Robust Neural Networks Part 3: Uncertainty at Inference

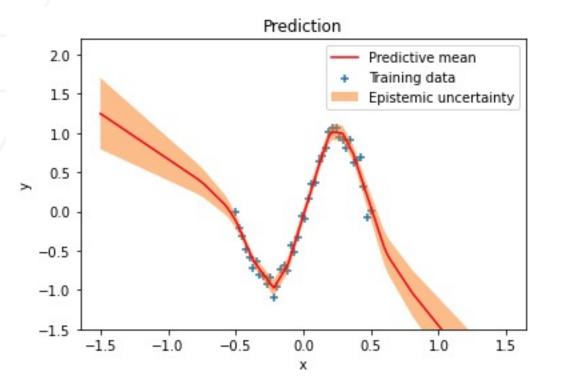
Objective Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
 - Uncertainty Definition
 - Uncertainty Quantification
 - Gradient-based Uncertainty
 - Adversarial and Corruption Detection
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

What is Uncertainty?

Uncertainty is a model knowing that it does not know



A simple example:

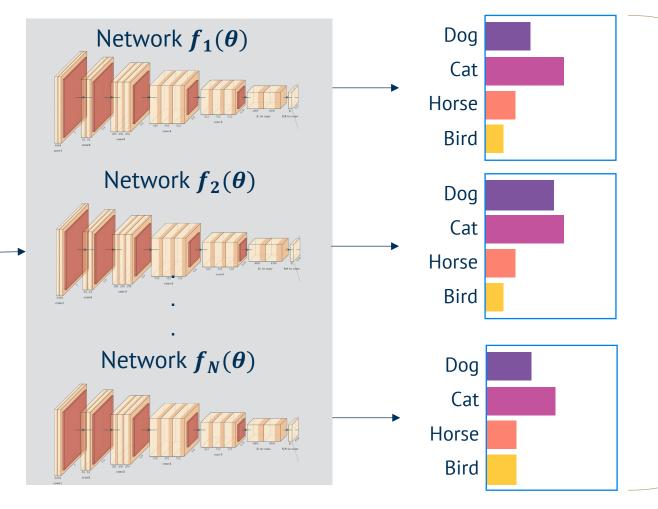
- When training data is available: Less uncertainty
- When training data is unavailable: More uncertainty

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Uncertainty Quantification in Neural Networks

Via Ensembles¹



Variation within outputs Var(y) is the uncertainty. Commonly referred to as **Prediction Uncertainty.**

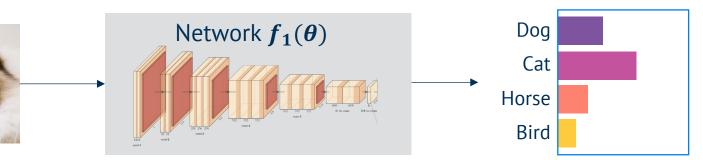
Georgia

60 of 109 IEEE BigData 2023 Sorrento, Italy [1] L [Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

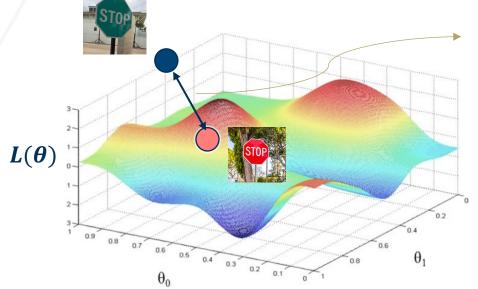
[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using deep ensembles." *Advances in neural information processing systems* 30 (2017).

Uncertainty Quantification in Neural Networks

Via Single pass methods¹



Uncertainty quantification using a single network and a single pass



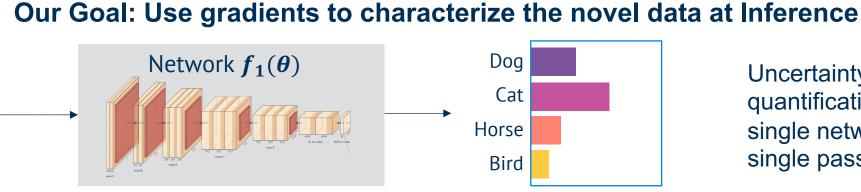
Calculate distance from some trained clusters

Does not require multiple networks!

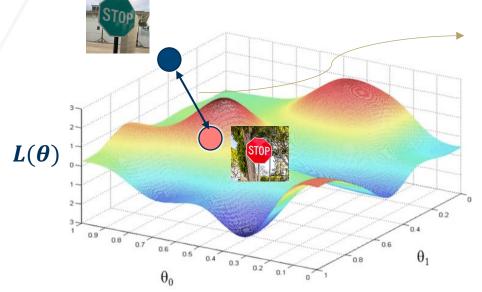
[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a single deep deterministic neural network. In *International conference on machine learning* (pp. 9690-9700). PMLR.

Uncertainty Gradients as Single pass Features



Uncertainty quantification using a single network and a single pass



Calculate distance from some trained clusters

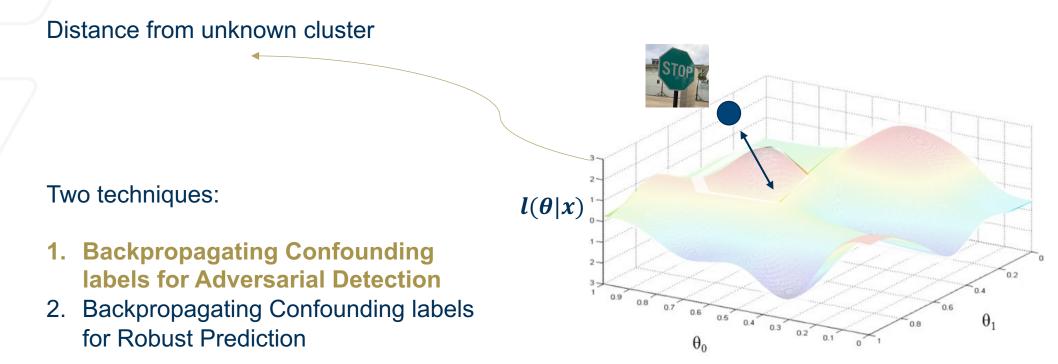
Does not require multiple networks!

Challenge: Class and prediction cannot be trusted!

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information



[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

IEEE Access

Probing the Purview of Neural Networks via Gradient Analysis

Jinsol Lee, PhD Candidate

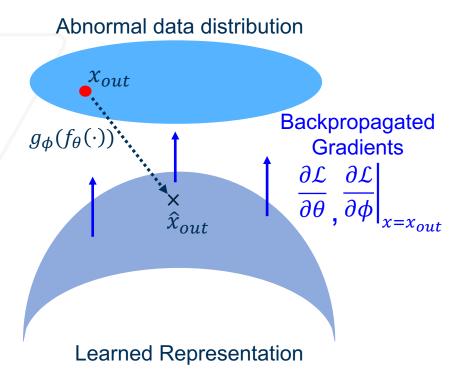
Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Uncertainty in Neural Networks Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data



However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth

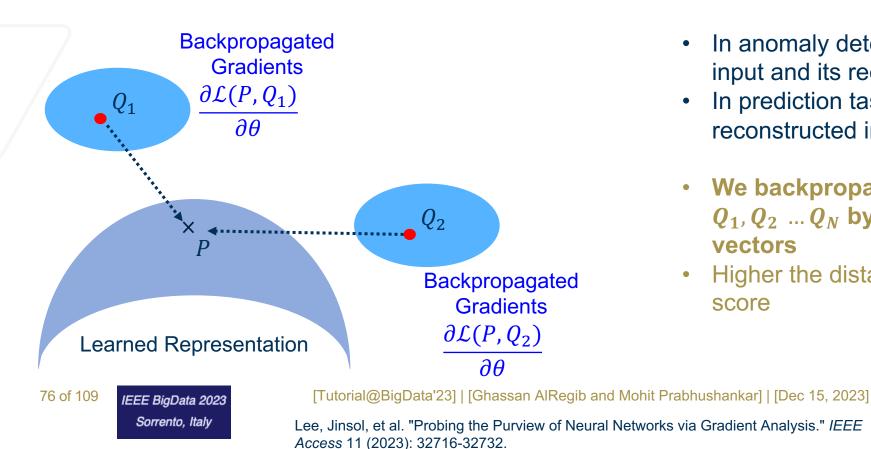
[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Uncertainty in Neural Networks Principle

Probing the Purview of Neural Networks via Gradient Analysis

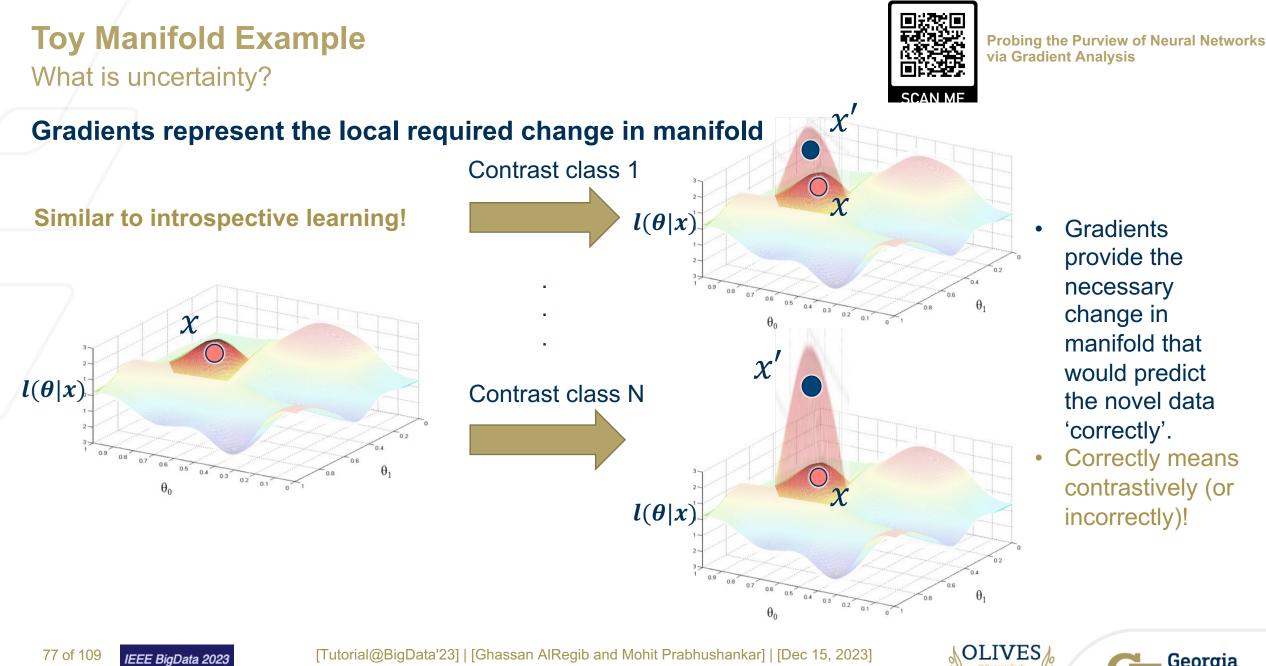
Principle: Gradients provide a distance measure between the learned representations space and novel data

P = Predicted class Q_1 = Contrast class 1 Q_2 = Contrast class 2



However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth
- We backpropagate all contrast classes - $Q_1, Q_2 \dots Q_N$ by backpropagating N one-hot vectors
- Higher the distance, higher the uncertainty score



Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.

Sorrento, Italy

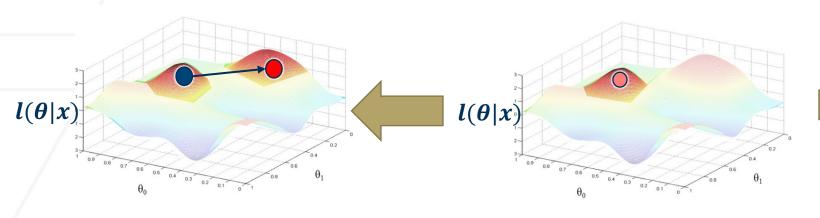
Toy Manifold Example

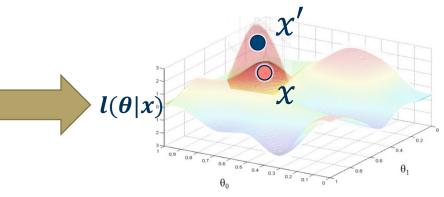
Part 3: Explainability

How is this different from Explainability?

Probing the Purview of Neural Networks via Gradient Analysis

Part 4: Uncertainty





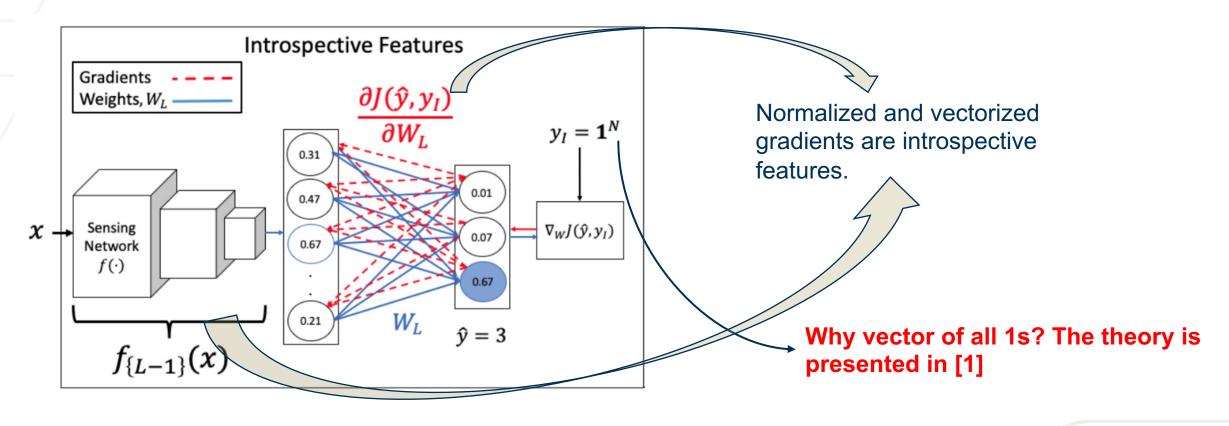
 In Part 3: Activations of learned manifold are weighted by gradients w.r.t. activations to extract information and provide explanations In Part 4: Statistics of gradients w.r.t. the weights (energy) will be directly used as features

Uncertainty in Neural Networks

Deriving Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

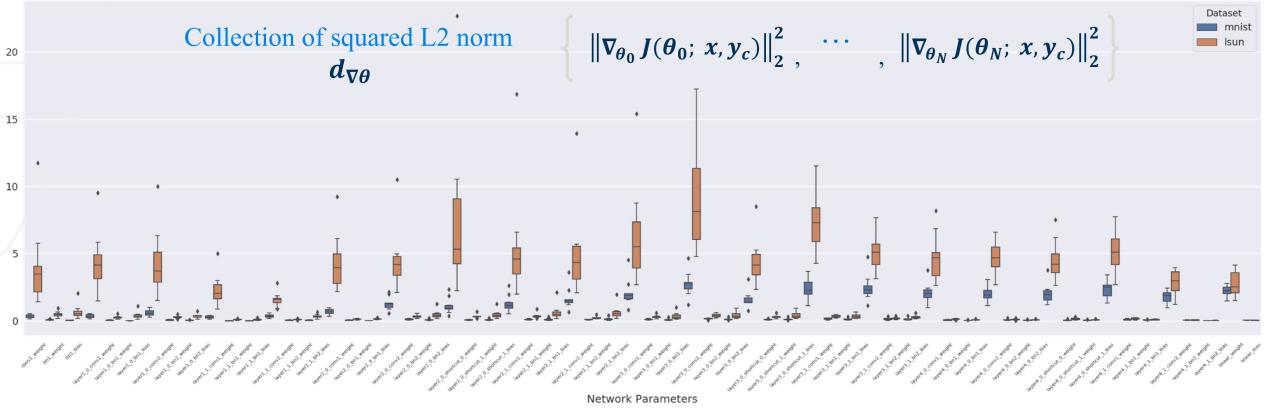


[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Uncertainty in Neural Networks Utilizing Gradient Features

Probing the Purview of Neural Networks via Gradient Analysis

Step 2: Take L2 norm of all generated gradients



MNIST: In-distribution, SUN: Out-of-Distribution

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

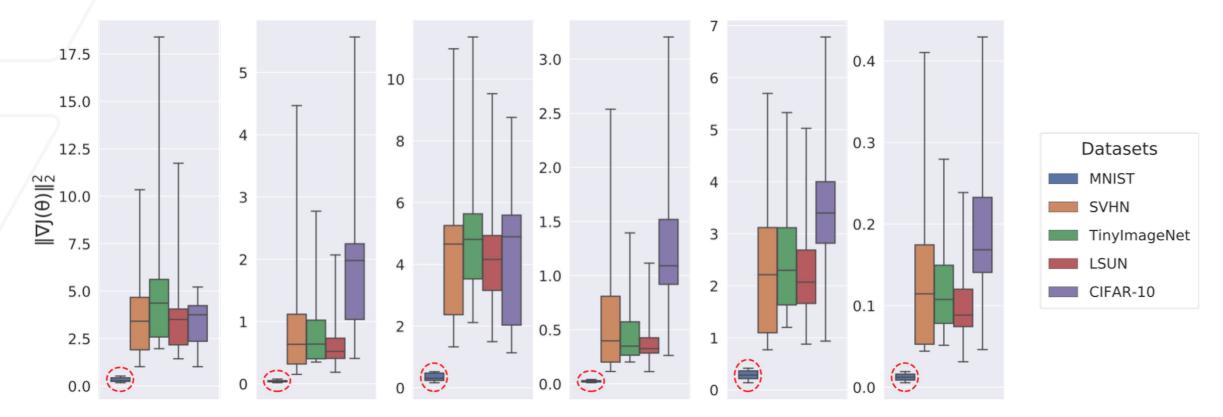
Uncertainty in OOD Setting

81 of 109

IEEE BigData 2023 Sorrento, Italy

Probing the Purview of Neural Networks via Gradient Analysis

Squared L2 distances for different parameter sets



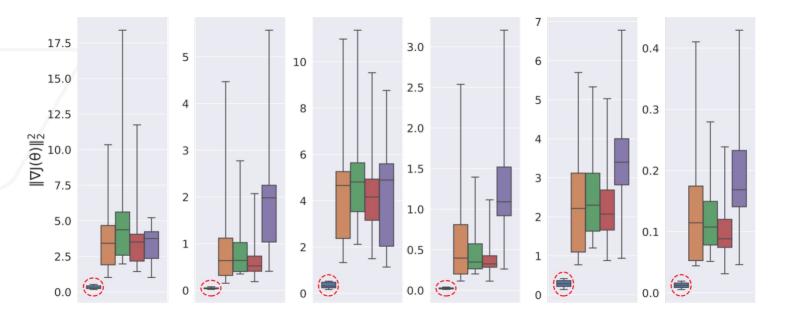
MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Experimental Setup

Probing the Purview of Neural Networks via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect adversarial, noisy, and OOD data



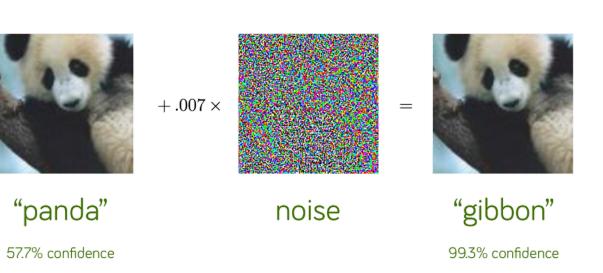
Step 1: Train a deep network $f(\cdot)$ on some **training distribution Step 2:** Introduce challenging (adversarial, noisy, OOD) data **Step 3:** Derive **gradient uncertainty** on both trained and challenge data **Step 4: Train** a classifier $H(\cdot)$ to **detect** challenging from trained data **Step 5:** At test time, data is passed through $f(\cdot)$ and then $H(\cdot)$ to obtain a **Reliability classification**

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Uncertainty in Adversarial Setting

Vulnerable DNNs in the real world

Probing the Purview of Neural Networks via Gradient Analysis



Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Uncertainty in Adversarial Setting

84 of 109

IEEE BigData 2023

Sorrento, Italy

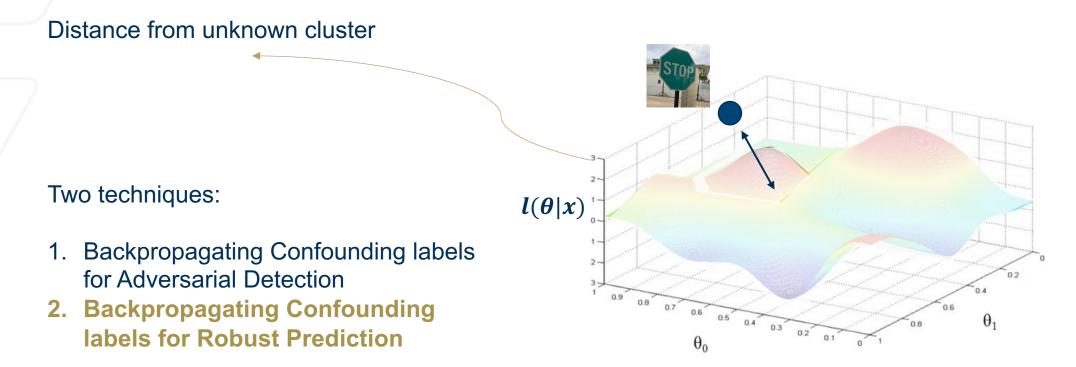
Probing the Purview of Neural Networks via Gradient Analysis

MODEL	ATTACKS	BASELINE	LID	M(V)	M(P)	M(FE)	M(P+FE)	OURS
ResNet	FGSM	51.20	90.06	81.69	84.25	99.95	99.95	93.45
	BIM	49.94	99.21	87.09	89.20	100.0	100.0	96.19
	C&W	53.40	76.47	74.51	75.71	92.78	92.79	97.07
	PGD	50.03	67.48	56.27	57.57	65.23	75.98	95.82
	ITERLL	60.40	85.17	62.32	64.10	85.10	92.10	98.17
	SEMANTIC	52.29	86.25	64.18	65.79	83.95	84.38	90.15
DenseNet	FGSM	52.76	98.23	86.88	87.24	99.98	99.97	96.83
	BIM	49.67	100.0	89.19	89.17	100.0	100.0	96.85
	C&W	54.53	80.58	75.77	76.16	90.83	90.76	97.05
	PGD	49.87	83.01	70.39	66.52	86.94	83.61	96.77
	ITERLL	55.43	83.16	70.17	66.61	83.20	77.84	98.53
	SEMANTIC	53.54	81.41	62.16	62.15	67.98	67.29	89.55

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information



[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspective Learning: A Two-Stage Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Robustness in Neural Networks Why Robustness?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

How would humans resolve this challenge?

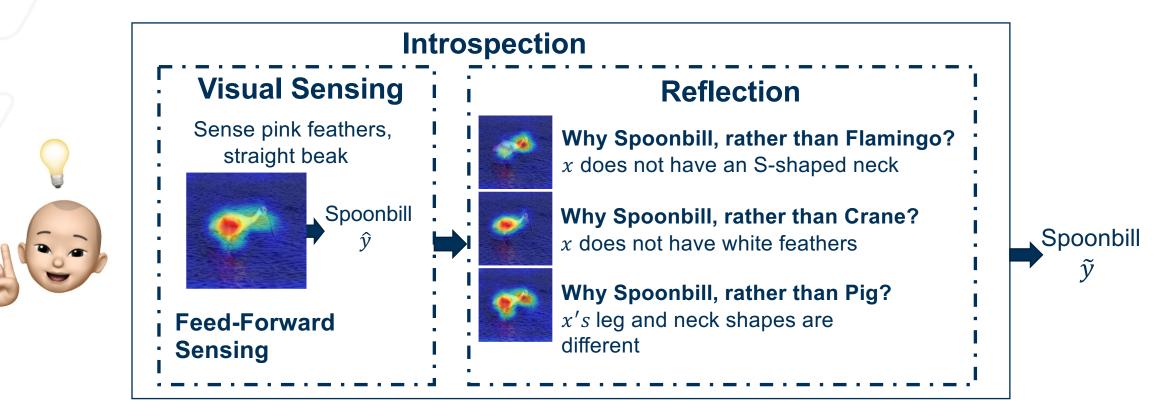
We Introspect!

- Why am I being shown this slide?
- Why images of muffins rather than pastries?
- What if the dog was a bull mastiff?

Introspection What is Introspection?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspection Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted questions.

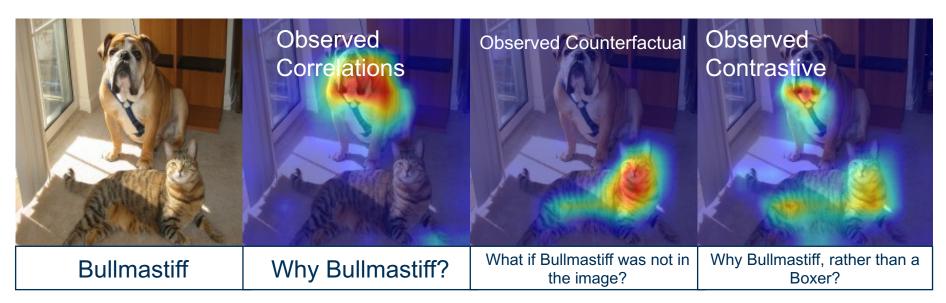
What are the possible targeted questions?

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspection Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



What are the possible targeted questions?

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspection Introspection in Neural Networks

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form `Why *P*, rather than *Q*? 'where *P* is a network prediction and *Q* is the *introspective class.*

Technical Definition : Given a network f(x), a datum x, and the network's prediction $f(x) = \hat{y}$, introspection in $f(\cdot)$ is the measurement of change induced in the network parameters when a label Q is introduced as the label for x..

94 of 109 IEEE BigData 2023

Sorrento, Italy

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

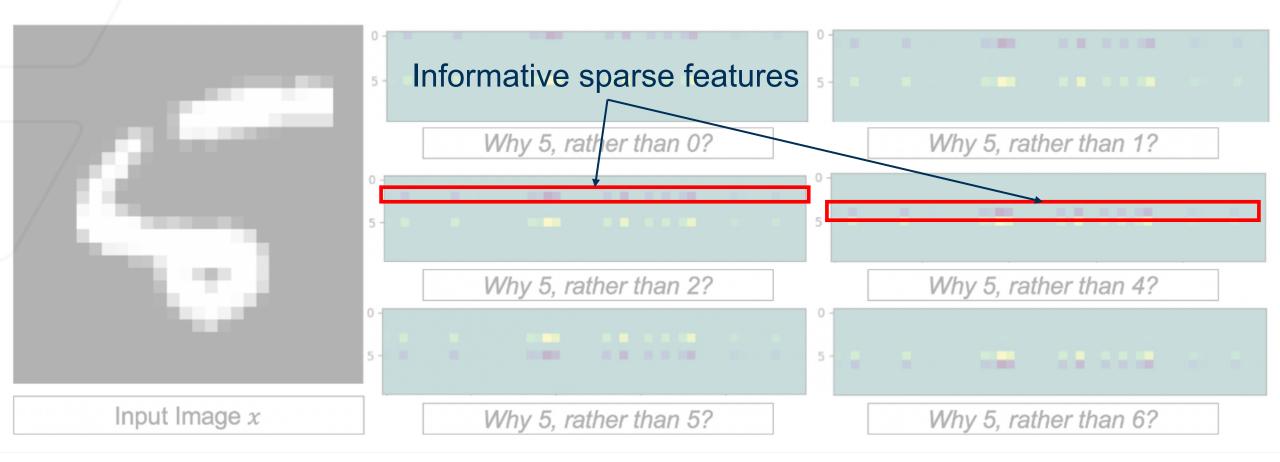
96 of 109

IEEE BigData 2023

Sorrento, Italy

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

For a well-trained network, the gradients are sparse and informative

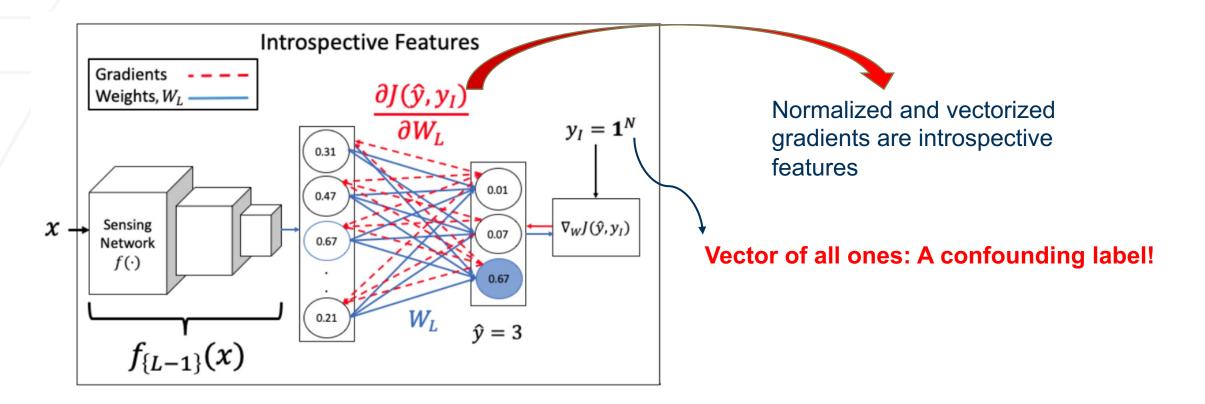


[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspection Deriving Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

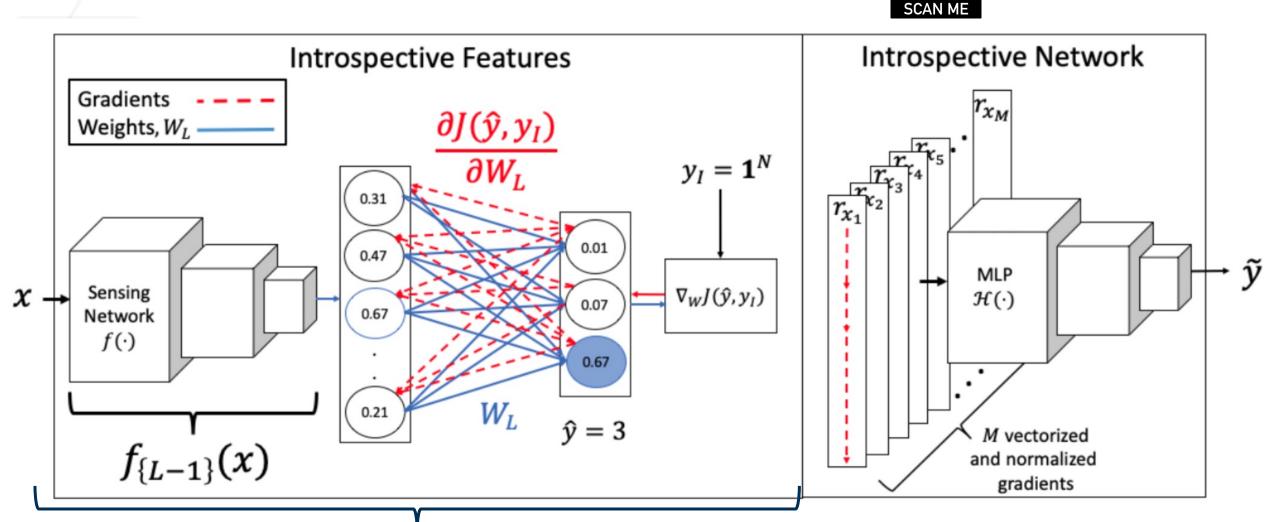
Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features



[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspection Utilizing Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



Introspective Features

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Georgia

Introspection When is Introspection Useful?

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

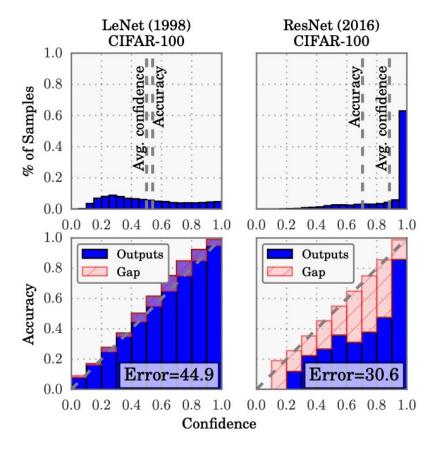
[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Calibration

A note on Calibration..

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Calibration occurs when there is mismatch between a network's confidence and its accuracy



- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Introspection in Neural Networks

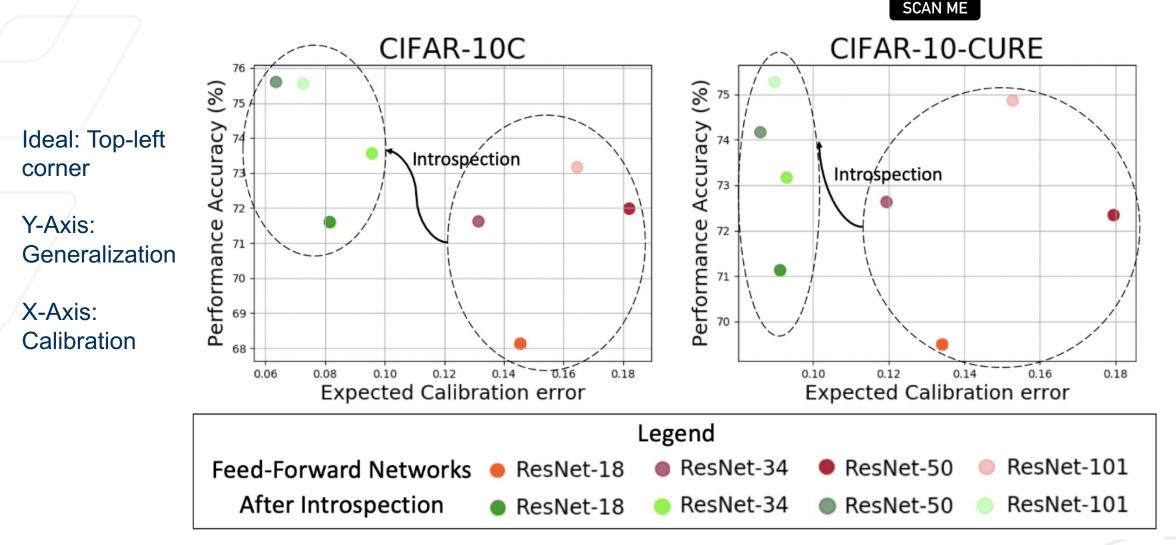
Generalization and Calibration results

103 of 109

IEEE BigData 2023

Sorrento, Italy

Introspective Learning: A Two-stage Approach for Inference in Neural Networks



[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, Nov. 29 - Dec. 1 2022.

Georgia

Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection is a light-weight option to resolve robustness issues

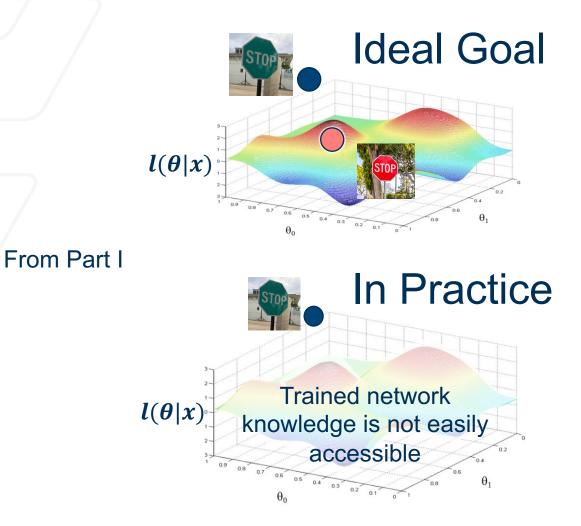
Table 1: Introspecting on top of existing robustness techniques.

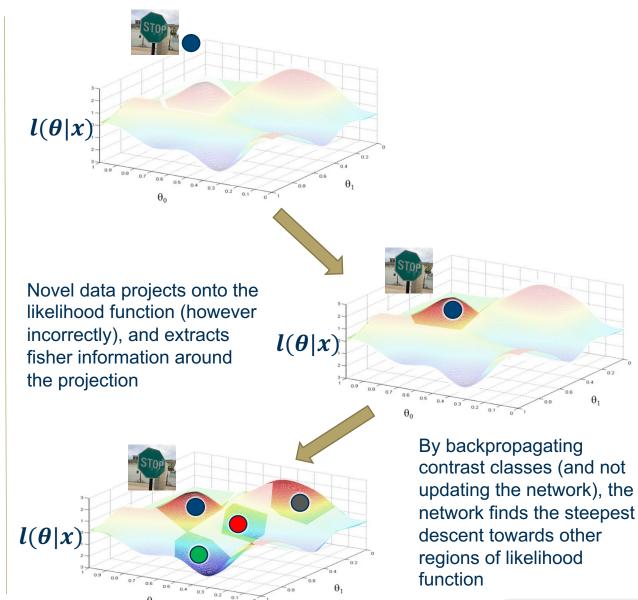
METHODS		ACCURACY
ResNet-18	Feed-Forward Introspective	67.89% 71.4 %
DENOISING	Feed-Forward Introspective	65.02% 68.86 %
Adversarial Train (27)	Feed-Forward Introspective	68.02% 70.86 %
SIMCLR (19)	Feed-Forward Introspective	70.28% 73.32 %
Augment Noise (28)	Feed-Forward Introspective	76.86% 77.98 %
Augmix (23)	Feed-Forward Introspective	89.85% 89.89 %

Introspection is a **plug-in approach** that works on all networks and on any downstream task!

[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

Part I, II and III Tying it Back





[Tutorial@BigData'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Dec 15, 2023]

