Robust Neural Networks

Part 2: Explainability at Inference
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Objective

Obijective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

 Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference
* Visual Explanations
» Gradient-based Explanations
« GradCAM
» Counterfactual CAM
« ContrastCAM

« Part 3: Uncertainty at Inference
* Part 4: Intervenability at Inference
« Part 5: Conclusions and Future Directions
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1 Explanatory Paradigms in Neural
Explanatlons >, aox | Networks: Towards Relevant and
. . - Contextual Explanations
Visual Explanations ——-

« Explanations are defined as a set of rationales used to understand the reasons behind a
decision

 If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed
Corralations Contras;i‘\_/e

N

. . What if Bullmastiff was not in | Why Bullmastiff, rather than a
Bullmastiff Why Bullmastiff? the image? Boxer?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Gradient-based Explanations

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output; They
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

However, localization remains an issue
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Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

#{>—M % Boxer Image Classification
3

y
Rectified Conv

Feature Maps global average pooling

7 o N
A y c 1 dy°
—{ TasK-specific &, = — =
.................... Retwor . Z Z Z 0AF,
' , ) ? &
! €—— Gradients : A1,
i —— Activations = i 5
i K # | gradients via backprop
4—) c L E : c Ak
Backprop till conv LGrad—C AM — R@L U (84 k A
4 B4 k
Grad-CAM (up-sampled to original image dimension) _ ~
linear combination
4201151 o s \WAC Vioas [Tutorial @ WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024] OLIVES Gl" Georgia
WAIKOEOR AL Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient- Tech.

based localization." Proceedings of the IEEE international conference on computer vision. 2017.



SCAN ME

Grad-CAM generalizes to any task:
* Image classification
* Image captioning

 Visual question answering

e efc. i
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Explanatory Paradigms

SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Counterfactual Observed
Corralations Contras;[i}./e

N

. . What if Bullmastiff was not in | Why Bullmastiff, rather than a
Bullmastiff Why Bullmastiff? the image? Boxer?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if this region were absent in the image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain a¢ for each kernel k
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Negating the gradients effectively removes these regions from analysis
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?
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In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer
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Backpropagating the loss highlights the differences between classes P and Q.
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

’ -
ImageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?

@m

ImageNet dataset : | Grad-CAM : Why : Bull Why Bull Mastiff, Representative Blue jay [  Why Bull Mastiff,
BuII Mastiff Masnff? imae rather than Boxer image rather than Blue jay?

wD

SCAN ME
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Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations
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Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

ImageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather Representative Plg Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image lhan Flamingo? image than Pig? with 100% confidence?

I

(ié

Representative Boxer Why Bull Mastiff, Representative Bluejay Why Bull Mastiff,
image rather than Boxer image rather than Blue jay?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti
Bugatti Convertible Bugatti Convertible? Coupe image

Why Convertible, Representative Audi A6 | Why Bugatti, rather
rather than Coupe? image than Audi A6?

Why not Bugatti with
100% confidence?
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Gradient and Activation-based Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations
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Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

ImageNet dataset : ‘ Grad-CAM : Why Representative Why Spoonbill, rather Repre ntative Plg ’ Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?
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Why Bull Mastiff,
rather than Blue jay?
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Representative Boxer Why Bull Mastiff,

image rather than Boxer

Stanford Cars Dataset: Grad-CAM: Why
Bugatti Convertible Bugatti Convertible?

Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather
Coupe image rather than Coupe? image than Audi A6?

Why not Bugatti with
100% confidence?
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Gradient and Activation-based Explanations

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM
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Contrastive Contrastive
Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2
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ImageNet dataset : | Grad-CAM : Why : Bull Representauve Boxer Why Bull MaStlff Representatlve Blue jay | Why Bull Mastiff, Why not Bull Mastiff,
_Bull Mastiff Mastlff? ra!her than Boxer image rather than Blue jay? | with 100% confidence?

Why not Bugatti with

Why Bugatti, rather
100% confidence?

than Audi A6?

Why Convertible, Representative Audi A6
rather than Coupe? image

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti

Bugatti Convertible Bugatti Convertible? Coupe image
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Only traffic sign with a straight
bottom-left edge — enough to
say Not STOP Sign’
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A Callback...

Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes
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Information at Inference
Case Study: Explainability

T is the set of all features learned by a trained network

Beak
Neck |
Network f(0) Legs Why Spoonbill?

Feathers
»Water - Features T
{ Grass

Teeth
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Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak

Neck Why S bill, rath
y Spoonbill, rather
Network f(8) Legs than Flamingo?

Feathers - )
Water — Features T° . .

Grass
Teeth

All the requisite Information is stored within f(0)

Goal: To extract and quantify this information at inference
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