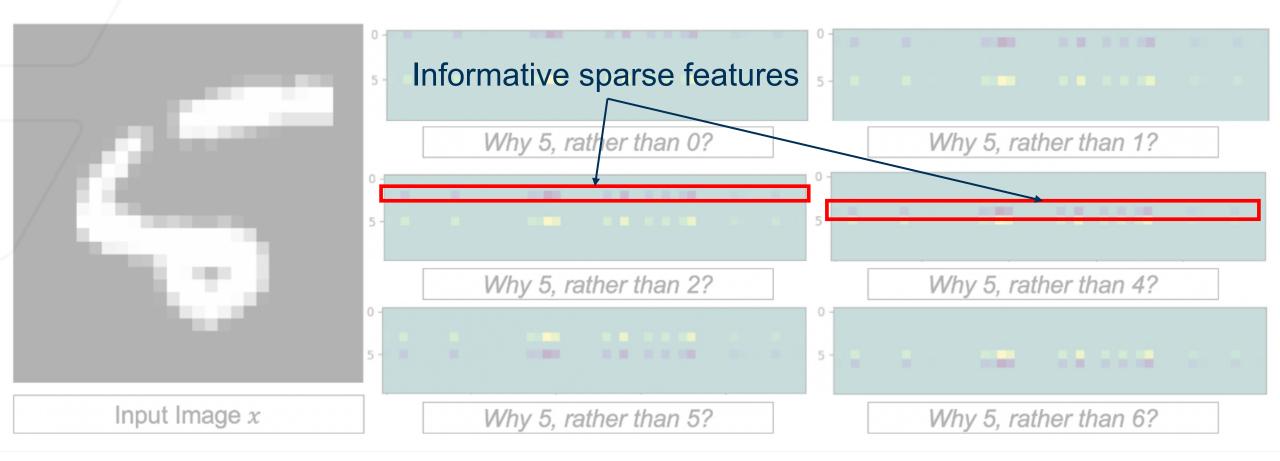
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Deep Learning at Inference Gradients as Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

For a well-trained network, the gradients are sparse and informative



21 of 65

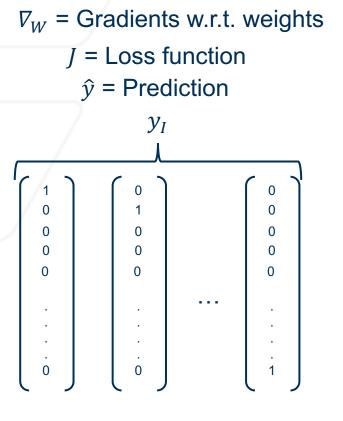
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Gradients as Features

Introspective Learning: A Two-stage **Approach for Inference in Neural Networks**

For a well-trained network, the gradients are robust



Lemma1:
$$abla_W J(y_I, \hat{y}) = -
abla_W y_I +
abla_W \log\left(1 + \frac{y_{\hat{y}}}{2}\right).$$

Any change in class requires change in relationship between y_I and \hat{y}

2022.

22 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1

Outline

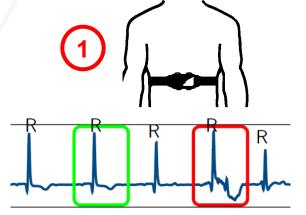
Lecture 6: Robustness as Explanatory Proxy

- Robustness and Explanations
- Deep Learning at Inference
 - Robustness under novel data
 - Challenges
 - Gradient Information
- Gradients as Robustness Features
 - Anomaly Detection
 - Out-of-Distribution Detection
 - Adversarial Detection
 - Corruption Detection
 - Gradients for Robust Predictions

Anomalies

Backpropagated Gradient Representations for Anomaly Detection

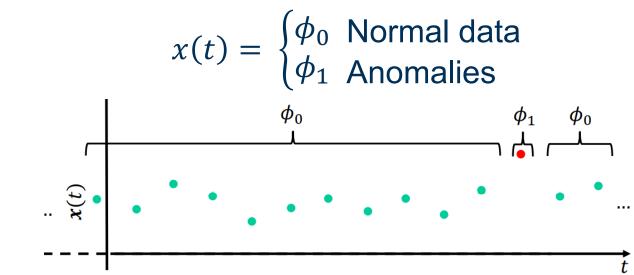
'Anomalies are patterns in data that do not conform to a well defined notion of normal behavior'^[1]



Statistical Definition:

- Normal data are generated from a stationary process P_N
- Anomalies are generated from a different process $P_A \neq P_N$

Goal: Detect ϕ_1



25 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

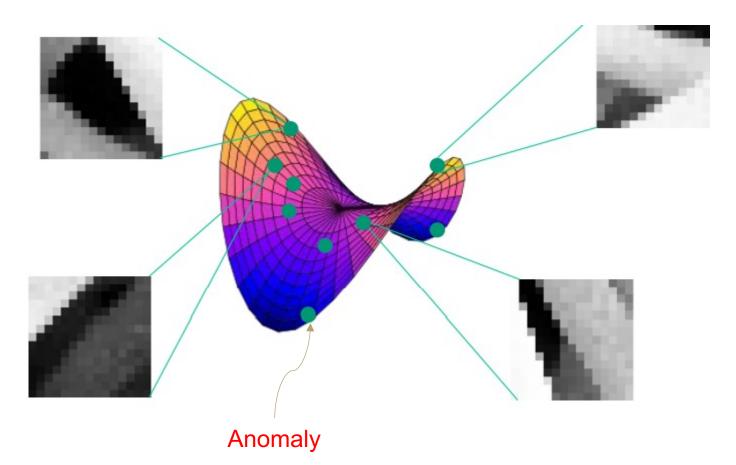
[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages

Steps for Anomaly Detection

Backpropagated Gradient Representations for Anomaly Detection

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

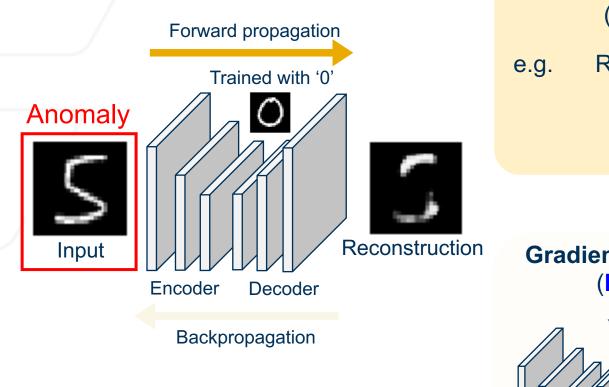
- Step 1 ensures that patches from natural images live close to a low dimensional manifold
- Step 2 designs distance functions that detect *implausibility* based on constraints



Gradient-based Constraints

Backpropagated Gradient Representations for Anomaly Detection

Activation Constraints



Detection," 2020

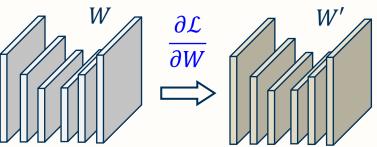
Activation-based representation (Data perspective)

e.g. Reconstruction error (\mathcal{L})

How much of the input does not correspond to the learned information?

Gradient Constraints

Gradient-based Representation (Model perspective)



How much **model update** is required by the input?

28 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly

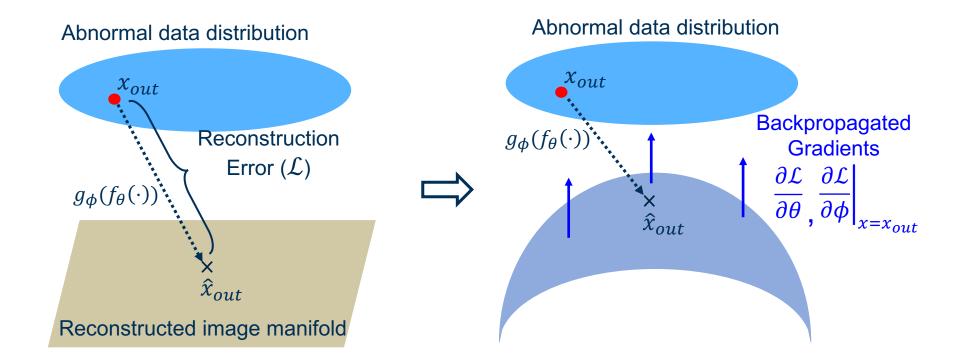
OLIVES @CeorgiaTech

Gradients as Robustness Features Advantages of Gradient-based Constraints

Detection," 2020

Backpropagated Gradient Representations for Anomaly Detection

- Gradients provide directional information to characterize anomalies
- Gradients from different layers capture abnormality at different levels of data abstraction



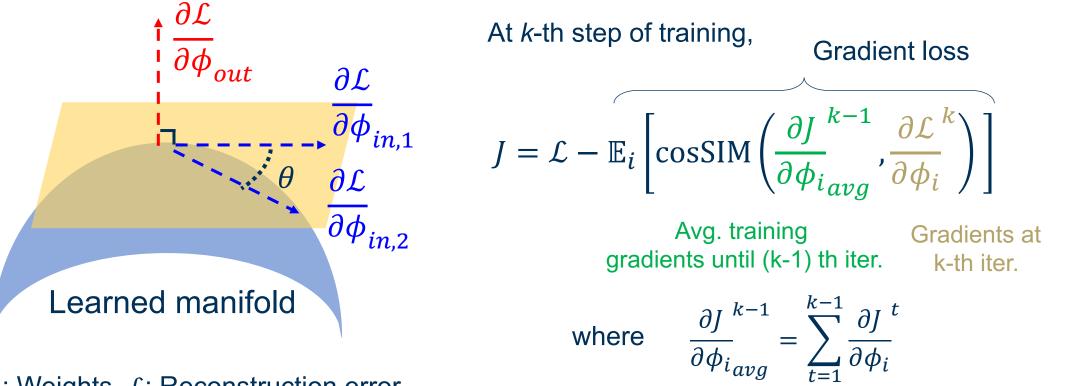
29 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Gradient-based Constraints

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data



 ϕ : Weights \mathcal{L} : Reconstruction error

30 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," 2020

Activations vs Gradients

0.564

0.554

0.661

0.526

0.583

0.528

0.550

0.647

AUROC Results

Abnormal "class" Plane Bird Deer Frog Horse Ship Truck Average Model Loss Car Dog Cat CAE 0.6820.3530.638 0.5870.669 0.613 0.495 detection (CIFAR-10) Recon 0.4980.7110.390CAE Recon 0.6590.3560.6400.3570.5550.695554Grad 0.683 0.576 0.774 0.709 + Grad 0.7520.5800.7050.6190.6220.591e.g. Recon 0.553 0.608 0.437 0.546 0.393 0.5310.4890.515 $0.552 \ 0.631$ VAE **0.743** 0.515 0.416Latent **0.640** 0.497 0.6340.7450.3920.63Recon 0.556 0.6060.5480.4960.543VAE Latent 0.586 0.4130.3960.4740.6980.537+ GradAbnormal Normal 0.736 0.625 0.591 0.5700.629Grad **0.596** 0.707 0.7380.7400.543

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

- (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- (CAE vs. VAE) Performance sacrifice from the latent constraint
- (VAE vs. VAE + Grad) Complementary features from the gradient constraint

31 of 65

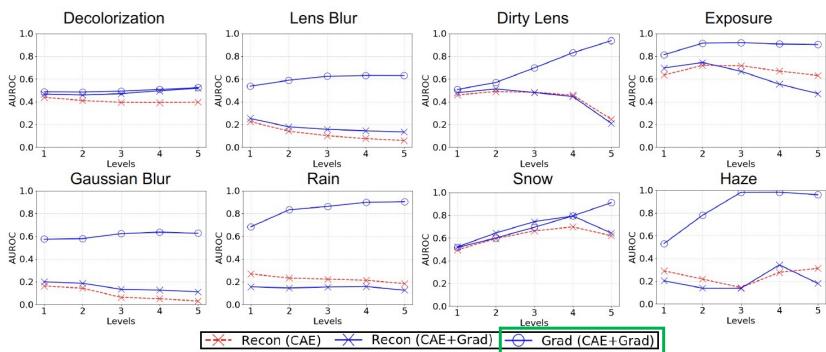
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Aberrant Condition Detection

Abnormal "condition"

detection (CURE-TSR)

Abnormal



AUROC Results

Recon: Reconstruction error, Grad: Gradient loss

Normal

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," 2020

Outline

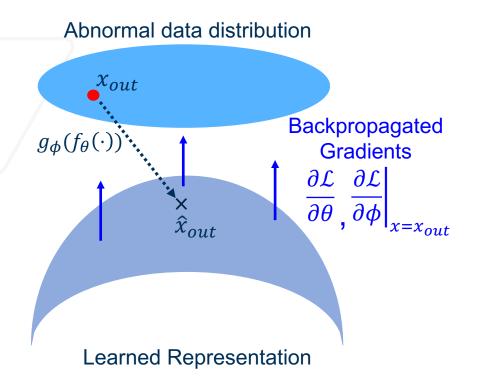
Lecture 6: Robustness as Explanatory Proxy

- Robustness and Explanations
- Deep Learning at Inference
 - Robustness under novel data
 - Challenges
 - Gradient Information
- Gradients as Robustness Features
 - Anomaly Detection
 - Out-of-Distribution Detection
 - Adversarial Detection
 - Corruption Detection
 - Gradients for Robust Predictions

Gradient Intuition

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data



However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth

CELEBRATING 75 VEAD

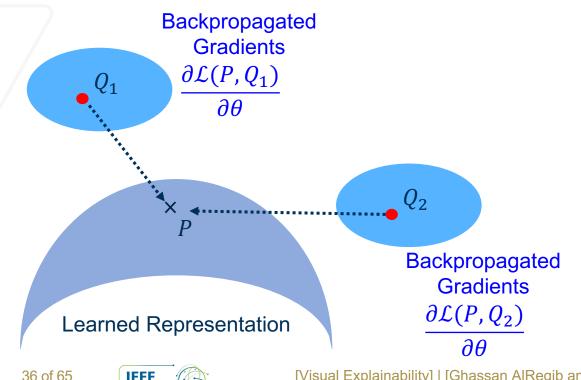
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Gradient Intuition

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

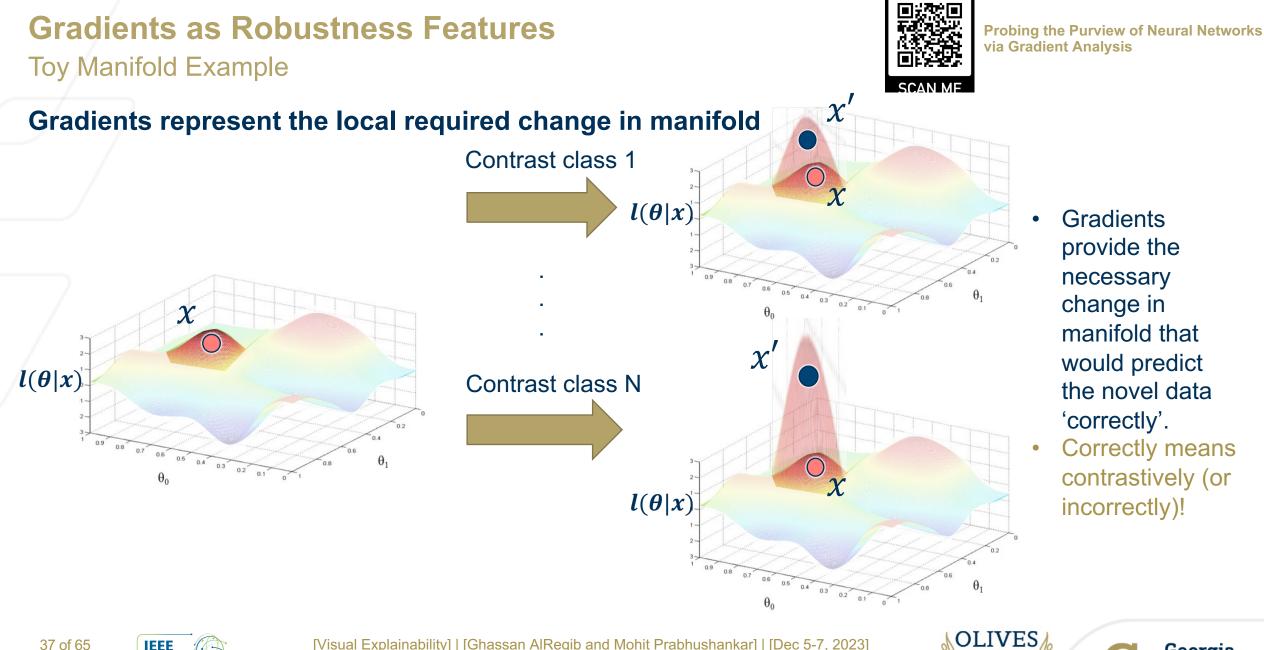
P = Predicted class Q_1 = Contrast class 1 Q_2 = Contrast class 2



However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth
- We backpropagate all contrast classes - $Q_1, Q_2 \dots Q_N$ by backpropagating N one-hot vector losses

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]



IEEE Siana

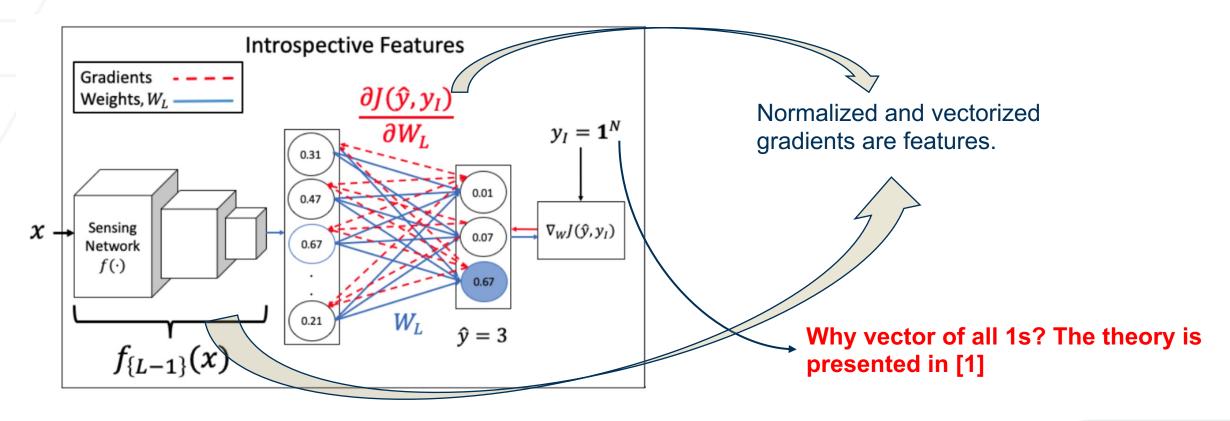
ELEBRATINC 75 VEAR

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Deriving Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain gradient features



38 of 65

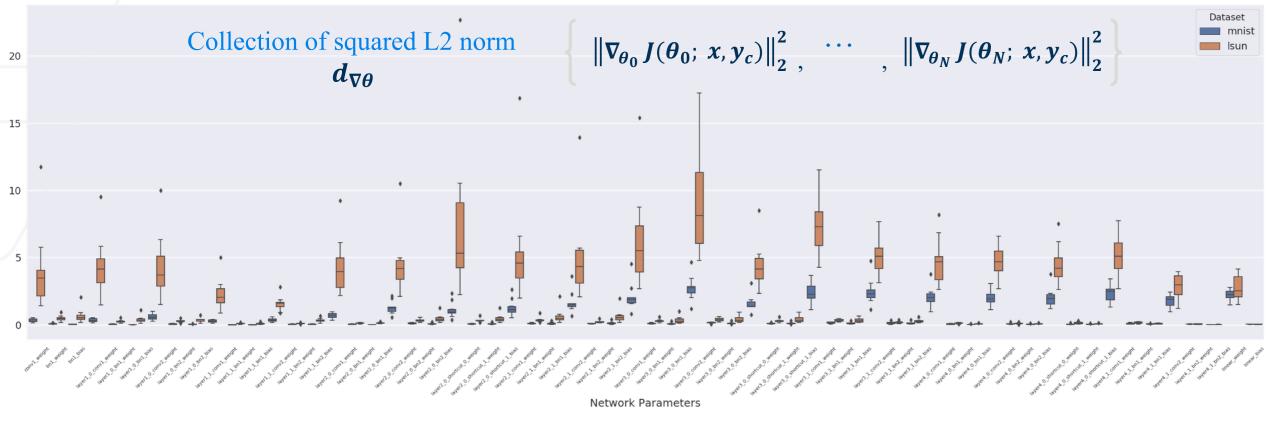
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Utilizing Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

Step 2: Take L2 norm of all generated gradients



MNIST: In-distribution, SUN: Out-of-Distribution

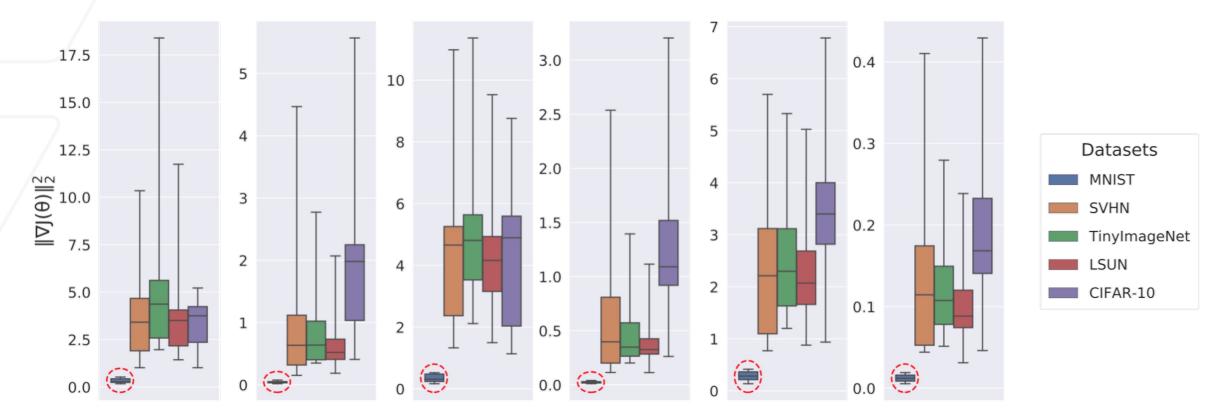
39 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Gradient Features in OOD Setting

Probing the Purview of Neural Networks via Gradient Analysis

Squared L2 distances for different parameter sets



MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

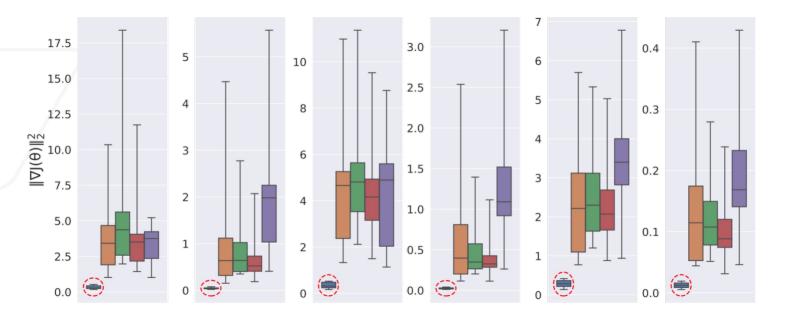
40 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Experimental Setup

Probing the Purview of Neural Networks via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect adversarial, noisy, and OOD data



Step 1: Train a deep network $f(\cdot)$ on some **training distribution Step 2:** Introduce challenging (adversarial, noisy, OOD) data **Step 3:** Derive **gradient uncertainty** on both trained and challenge data **Step 4: Train** a classifier $H(\cdot)$ to **detect** challenging from trained data **Step 5:** At test time, data is passed through $f(\cdot)$ and then $H(\cdot)$ to obtain a **Reliability classification**

41 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Adversarial Setting

Vulnerable DNNs in the real world

Probing the Purview of Neural Networks via Gradient Analysis



Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

42 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Adversarial Setting

Probing the Purview of Neural Networks via Gradient Analysis

Ours
· · · · · · · · · · · · · · · · · · ·
93.45
96.19
97.07
95.82
98.17
90.15
96.83
96.85
97.05
96.77
98.53
89.55
-

43 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

Georgia

Detecting Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

Same application as Anomaly Detection, except there is no need for an additional AE network!

CIFAR-10-C

CURE-TSR

44 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Detecting Challenging Conditions

Dataset	Method		Mahalanobis [12] / Ours							
Dat	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5				
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99				
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0				
U	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0				
R-10-6	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96				
CIFAR-10-C	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87				
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92				
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0				
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83				
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81				
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65				
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53				
E-TSF	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70				
CURE-TSR	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90				
0	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66				
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88				
	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91				

Probing the Purview of Neural Networks via Gradient Analysis

45 of 65

IEEE

Signa

Processir

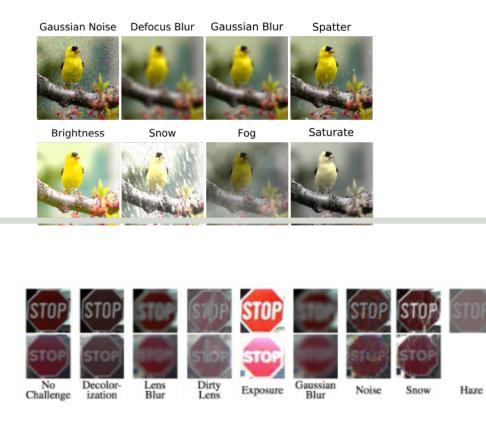
CELEBRATING 75 YEARS

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Detecting Challenging Conditions

Dataset	Method		Mah	alanobis [12] /	Ours	
Dat	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0
U	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0
R-10-0	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96
CIFAR-10-C	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53
E-TSI	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70
CURE-TSR	Exposure	74.90 / 88.13	99.96 / 96.78	<mark>99.99</mark> / 99.26	100.0 / 99.80	100.0 / 99.90
Ŭ	Snow	28.11 / 61.34	61.28 / 80.52	<mark>89</mark> .89 / 91.30	99.34 / 96.13	99.98 / 97.66
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88
	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91

Probing the Purview of Neural Networks via Gradient Analysis



IEEE Signal Processing Society CELEBRATING 75 YEARS

46 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Detecting Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

Goal: To detect that these datasets are not part of training

SVHN

CIFAR10

TinyImageNet

LSUN

47 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Detecting Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR			
In	Out	Baseline [5] / ODI	Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7]				
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98			
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66			
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87			
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11			
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93			
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21			

48 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Detecting Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Distribution	Detection Accuracy	AUROC	AUPR	
In	Out	Baseline [5] / ODI	N [6] / Mahalanobis (V) [7] / Mahalano	obis (P+FE) [7] / Ours	
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98	
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66	
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87	
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11	
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93	
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21	

Objects, natural scenes

Georgia

-CELEBRATING 75 YEARS

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Results in Detecting Challenging Conditions

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Distribution	Detection Accuracy	Detection Accuracy AUROC AU	
In	Out	Baseline [5] / ODI	obis (P+FE) [7] / Ours	
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87
7	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21

50 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

Georgia

Outline

Lecture 6: Robustness as Explanatory Proxy

- Robustness and Explanations
- Deep Learning at Inference
 - Robustness under novel data
 - Challenges
 - Gradient Information

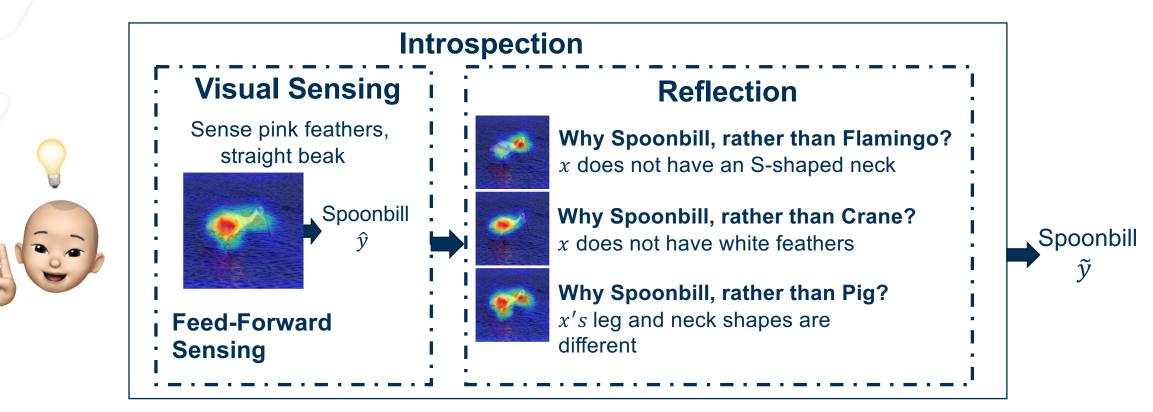
Gradients as Robustness Features

- Anomaly Detection
- Out-of-Distribution Detection
- Adversarial Detection
- Corruption Detection
- Gradients for Robust Predictions

Introspective Learning

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



52 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted questions.

What are the possible targeted questions?

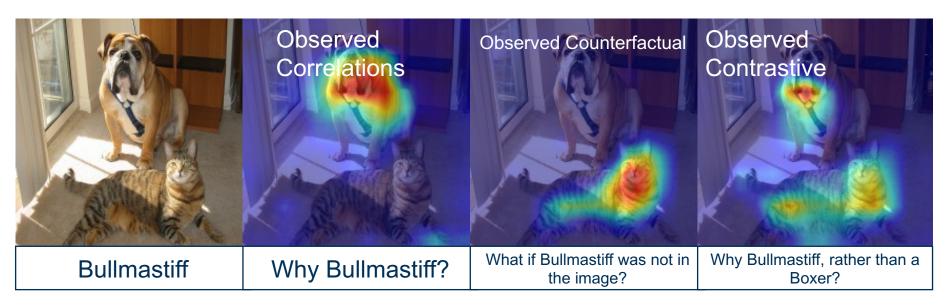
53 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



What are the possible targeted questions?

54 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

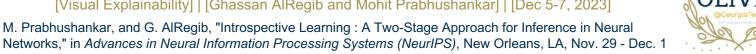
Contrastive Definition : Introspection answers questions of the form `Why *P*, rather than *Q*? 'where *P* is a network prediction and *Q* is the *introspective class.*

Technical Definition : Given a network f(x), a datum x, and the network's prediction $f(x) = \hat{y}$, introspection in $f(\cdot)$ is the measurement of change induced in the network parameters when a label Q is introduced as the label for x..

2022.

55 of 65

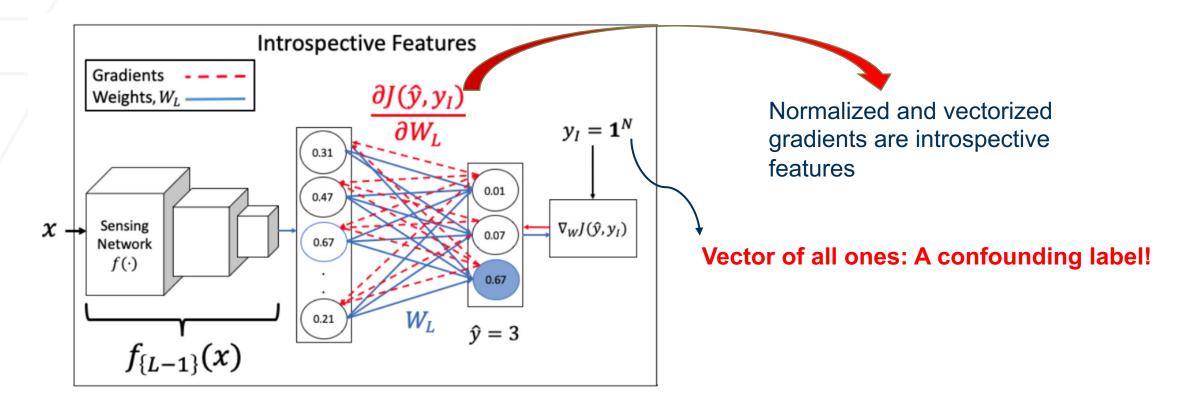
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]



Deriving Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

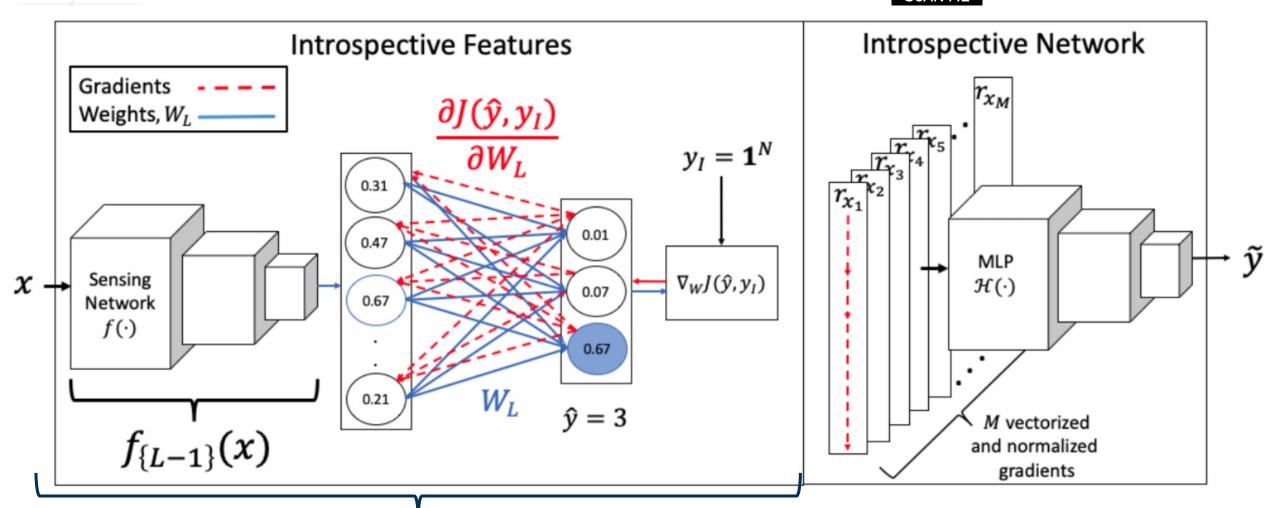


56 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Utilizing Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



Introspective Features

57 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Georgia

When is Introspection Useful?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

58 of 65

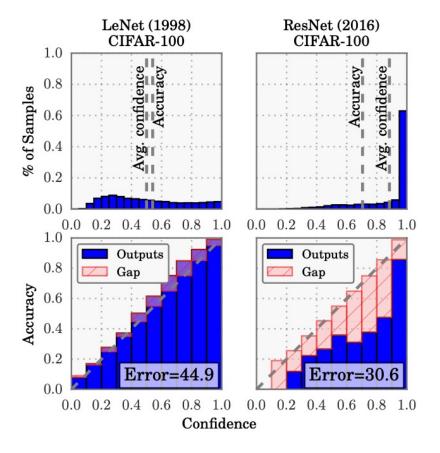
[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Calibration

A note on Calibration..

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Calibration occurs when there is mismatch between a network's confidence and its accuracy



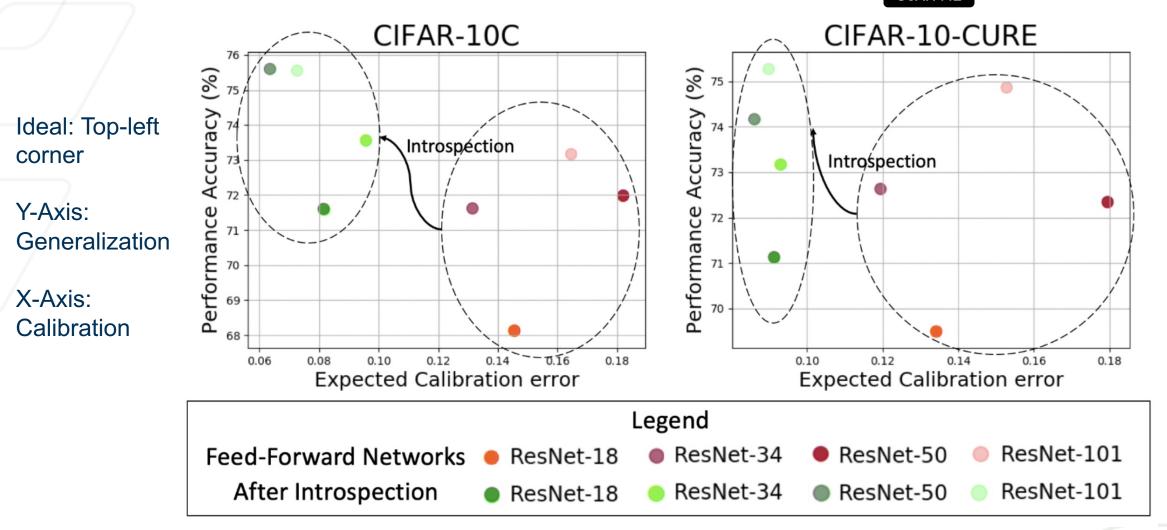
- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high

59 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Generalization and Calibration results

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



61 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing robustness techniques.

METHODS		ACCURACY
ResNet-18	Feed-Forward Introspective	67.89% 71.4 %
DENOISING	Feed-Forward Introspective	65.02% 68.86 %
Adversarial Train (27)	Feed-Forward Introspective	68.02% 70.86 %
SIMCLR (19)	Feed-Forward Introspective	70.28% 73.32 %
Augment Noise (28)	Feed-Forward Introspective	76.86% 77.98 %
Augmix (23)	Feed-Forward Introspective	89.85% 89.89 %

Introspection is a **plug-in approach** that works on all networks and on any downstream task!

62 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active Learning, and Image Quality Assessment!

Table 13: Performance of Contrastive Features against Feed-Forward Features and other ImageQuality Estimators. Top 2 results in each row are highlighted.

	PSNR	IW	SR	FSIMc	Per	CSV	SUM	Feed-Forward	Introspective	
Database	HA	SSIM	SIM		SIM		MER	UNIQUE	UNIQUE	
Outlier Ratio (OR , \downarrow)										
MULTI	0.013	0.013	0.000	0.016	0.004	0.000	0.000	0.000	0.000	
TID13	0.615	0.701	0.632	0.728	0.655	0.687	0.620	0.640	0.620	
				Root M	ean Squ	are Erro	or (RMS	E, ↓)		
MULTI	11.320	10.049	8.686	10.794	9.898	9.895	8.212	9.258	7.943	
TID13	0.652	0.688	0.619	0.687	0.643	0.647	0.630	0.615	0.596	
			Pear	son Linea	r Correl	ation C	oefficien	t (PLCC, ↑)		
MULTI	0.801	0.847	0.888	0.821	0.852	0.852	0.901	0.872	0.908	
MULII	-1	-1	0	-1	-1	-1	-1	-1		
TID13	0.851	0.832	0.866	0.832	0.855	0.853	0.861	0.869	0.877	
11015	-1	-1	0	-1	-1	-1	0	0		
			Spear	man's Ra	nk Corr	elation (Coefficie	nt (SRCC, †)		
MULTI	0.715	0.884	0.867	0.867	0.818	0.849	0.884	0.867	0.887	
MULII	-1	0	0	0	-1	-1	0	0		
TID13	0.847	0.778	0.807	0.851	0.854	0.846	0.856	0.860	0.865	
11015	-1	-1	-1	-1	0	-1	0	0		
			Ken	dall's Rai	ık Corre	elation (Coefficie	nt (KRCC)		
MULTI	0.532	0.702	0.678	0.677	0.624	0.655	0.698	0.679	0.702	
WIULII	-1	0	0	0	-1	0	0	0		
TID13	0.666	0.598	0.641	0.667	0.678	0.654	0.667	0.667	0.677	
11015	0	-1	-1	0	0	0	0	0		

Table 2: Recognition accuracy of Active Learning strategies.

Methods	Architecture	Origina	Original Testset		Gaussian Noise	
		R-18	R-34	R-18	R-34	
Entropy (34)	Feed-Forward	0.365	0.358	0.244	0.249	
	Introspective	0.365	0.359	0.258	0.255	
Least (3)	Feed-Forward	0.371	0.359	0.252	0.25	
	Introspective	0.373	0.362	0.264	0.26	
Margin (32)	Feed-Forward	0.38	0.369	0.251	0.253	
	Introspective	0.381	0.373	0.265	0.263	
BALD (34)	Feed-Forward	0.393	0.368	0.26	0.253	
	Introspective	0.396	0.375	0.273	0.263	
BADGE (33)	Feed-Forward	0.388	0.37	0.25	0.247	
	Introspective	0.39	0.37	0.265	0. 260	

Table 3: Out-of-distribution Detection of existing techniques compared between feed-forward and introspective networks.

Methods	OOD Datasets	FPR (95% at TPR) ↓	Detection Error ↓	AUROC
		Feed-	Forward/Introspe	ctive
MSP (33)	Textures	58.74/ 19.66	18.04/ 7.49	88.56/ 97.79
	SVHN	61.41/ 51.27	16.92/ 15.67	89.39/ 91.2
	Places365	58.04/ 54.43	17.01/ 15.07	89.39/ 91.3
	LSUN-C	27.95 /27.5	9.42 /10.29	96.07 /95.73
ODIN (33)	Textures	52.3/ 9.31	22.17/ 6.12	84.91/ 91.9
	SVHN	66.81/ 48.52	23.51/ 15.86	83.52/ 91.07
	Places365	42.21 /51.87	16.23/ 15.71	91.06 /90.95
	LSUN-C	6.59 /23.66	5.54 /10.2	98.74 / 95.87

63 of 65

[Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Takeaways Takeaways from Lecture 6

- Robust networks are empirically shown to provide better explanations
- An **indirect validation** is to show that **gradient features** (that are extensively used for creating explanations) maybe manipulated to obtain **robust results**
- Similar loss-based gradient operations that lead to explanations also lead to robust predictions
- Gradients as features can be used to obtain
 - Anomaly detection
 - Out-of-distribution, novelty, adversarial detection
 - Robust prediction

64 of 65

References

Lecture 6: Robustness as Explanatory Proxy

- Prabhushankar, Mohit, and Ghassan AlRegib. "Contrastive reasoning in neural networks." arXiv preprint arXiv:2103.12329 (2021).
- M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022.
- V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages
- G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," 2020
- Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

