Robustness at Inference: Towards Explainability, Uncertainty, and Intervenability

Ghassan AlRegib, PhD Professor

Mohit Prabhushankar, PhD Postdoctoral Fellow

Omni Lab for Intelligent Visual Engineering and Science (OLIVES)
School of Electrical and Computer Engineering

Georgia Institute of Technology

{alregib, mohit.p}@gatech.edu

Jan 07, 2024 – Waikaloa, HI, USA

Tutorial Materials

Accessible Online

https://alregib.ece.gatech.edu/wacv-2024tutorial/

{alregib, mohit.p}@gatech.edu

WACV 2024 Tutorial

Robustness at Inference: Towards Explainability, Uncertainty, and Intervenability

Presented by: Ghassan AlRegib, and Mohit Prabhushankar

Omni Lab for Intelligent Visual Engineering and Science (OLIVES)

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, USA

https://alregib.ece.gatech.edu/

Duration: Half-Day event

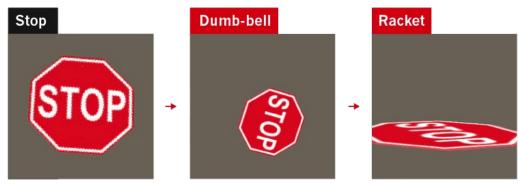
Expectation vs Reality

Expectation vs Reality of Deep Learning

Expectation vs Reality

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they are too different from the types of image used to train the network.



Even natural images can fool a DNN, because it might focus on the picture's colour, texture or background rather than picking out the salient features a human would recognize.

Pretzel

Expectation vs Reality

"The best-laid plans of sensors and networks often go awry"

- Engineers, probably

Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Novel data sources:

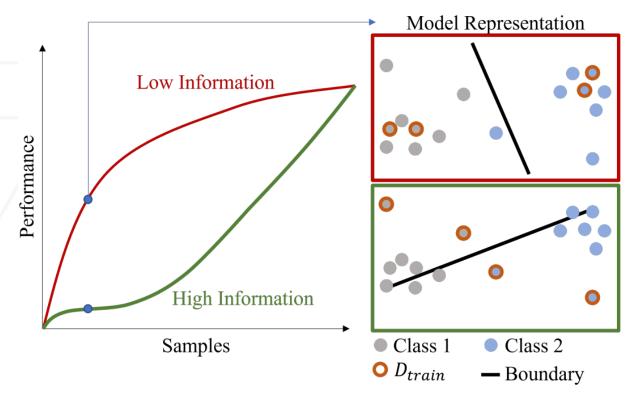
- Test distributions
- Anomalous data
- Out-Of-Distribution data
- Adversarial data
- Corrupted data
- Noisy data
- New classes

• ...

Deep Learning at Training

Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training



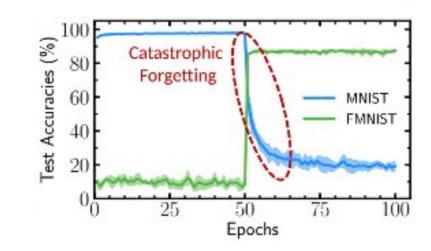
- The first instance of training must occur with less informative samples
- Ex: For autonomous vehicles, less informative means
 - Highway scenarios
 - Parking
 - No accidents
 - No aberrant events

Novel samples = Most Informative

Deep Learning at Training

Overcoming Challenges at Training: Part 2

Subsequent training must <u>not</u> focus only on novel data

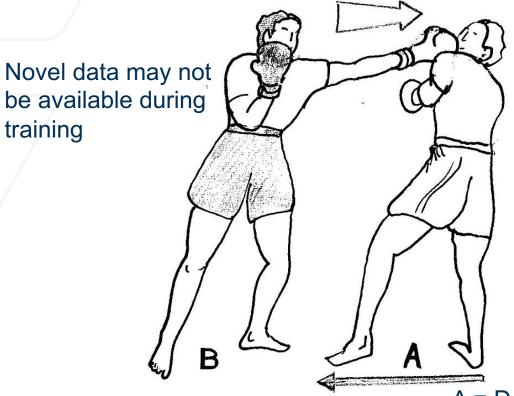


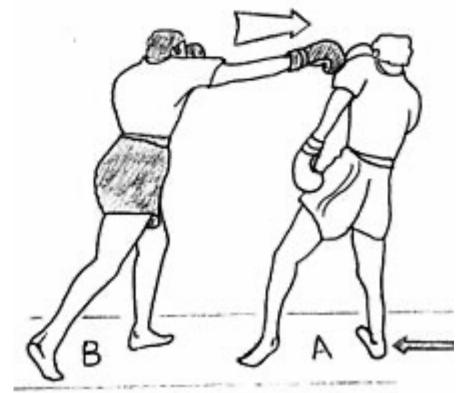
- The model performs well on the new scenarios, while forgetting the old scenarios
- A number of techniques exist to overcome this trend
- However, they affect the overall performance in large-scale settings
- It is not always clear if and when to incorporate novel scenarios in training

Deep Learning at Training

Overcoming Challenges at Training

Novel data packs a 1-2 punch!





Even if available, novel data does not easily fit into either the earlier or later stages of training

A = Deep Neural Networks

B = Novel data

Overcoming Challenges at Inference

We must handle novel data at Inference!!

Novel data sources:

- Test distributions
- Anomalous data
- Out-Of-Distribution data
- Adversarial data
- Corrupted data
- Noisy data
- New classes

• ...

Model Train

At Inference

Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

Robust Neural Networks Part I: Inference in Neural Networks

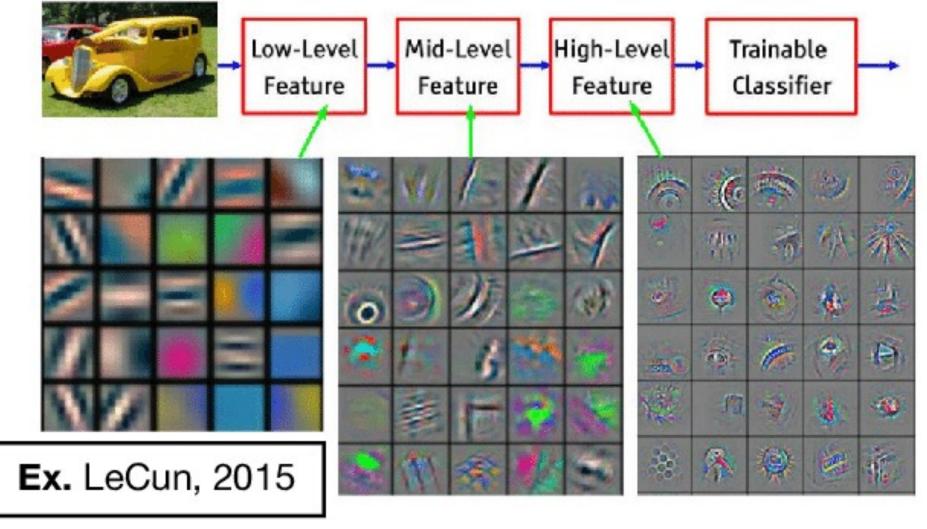
Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
 - Neural Network Basics
 - Robustness in Deep Learning
 - Information at Inference
 - Challenges at Inference
 - Gradients at Inference
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

Overview

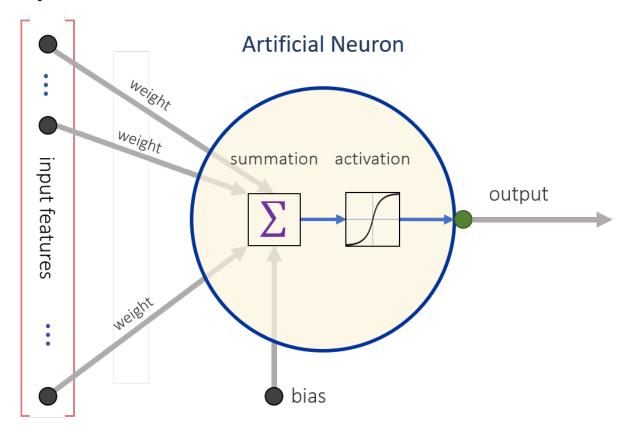


Neurons

The underlying computation unit is the Neuron

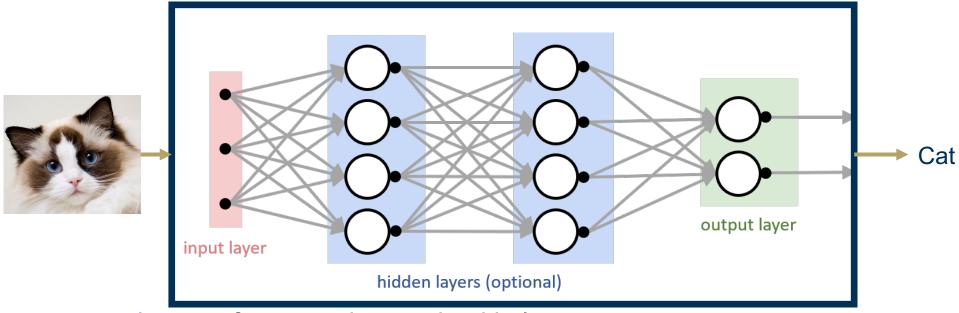
Artificial neurons consist of:

- A single output
- Multiple inputs
- Input weights
- A bias input
- An activation function



Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

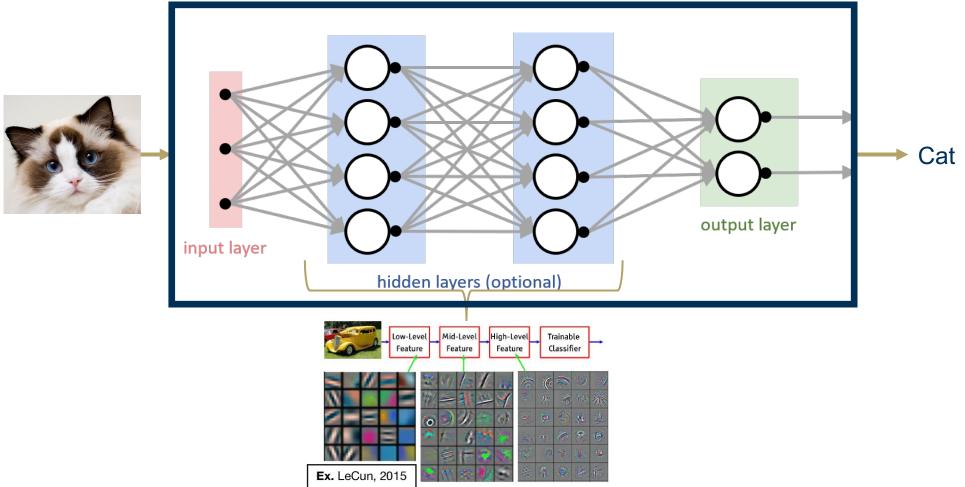


Typically, a neuron is part of a network organized in layers:

- An input layer (Layer 0)
- An output layer (Layer K)
- Zero or more hidden (middle) layers (Layers $1 \dots K 1$)

Convolutional Neural Networks

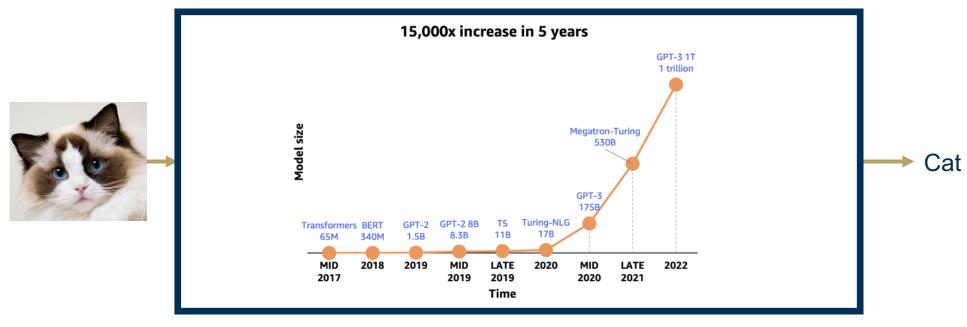
Stationary property of images allow for a small number of convolution kernels



Deep Deep Deep Deep ... Learning

Recent Advancements

Transformers, Large Language Models and Foundation Models

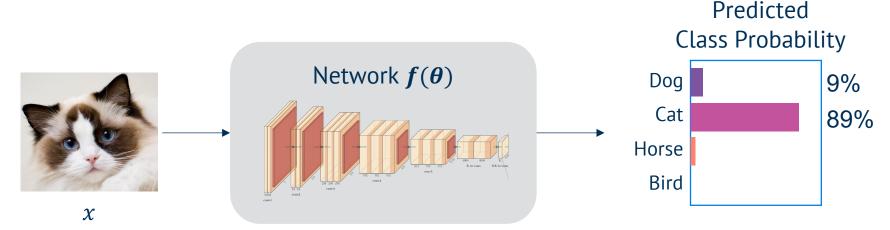


Primary reasons for advancements:

- 1. Expanded interests from the research community
- 2. Computational resources availability
- 3. Big data availability

Classification

Given: One network, One image. Required: Class Prediction

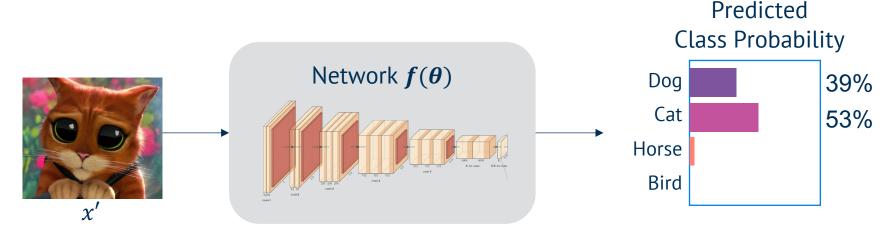


$$\hat{y} = f(x)$$
 $\hat{y} = \text{Logits}$
 $y = argmax_i \, \hat{y}$ $y = \text{Predicted Class}$
 $p(\hat{y}) = T(f(x))$ $p(\hat{y}) = \text{Probabilities}$
 $f(\cdot) = \text{Trained Network}$
 $\chi = \text{Training data}$

If $x \in \chi$, the data is **not novel**

Robust Classification in Deep Networks

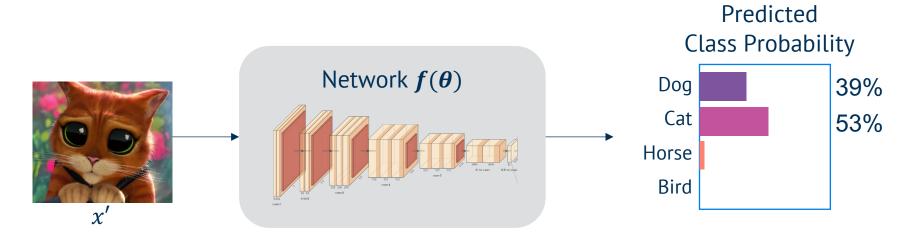
Deep learning robustness: Correctly predict class even when data is novel



$$\begin{split} \hat{y} &= f(x' + \epsilon) & \hat{y} &= \text{Logits} \\ y &= argmax_i \, \hat{y} & y &= \text{Predicted Class} \\ p(\hat{y}) &= T(f(x' + \epsilon)) & p(\hat{y}) &= \text{Probabilities} \\ f(\cdot) &= \text{Trained Network} \\ \chi &= \text{Training data} \\ \epsilon &= \text{Noise} \end{split}$$

Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel



To achieve robustness at Inference, we need the following:

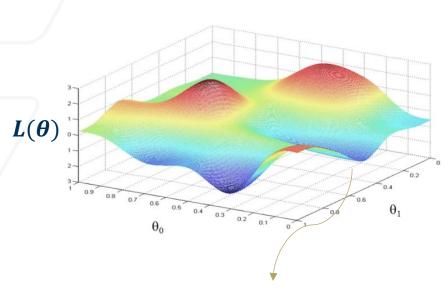
- Information provided by the novel data as a function of training distribution
- Methodology to extract information from novel data
- Techniques that utilize the information from novel data

Why is this Challenging?

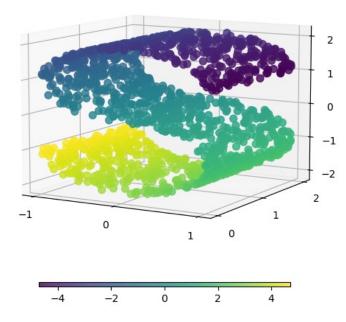
Challenges at Inference

A Quick note on Manifolds...

Manifolds are compact topological spaces that allow exact mathematical functions



Toy visualizations generated using functions (and thousands of generated data points)

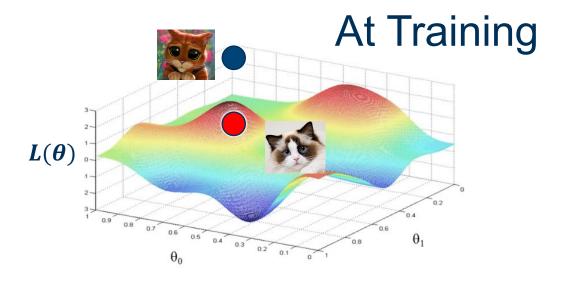


Real data visualizations generated using dimensionality reduction algorithms (Isomap)

Challenges at Inference

Inference

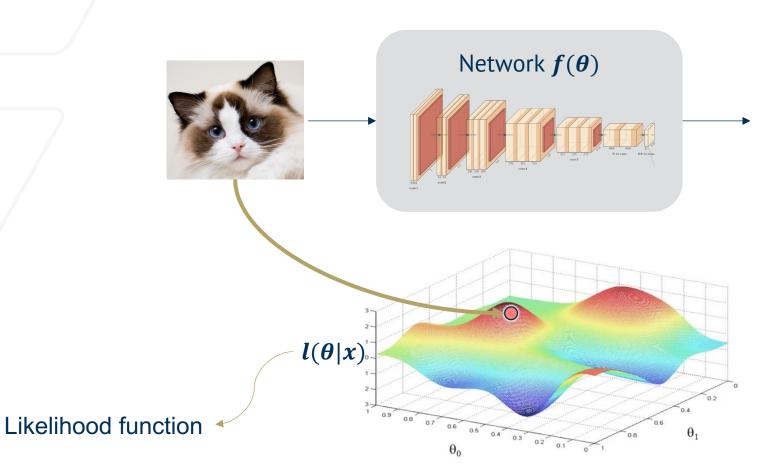
However, at inference only the test data point is available and the underlying structure of the manifold is unknown



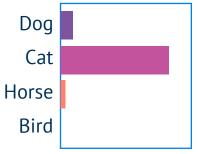
At training, we have access to all training data.

Fisher Information

Colloquially, Fisher Information is the "surprise" in a system that observes an event



Predicted Class Probability



Fisher Information

$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

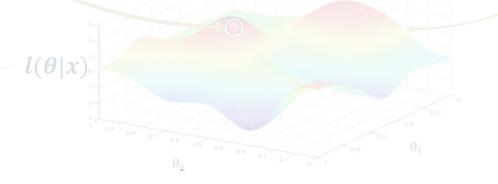
 θ = Statistic of distribution $\ell(\theta \mid x)$ = Likelihood function

25 of 151

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

Information at Inference

At inference, given a single image from a single class, we can extract information about other classes



$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

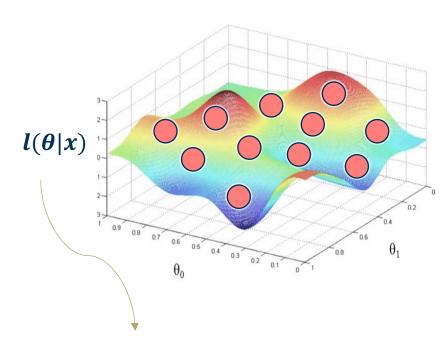
Predicted

 θ = Statistic of distribution $\ell(\theta \mid x) = \text{Likelihood function}$

Likelihood function

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



Likelihood function instead of loss manifold

From before,
$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

Using variance decomposition, $I(\theta)$ reduces to:

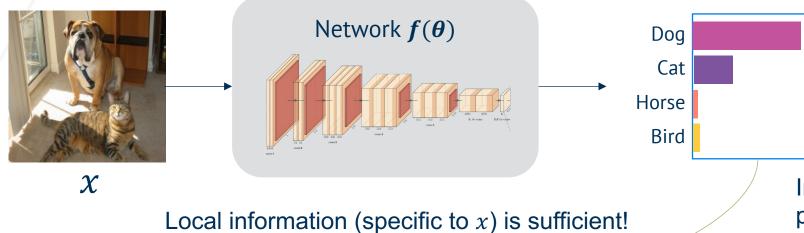
$$I(\theta) = E[U_{\theta}U_{\theta}^T]$$
 where

$$E[\cdot]$$
 = Expectation $U_{\theta} = \nabla_{\theta} l(\theta|x)$, Gradients w.r.t. the sample

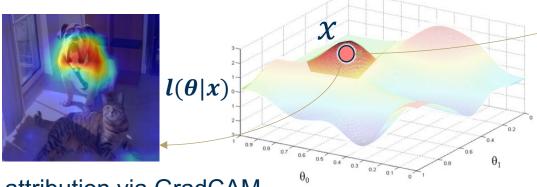
Hence, gradients draw information from the underlying distribution as learned by the network weights!

Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds



In this case, the image and its prediction extracts nose, mouth and jowl features.



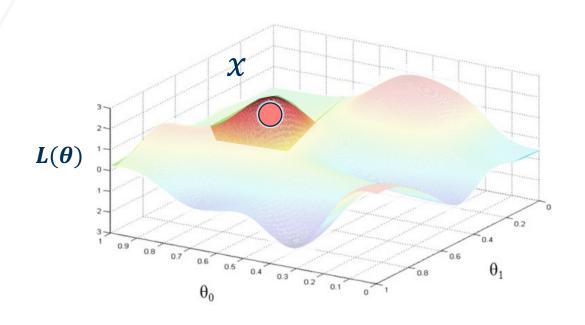
Hence, gradients draw information from the underlying distribution as learned by the network weights!

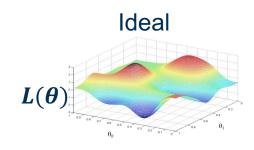
Feature attribution via GradCAM

Gradients at Inference

Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is because x projects on the learned knowledge



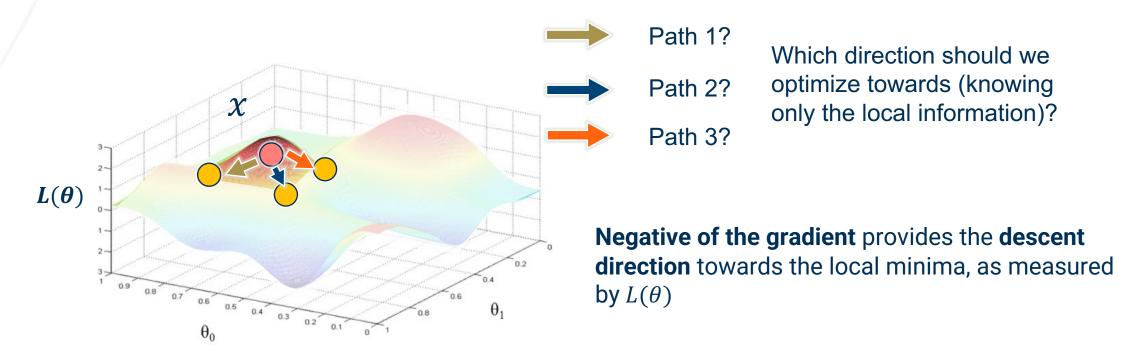


 $\alpha \nabla_{\theta} L(\theta)$ provides local information up to a small distance α away from x

Gradients at Inference

Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function $L(\theta)$



Gradients at Inference

To Characterize the Novel Data at Inference

