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Deep Learning
Expectation vs Reality

Expectation vs Reality of Deep Learning
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Deep Learning

Expectation vs Reality
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LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop

Even natural images
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks
often go awry”
- Engineers, probably
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Deep Learning
Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Novel data sources:

e Test distributions

« Anomalous data
e QOut-Of-Distribution data
 Adversarial data

» Corrupted data

* Noisy data

* New classes
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

»  Model Representation
A
. o0 L . :
Low Information : e @e| -+ Thefirst instance of training must occur with
_ ‘ . .
5 00, o less informative samples
§ v ® * Ex: For autonomous vehicles, less informative
£ means
o . .
= « Highway scenarios
(a B} .
« Parking
. _ * No accidents
1 nformation
g - No aberrant events
Samples @ Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

» The model performs well on the new

100 pe—— - / scenarios, while forgetting the old scenarios

2 | Catastrophic | | | . _ _

g N Forgetting § | * A number of techniques exist to overcome this

8 60} Wl \ — mmist trend

2 .l N Y — FmnisT

< 40r \ ; * However, they affect the overall performance
' [ [

8 20f in large-scale settings

* It is not always clear if and when to
incorporate novel scenarios in training
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Novel data packs a 1-2 punch!

Novel data may not Even if
be available during available,
training novel data
does not
easily fit into
either the
earlier or
later stages
of training
éz: ey R
A = Deep Neural Networks
B = Novel data
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Deep Learning at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Model Train At Inference

Novel data sources:

 Test distributions

* Anomalous data

» Out-Of-Distribution data
* Adversarial data

» Corrupted data

* Noisy data

* New classes
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Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

« Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference

* Part 4: Intervenability at Inference

« Part 5: Conclusions and Future Directions
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Robust Neural Networks
Part I: Inference in Neural Networks
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Objective

Obijective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

Part 1: Inference in Neural Networks
* Neural Network Basics
* Robustness in Deep Learning
» |nformation at Inference
» Challenges at Inference
« Gradients at Inference

Part 2: Explainability at Inference

Part 3: Uncertainty at Inference

Part 4: Intervenability at Inference

Part 5;: Conclusions and Future Directions
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Deep Learning
Overview

Low-Level L. Mid-Level ___ngh-Level___’ Trainable
Feature Feature Feature Classifier

Ex. LeCun, 2015
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Deep Learning
Neurons

The underlying computation unit is the Neuron

Artificial neurons consist of:
« Asingle output

Multiple inputs

Input weights

A bias input

An activation function
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Neurons are stacked and densely connected to construct ANNs

O' C
O’ at

output layer

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
* An input layer (Layer 0)

* An output layer (Layer K)
« Zero or more hidden (middle) layers (Layers 1...K — 1)
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

Low-Level| |Mid-Level| |High-Level Trainable
—_— — —
Feature Feature Featu{e Classifier

Ex. LeCun, 2015
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Transformers, Large Language Models and Foundation Models

15,000x increase in 5 years

GPT-31T
1 trillion

Megatron-Turing
530B

~ Cat

[
N
w
-
[}
©
o
=

GPT-3
1758

Transformers BERT GPT-2 GPT-28B TS5  Turing-NLG
65M 340M 1.5B 8.3B 118 178

MID 2018 2019 MID LATE 2020 MID LATE 2022
2017 2019 2019 2020 2021

Time

Primary reasons for advancements:

1. Expanded interests from the research community
2. Computational resources availability

3. Big data availability
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Deep Learning at Inference
Classification

Given : One network, One image. Required: Class Prediction

Predicted
Class Probability
Network f(0) Dog 9%
Cat 89%
ja = ﬁ - Horse

Bird

If x € y, the data is not
y = y = Logits
y =yargfn(zgccz)xl- 9 g = Predicted Class novel

p(y) =T(f(x)) p(y) = Probabilities
f(-) = Trained Network

x = Training data
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Deep Learning at Inference
Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel

Network f(8)

y=FfK+¢€) y = Logits

y = argmax; 5} y = Predicted Class
p() = T(f(x' + €)) p(P) = Probabilities
f () = Trained Network
x = Training data
e = Noise
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39%
53%

If x € y, the data is
novel



Deep Learning at Inference
Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
Network f(8) Dog 399,
Cat 53%
7 Horse
Bird

To achieve robustness at Inference, we need the following:

* Information provided by the novel data as a function of training distribution
« Methodology to extract information from novel data

« Techniques that utilize the information from novel data

Why is this Challenging?
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)
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Challenges at Inference
Inference

However, at inference only the test data point is available and the underlying structure of the
manifold is unknown

Bl o At Inference Bl e At Training

L(O) . Trained network knowledge is L(O) .
1 not easily accessible ,

At training, we have access to all
training data.
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Information at Inference
Fisher Information

Colloquially, Fisher Information is the “surprise” in a system that observes an event

Predicted
Class Probability

Network f(B) Dog
Cat

Horse
Bird

Fisher Information

i

0
1(6) = Var(%l(elx))

e 6 = Statistic of distribution
6, £(6 | x) = Likelihood function
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Likelihood function
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Information at Inference
Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes
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Information at Inference
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

From before, 1(6) = Var(>-1(8|x))

Using variance decomposition, I1(6) reduces to:

i i ‘ i _ T
1(0]x) | o ® 0 O : 1(6) = E[UgU}] where

E[-] = Expectation
Ug = Vyl(0]x), Gradients w.r.t. the sample

Hence, gradients draw information from the
underlying distribution as learned by the

Likelihood function instead of loss manifold network weights!
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Information at Inference
Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds

In this case, the image and its
prediction extracts nose, mouth
and jowl features.

Hence, gradients draw information from the

~ underlying distribution as learned by the
/"'// network weights!

8o

Feature attribution via GradCAM
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Gradients at Inference
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

|deal
3~ ( ) \\:ﬁjw /“/:;"‘5
L(6)

. o aVy L(0) provides local information up to a small
odec” // distance a away from x
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(0)
===  Path 1? o
Which direction should we

=== Path2? Optimize towards (knowing
only the local information)?

X
L(®) O |
g /ﬁ Negative of the gradient provides the descent
ook | e direction towards the local minima, as measured
\\\ g by L(6)
04" 3 027.\)_\//”caa 91
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Gradients at Inference
To Characterize the Novel Data at Inference

® At Inference
(8 | Trained network knowledge is
(6) ‘j not easily accessible =~
Counterfactual
and Contrastive Representation
Representations Traversal using
using Gradients Interventions
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