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Short Course
Course Outline

Day 1: Define and Detail; Day 2: Evaluate; Day 3: Reassess

Lecture 1 Lecture 2 Lectures 3 and 4

Day 1 Why Explainability? What is Explainability? Popular Methods of Explainability

Lecture 6 Lecture 5

Day 2 Robustness: A proxy for Explainability Evaluating Explainability

Lectures 7 and 8 Lectures 9 and 10

Day 3 | Reassessing Explainability via Uncertainty and Concept vectors mmmp Causality and Generative Al
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Outline
Lecture 7: Rethinking Explanations via Uncertainty

* Uncertainty
« Visual Explainability and Uncertainty
« Explanatory evaluation via Uncertainty
« Explanatory definition
* Uncertainty Quantification
* lterative Quantification
» Monte-Carlo Dropout
« Visualizing Uncertainties
« Single Pass Quantification
* Uncertainty in Explanatory Evaluation
« Predictive Uncertainty
* Predictive Uncertainty in Explanations

« Explanation uncertainty analysis
» Signal-to-Noise Ratio
* Mean Intersection over Union
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know
| gk

White and Gold
Or
Blue and Black?
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know
|

White and Gold
Or
Blue and Black?
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Prediction
20 1 — Predictive mean
+ Taining data
15 1 Epistemic uncertainty
10 -
n A simple example: More the training data, lesser the
0.0 - L uncertainty
-0.5
-1.0 - N
_1.5 Ll L Ll L L] ) L
=15 -1.0 -0.5 0.0 05 10 15
X
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Uncertainty is a model knowing that it does not know

Input Image Neural Network Output Uncertainty Heatmap
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Outline
Lecture 7: Rethinking Explanations via Uncertainty

* Uncertainty
« Visual Explainability and Uncertainty
« Explanatory evaluation via Uncertainty
« Explanatory definition
* Uncertainty Quantification
* lterative Quantification
» Monte-Carlo Dropout
« Visualizing Uncertainties
« Single Pass Quantification
* Uncertainty in Explanatory Evaluation
« Predictive Uncertainty
* Predictive Uncertainty in Explanations

« Explanation uncertainty analysis
» Signal-to-Noise Ratio
* Mean Intersection over Union

9 of 44 IEEE

Signal’ ==
Processing
Society”

EEEEEEEEEEEEEEEEEE

[Visual Explainability] | [Ghassan AlIRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

Gr Georgia
Tech.




_
Uncertainty

Why is Uncertainty important?

ChatGPT ties itself into a knot since it does
not know that it does not know

o

Al systems must be aware of their shortcomings!

© 0 N O A WN A

OB W N

Hi, can you give me synonyms for "change" that start with the letter G

Certainly! Here are some synonyms for "change" that start with the letter G:

. Transform
. Modify

Alter

. Convert

Vary
Shift

. Adapt

. Adjust

. Metamorphose
. Mutate

| hope you find these synonyms helpful!

where in any of these words is the letter G?

Apologies for the oversight. None of the synonyms listed above for "change" actually start
with the letter "G." Here, however, are some synonyms for "change" that do begin with the
letter "G™

. Transform
. Modify

. Alter

. Convert

Vary

Chift

‘G Regenerate response

send a message
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Uncertainty
Why is Uncertainty important?

Knowing what a model does not know is essential for establishing reliability

Undesirable Consequences |deal Expectations

DOT report on fatal 2016 Tesla crash

with tractor-trailer blames limitations _
of Autopilot mode Input Image Uncertainty Heatmap

:. James Jaillet
» Feb2,2017 | Updated Feb 21,2017

An NTSB photo of the Freightliner Cascadia involved in the May 7 crash.
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Uncertainty provides a mathematical framework to study Explanations

Input Image Neural Network Output Uncertainty Heatmap

Visual explanation about what a network does not known
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Uncertainty provides a mathematical framework to study Explanations

' . ..

- | Crans
-}

The prediction Y cannot be trusted under masking

Y = Prediction
S« = Explanation masked data

} Spoonbill
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In Lecture 2...
Why is Uncertainty important for Explanations?

Uncertainty analysis broadens the scope of Explanations

Let T be the set of all features learned by a trained network

—_—

Beak P is Spoonbill
Neck
Explanations maximize the probability of Legs Why Spoonbill?
selecting a combination of features U{_, T; Feathers
conditioned on some decision Y: Water — Features 7p
Grass
M) = P(U_, T|Y),Y € [1,N] Teeth

—

Prediction Feature Attribution: Visual explanations map features to predictions
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Uncertainty analysis broadens the scope of Explanations

Let T be the set of all features learned by a trained network

- P is Spoonbill,
Beak Q is Flamingo
Neck Why Spoonbill, rath
Explapatlons maximize the probablll% of Legs thar;: Flﬁfﬁﬂgb :?ra er
selecting a combination of features U;_; T; Feathers
conditioned on some decision Y Water  Features 7;
Grass
M) = P(U_, T|Y),Y € [1,N] Teeth

—

Class Feature Attribution: Visual explanations map features to any trained classes
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Explanations attribute features to any objective quantity; not just predictions

Let T be the set of all features learned by a trained network

—_—

Beak P is Spoonbill
Neck

Explanations maximize the probability of Legs

selecting a combination of features U{_, T; Feathers &

conditioned on some decision Y Water - Features 7j L~
Grass

D) — P _ What features are you
M( ) P(Ul=1 TllU) Teeth uncertain about while
predicting Spoonbill?

—

Uncertainty Feature Attribution: Visual explanations map features to any objective quantity U
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Uncertainty
Why is Uncertainty important for Explanations?

Explanations attribute features to any objective quantity U; not just predictions

o . Data distortion’
Examples of objective quantity U:

 Noise at acquisition (Robustness) . e 290 .

* Novel data (Robustness) Gaussian Blur  Noise Rain Shadow Snow

» Underspecified models (Robustness) L abel disagreement2

« Label Disagreement (Human annotation
subjectivity)

» Visual prompting by different subjects (Human
annotation subjectivity)

Any configuration that allows multiple
predictions will produce an explanation
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Uncertainty
Uncertainty Quantification in Neural Networks

Uncertainty manifests itself as variability in prediction under different model configurations

Network f1(0) Dog
Cat

Horse
Bird

Dog

Variation within outputs
Cat

is the uncertainty.
Commonly referred to
as Prediction
Uncertainty.

Horse
Bird

Network fN (9) Dog

Cat

Network fy(t = vore

Bird

.~
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Uncertainty
Uncertainty Quantification in Neural Networks for Explainability

Uncertainty manifests itself as variability in prediction under different data configurations

Network f4(0) Dog
Cat

Horse
Bird

Dog

Variation within outputs
Cat

is the uncertainty.
Commonly referred to
as Prediction
Uncertainty.

Horse
Bird

wlia

Intervened images

Network fl (0) Dog
Cat

Horse
Bird

.
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Outline
Lecture 7: Rethinking Explanations via Uncertainty

* Uncertainty Quantification
* lterative Quantification
» Monte-Carlo Dropout
« Visualizing Uncertainties
« Single Pass Quantification
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Uncertainty Quantification
Uncertainty Quantification based on source

Two major types of uncertainty: Uncertainty in data and uncertainty in model, together termed
as prediction Uncertainty

@ Training data © Training data
Predictive — ndebirg oo e | | ndering o s
Uncertainty .0 e
/\ @ ° [ —— Model 2
Aleatoric (Data) Epistemic (Model)
Uncertainty Uncertainty
Inherent noise in Insufficient model S
observation data knowledge Sl
Low data Low model
uncertainty uncertainty
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Uncertainty Quantification
Uncertainty Quantification Methodology

Two methods of Uncertainty Quantification: Iterative and Single-pass methods

z Inlier Outlier

or
Iterative Single-pass
. Representation :
uncer?a!mt)_/ Combine ‘ uncer?a_lntg./
quantification 1 1 quantification
_ Uncertainty /e}\a/\““
Iterative Score une
Sampling >
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Uncertainty Quantification
lterative Uncertainty Quantification: Deep Ensembles

Uncertainty Quantification via Deep Ensembles

Different
initialization Network f1(0)

parameters provide Y 4
O L0, ‘ I

and different
outputs.

Not always
realistic to obtain
multiple networks
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Cat
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Final prediction is the

mean of the outputs
—

Variation within outputs

is the uncertainty.
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Uncertainty Quantification via Monte-Carlo Dropout: During inference repeated evaluations
with the same input give the different results

Different forward passes with dropout simulate f; (-), £, (), f5(-).

Challenge: intractable denominator

_ plxw)p(w)
p(Wlx) = [ p(xW)p(W)aw

N forward passes
N Logits Final prediction is the

¢ | ]
a()\ J\ — | Uncertainty mean of the outputs
- : Score

—
= | ]

Variation or entropy of
logits is the uncertainty

q Wy) =~ p(Wy|x)
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Uncertainty Quantification
lterative Uncertainty Quantification

Uncertainty Quantification via Monte-Carlo Dropout: During inference repeated evaluations
with the same input give the different results

T T
Uepistemic =H (%Z Softmax (th(x))> - %Z H (Softmax (th (x)))
t=1

\ J o t=t }
| |
UPredictive Ualeatoric
Entropy of expectation of predictions Expectation of individual entropy of predictions
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Uncertainty Quantification via Monte-Carlo Dropout: During inference repeated evaluations

with the same input give the different results

Image Ground Truth

~—

Prediction Aleatoric Epistemic
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Uncertainty Quantification
Single Pass Uncertainty Quantification

Via Single pass methods’

Network f1(0) Dog Uncertainty

Cat i . .

, q_uantlflcatlon using a

I 2RE SR Horse single network and a
<= | Bird single pass

Calculate distance from some trained clusters

Does not require multiple networks!

L(6)
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Uncertainty Quantification
Single Pass Uncertainty Quantification

Via Single pass methods’

RS fal() Pog Uncertainty
Cat . g . .
_ , d q_uantlflcatlon using a
|| UL LA Horse single network and a
= T | Bird single pass

Collection of 2
squared L2 norm V6o /(803 %, YOl o Vay J(On: 2.y,

/ Gradients provide this distance from Lecture 6

L(O) dve
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Outline
Lecture 7: Rethinking Explanations via Uncertainty

* Uncertainty in Explanatory Evaluation
« Predictive Uncertainty
* Predictive Uncertainty in Explanations
« Explanation uncertainty analysis
» Signal-to-Noise Ratio
* Mean Intersection over Union
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Uncertainty in Explainability If explanation map is M(-) = P(Ul_; 7;|P)
Why is Uncertainty important for Explanations? Uncertainty map is M, () = 1—P(U_, 7;|P)

Explanatory techniques have predictive uncertainty

Explanation of Prediction Uncertainty of Explanation

Uncertainty in answering
Why Bullmastiff?

Why Bullmastiff?
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Uncertainty due to variance in prediction when model is kept constant

Sy, S,
- . VIy|Sxl = VIEIS,)] + EV[y|Sx])

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

R

('
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A ‘good’ explanatory technique is evaluated to have zero V[E(y|S,)]

le sz
I . VYIS = VIEGISI] + E(VIyIS:])
y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)
Zero E(Y|Ss) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 1: Visual Explanations are
evaluated to partially reduce the predictive
uncertainty in a neural network

Network evaluations have nothing to do with human
Explainability!
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

le sz
- . VIyISx]l = VIEWIS)] + EV[y]Sx])
y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

X

R

('

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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Uncertainty in Explainability
Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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Uncertainty in Explainability
Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Not chosen features are intractable!
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Uncertainty in Explainability
Quantifying Uncertainty in Explainability

Contrastive explanations are an intelligent way of obtaining other subsets

VIy|Sxl = VIEIS,)] + EV[y|Sx])

J—
Make it finite by only considering the subsets that

changey Y, (S
YZ |Sx2
Y3 |SX3
Y4 | Sx4
Ys5[Sxs

— \ariance

YN | SXN
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Uncertainty in Explainability
Quantifying Uncertainty in Explainability

Variance in contrastive explanations provides uncertainty

5 [ PQ) > pe —l J(P,1)|  Contrastive L Q Normalized
' (002 ) > Explanation == 5 VOICE

i 0.12 Q € [1’ R] Mm(f:x:]P,1) I g

. | 0. _ 5

| 076 [0.76 : . ! e

| . 1

Ly —— P —~{J(P,Q)- : : S

E ' Contrastive : o

i \0'09 ) (P R): Explanation —— >

i B M, x, _ :

: Softmax Probabilities p(y) m(, % Jpr) Q=R ¥ Uncertainty

Step 1: Forward Pass Step 2: Induce Contrastive Explanations Step 3: Variance across explanations
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Uncertainty in Explainability
Quantifying Uncertainty in Explainability

Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

e |s GradCAM better than GradCAM++?
e |Is a SWIN transformer more reliable than VGG-167

Need objective quantification of Uncertainty
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Uncertainty in Explainability
Quantifying Uncertainty in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

e ons s o s oo e samma weems | Objective Metric 1:
o i
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
less trustworthy is the
explanation)

Incorrect Predictions
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Uncertainty in Explainability
Quantifying Uncertainty in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image

GradCAM

GradCAM++ Guided Backpropagation

SmoothGrad

Explanation of  Uncertainty of
Prediction Explanation

Explanation of  Uncertainty of
Prediction Explanation

Explanation of  Uncertainty of
Prediction Explanation

P

Explanation of  Uncertainty of

Prediction

Explanation

Incorrect Predictions

BANE RY
=l L]
e F. (.

BAKERN

—a

Objective Metric 1:
Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
less trustworthy is the
explanation)

40 of 44 [Visual Explainability] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 5-7, 2023]

AOLIVES ), :
5 A Gr Georgia
ST - asve ; . NN o256 Tech.
Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted . = .- R

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify
on Aug. 27, 2023.

Processing
Society”

EEEEEEEEEEEEEEEEEE



Uncertainty in Explainability
Quantifying Uncertainty in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

e ons s o s oo e samma weems | Objective Metric 1:
o i
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
Bcion, g less trustworthy is the
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Incorrect Predictions
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Uncertainty in Explainability
Quantifying Uncertainty in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions Incorrect Predictions

Explanation of Prediction Uncertainty of Explanation

Objective Metric 2:
Signal to Noise
Ratio of the
Uncertainty map

VGG-16

(a) (b

Higher the SNR of
uncertainty, more is the
dispersal (or less trustworthy
is the prediction)

Swin Transformer

(e) (f) (8) (h)
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Conclusions
Lecture 7: Rethinking Explanations via Uncertainty

* Uncertainty is a model knowing what it does not know

» Uncertainty Quantification is studied by understanding the sources of uncertainties
« If the source is data, we quantify Aleatoric Uncertainty
« |If the source is the model, we quantify Epistemic Uncertainty

» Predictive uncertainty is a sum of Aleatoric and Epistemic Uncertainties

 Network evaluation encourages Explanations to reduce Predictive Uncertainty
 The residuals among all the unchosen subsets causes Predictive Uncertainty

« Any quantification that allows multiple predictions can be visualized as an explanation
« Contrastive Explanations can be used to visualize Uncertainties in Explainability
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