# **Robust Neural Networks Part 3: Uncertainty at Inference**





## **Objective** Objective of the Tutorial

### To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
  - Uncertainty Definition
  - Uncertainty Quantification
  - Gradient-based Uncertainty
  - Adversarial and Corruption Detection
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions





What is Uncertainty?

### Uncertainty is a model knowing that it does not know



A simple example:

- When training data is available: Less uncertainty
- When training data is unavailable: More uncertainty



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

59 of 151

JAN 4-8 WACV 2024

WAIKOLOA HAWAI

Uncertainty Quantification in Neural Networks

Via Ensembles<sup>1</sup> Network  $f_1(\theta)$ Dog Cat Horse Bird Network  $f_2(\theta)$ Dog Cat Horse Bird Network  $f_N(\theta)$ Dog Cat Horse Bird

Variation within outputs Var(y) is the uncertainty. Commonly referred to as **Prediction Uncertainty.** 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using deep ensembles." *Advances in neural information processing systems* 30 (2017).





**Uncertainty Quantification in Neural Networks** 

### Via Single pass methods<sup>1</sup>



Uncertainty quantification using a single network and a single pass



### Calculate distance from some trained clusters

**Does not require multiple networks!** 



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a single deep deterministic neural network. In *International conference on machine learning* (pp. 9690-9700). PMLR.





### **Uncertainty** Gradients as Single pass Features



Uncertainty quantification using a single network and a single pass



Calculate distance from some trained clusters

Does not require multiple networks!

Challenge: Class and prediction cannot be trusted!



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Gradients as Single pass Features

# Our Goal: Use gradients to characterize the novel data at Inference, without global information





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





# **Backpropagated Gradient Representations for Anomaly Detection**



Gukyeong Kwon, PhD Amazon AWS



Mohit Prabhushankar, PhD Postdoc, Georgia Tech

Ghassan AlRegib, PhD Professor, Georgia Tech







### Anomalies

64 of 151

### Finding Rare Events in Normal Patterns



Backpropagated Gradient Representations for Anomaly Detection

'Anomalies are patterns in data that do not conform to a well defined notion of normal behavior' <sup>[1]</sup>



Statistical Definition:

- Normal data are generated from a stationary process  $P_N$
- Anomalies are generated from a different process  $P_A \neq P_N$

Goal: Detect  $\phi_1$ 





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages

### Anomalies

**Steps for Anomaly Detection** 

# SCAN ME

Backpropagated Gradient Representations for Anomaly Detection

### Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

- Step 1 ensures that patches from natural images live close to a low dimensional manifold
- Step 2 designs distance functions that detect *implausibility* based on constraints





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



# **Constraining Manifolds**

**General Constraints** 



Backpropagated Gradient Representations for Anomaly Detection



[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, "Latent space autoregression for novelty detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





# **Constraining Manifolds**

**Gradient-based Constraints** 



Backpropagated Gradient Representations for Anomaly Detection

### Activation Constraints



Activation-based representation (Data perspective)

e.g. Reconstruction error  $(\mathcal{L})$ 



How much of the input does not correspond to the learned information?

### Gradient Constraints

Gradient-based Representation (Model perspective)

 $\begin{array}{c} W \\ \overline{\partial W} \\ \overline$ 

How much **model update** is required by the input?



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





# **Constraining Manifolds** Advantages of Gradient-based Constraints



- Gradients provide directional information to characterize anomalies
- Gradients from different layers capture abnormality at different levels of data abstraction



68 of 151

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



### GradCON: Gradient Constraint

**Gradient-based Constraints** 

69 of 151



**Backpropagated Gradient Representations for Anomaly Detection** 

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



### **GradCON: Gradient Constraint**

Activations vs Gradients



#### **AUROC Results**

# Abnormal "class"ModelLdetection (CIFAR-10)CAERee.g.CAERe



**JAN 4-8** 

70 of 151

| Model  | Loss   | Plane | Car   | Bird  | Cat   | Deer  | Dog   | Frog  | Horse | Ship  | Truck | Average |
|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| CAE    | Recon  | 0.682 | 0.353 | 0.638 | 0.587 | 0.669 | 0.613 | 0.495 | 0.498 | 0.711 | 0.390 | 0.564   |
| CAE    | Recon  | 0.659 | 0.356 | 0.640 | 0.555 | 0.695 | 0.554 | 0.549 | 0.478 | 0.695 | 0.357 | 0.554   |
| + Grad | Grad   | 0.752 | 0.619 | 0.622 | 0.580 | 0.705 | 0.591 | 0.683 | 0.576 | 0.774 | 0.709 | 0.661   |
| VAE    | Recon  | 0.553 | 0.608 | 0.437 | 0.546 | 0.393 | 0.531 | 0.489 | 0.515 | 0.552 | 0.631 | 0.526   |
| VAD.   | Latent | 0.634 | 0.442 | 0.640 | 0.497 | 0.743 | 0.515 | 0.745 | 0.527 | 0.674 | 0.416 | 0.583   |
| VAE    | Recon  | 0.556 | 0.606 | 0.438 | 0.548 | 0.392 | 0.543 | 0.496 | 0.518 | 0.552 | 0.631 | 0.528   |
| ↓ Crad | Latent | 0.586 | 0.396 | 0.618 | 0.476 | 0.719 | 0.474 | 0.698 | 0.537 | 0.586 | 0.413 | 0.550   |
| T Glau | Grad   | 0.736 | 0.625 | 0.591 | 0.596 | 0.707 | 0.570 | 0.740 | 0.543 | 0.738 | 0.629 | 0.647   |

#### Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

- (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- (CAE vs. VAE) Performance sacrifice from the latent constraint
- (VAE vs. VAE + Grad) Complementary features from the gradient constraint

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



## **GradCON: Gradient Constraint**

### Aberrant Condition Detection





#### Recon: Reconstruction error, Grad: Gradient loss

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Abnormal "condition" detection (CURE-TSR)



JAN 4-8 WACV 2024

71 of 151



Abnormal

Gradients as Single pass Features

# Our Goal: Use gradients to characterize the novel data at Inference, without global information





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



# IEEE Access

# **Probing the Purview of Neural Networks via Gradient Analysis**



Jinsol Lee, PhD Candidate

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor







### Uncertainty in Neural Networks Principle



Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data



However, what is  $\mathcal{L}$ ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





## Uncertainty in Neural Networks Principle



Probing the Purview of Neural Networks via Gradient Analysis

### Principle: Gradients provide a distance measure between the learned representations space and novel data

P = Predicted class  $Q_1$  = Contrast class 1  $Q_2$  = Contrast class 2



However, what is  $\mathcal{L}$ ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth
- We backpropagate all contrast classes - $Q_1, Q_2 \dots Q_N$  by backpropagating N one-hot vectors
- Higher the distance, higher the uncertainty score



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]









[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



# **Toy Manifold Example**

Part 3: Explainability

How is this different from Explainability?



Probing the Purview of Neural Networks via Gradient Analysis

Part 4: Uncertainty





 In Part 3: Activations of learned manifold are weighted by gradients w.r.t. activations to extract information and provide explanations  In Part 4: Statistics of gradients w.r.t. the weights (energy) will be directly used as features





# **Uncertainty in Neural Networks**

**Deriving Gradient Features** 



Probing the Purview of Neural Networks via Gradient Analysis

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



### **Uncertainty in Neural Networks** Utilizing Gradient Features



Probing the Purview of Neural Networks via Gradient Analysis





### **MNIST: In-distribution, SUN: Out-of-Distribution**



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





Uncertainty in OOD Setting

80 of 151

JAN 4-8 **VACV** 2024



Probing the Purview of Neural Networks via Gradient Analysis

### **Squared L2 distances for different parameter sets**



### MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





**Experimental Setup** 



Probing the Purview of Neural Networks via Gradient Analysis

# Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect adversarial, noisy, and OOD data



**Step 1: Train** a deep network  $f(\cdot)$  on some **training distribution Step 2:** Introduce challenging (adversarial, noisy, OOD) data **Step 3:** Derive **gradient uncertainty** on both trained and challenge data **Step 4: Train** a classifier  $H(\cdot)$  to **detect** challenging from trained data **Step 5:** At test time, data is passed through  $f(\cdot)$  and then  $H(\cdot)$  to obtain a **Reliability classification** 



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Uncertainty in Adversarial Setting

#### Vulnerable DNNs in the real world



**Probing the Purview of Neural Networks** via Gradient Analysis







Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Uncertainty in Adversarial Setting



Probing the Purview of Neural Networks via Gradient Analysis

| MODEL    | ATTACKS  | BASELINE | LID   | M(V)  | M(P)  | M(FE) | M(P+FE) | OURS         |
|----------|----------|----------|-------|-------|-------|-------|---------|--------------|
|          | FGSM     | 51.20    | 90.06 | 81.69 | 84.25 | 99.95 | 99.95   | 93.45        |
|          | BIM      | 49.94    | 99.21 | 87.09 | 89.20 | 100.0 | 100.0   | 96.19        |
| DECNET   | C&W      | 53.40    | 76.47 | 74.51 | 75.71 | 92.78 | 92.79   | 97.07        |
| KESNET   | PGD      | 50.03    | 67.48 | 56.27 | 57.57 | 65.23 | 75.98   | 95.82        |
|          | ITERLL   | 60.40    | 85.17 | 62.32 | 64.10 | 85.10 | 92.10   | <b>98.17</b> |
|          | SEMANTIC | 52.29    | 86.25 | 64.18 | 65.79 | 83.95 | 84.38   | 90.15        |
|          | FGSM     | 52.76    | 98.23 | 86.88 | 87.24 | 99.98 | 99.97   | 96.83        |
|          | BIM      | 49.67    | 100.0 | 89.19 | 89.17 | 100.0 | 100.0   | 96.85        |
| DENGENET | C&W      | 54.53    | 80.58 | 75.77 | 76.16 | 90.83 | 90.76   | 97.05        |
| DENSENET | PGD      | 49.87    | 83.01 | 70.39 | 66.52 | 86.94 | 83.61   | 96.77        |
|          | ITERLL   | 55.43    | 83.16 | 70.17 | 66.61 | 83.20 | 77.84   | 98.53        |
|          | SEMANTIC | 53.54    | 81.41 | 62.16 | 62.15 | 67.98 | 67.29   | 89.55        |

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.



Georgia



Uncertainty in Detecting Challenging Conditions



Probing the Purview of Neural Networks via Gradient Analysis

# Same application as Anomaly Detection, except there is no need for an additional AE network!



#### CIFAR-10-C



#### CURE-TSR



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





### Uncertainty in Detecting Challenging Conditions

| aset   | Method       |                      | Mah                  | alanobis [12] /      | Ours                 |                      |
|--------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Dat    | Corruption   | Level 1              | Level 2              | Level 3              | Level 4              | Level 5              |
|        | Noise        | 96.63 / <b>99.95</b> | 98.73 / <b>99.97</b> | 99.46 / <b>99.99</b> | 99.62 / <b>99.97</b> | 99.71 / <b>99.99</b> |
|        | LensBlur     | 94.22 / <b>99.95</b> | 97.51 / <b>99.99</b> | 99.26 / <b>100.0</b> | 99.78 / <b>100.0</b> | 99.89 / <b>100.0</b> |
| υ      | GaussianBlur | 94.19 / <b>99.94</b> | 99.28 / <b>100.0</b> | 99.76 / <b>100.0</b> | 99.86 / <b>100.0</b> | 99.80 / <b>100.0</b> |
| R-10-0 | DirtyLens    | 93.37 / <b>99.94</b> | 95.31 / <b>99.93</b> | 95.66 / <b>99.96</b> | 95.37 / <b>99.92</b> | 97.43 / <b>99.96</b> |
| IFAF   | Exposure     | 91.39 / <b>99.87</b> | 91.00 / <b>99.85</b> | 90.71 / <b>99.88</b> | 90.58 / <b>99.85</b> | 90.68 / <b>99.87</b> |
| 0      | Snow         | 93.64 / <b>99.94</b> | 96.50 / <b>99.94</b> | 94.44 / <b>99.95</b> | 94.22 / <b>99.95</b> | 95.25 / <b>99.92</b> |
|        | Haze         | 95.52 / <b>99.95</b> | 98.35 / <b>99.99</b> | 99.28 / <b>100.0</b> | 99.71 / <b>99.99</b> | 99.94 / <b>100.0</b> |
|        | Decolor      | 93.51 / <b>99.96</b> | 93.55 / <b>99.96</b> | 90.30 / <b>99.82</b> | 89.86 / <b>99.75</b> | 90.43 / <b>99.83</b> |
|        | Noise        | 25.46 / <b>50.20</b> | 47.54 / <b>63.87</b> | 47.32 / <b>81.20</b> | 66.19 / <b>91.16</b> | 83.14 / <b>94.81</b> |
|        | LensBlur     | 48.06 / <b>72.63</b> | 71.61 / <b>87.58</b> | 86.59 / <b>92.56</b> | 92.19 / <b>93.90</b> | 94.90 / <b>95.65</b> |
| ~      | GaussianBlur | 66.44 / <b>83.07</b> | 77.67 / <b>86.94</b> | 93.15 / <b>94.35</b> | 80.78 / <b>94.51</b> | <b>97.36</b> / 96.53 |
| E-TSF  | DirtyLens    | 29.78 / <b>51.21</b> | 29.28 / <b>59.10</b> | 46.60 / <b>82.10</b> | 73.36 / <b>91.87</b> | 98.50 / <b>98.70</b> |
| CURE   | Exposure     | 74.90 / <b>88.13</b> | <b>99.96</b> / 96.78 | <b>99.99</b> / 99.26 | <b>100.0</b> / 99.80 | <b>100.0</b> / 99.90 |
| 0      | Snow         | 28.11 / <b>61.34</b> | 61.28 / <b>80.52</b> | 89.89 / <b>91.30</b> | <b>99.34</b> / 96.13 | <b>99.98</b> / 97.66 |
|        | Haze         | 66.51 / <b>95.83</b> | 97.86 / <b>99.50</b> | <b>100.0</b> / 99.95 | <b>100.0</b> / 99.87 | <b>100.0</b> / 99.88 |
|        | Decolor      | 48.37 / <b>62.36</b> | 60.55 / <b>81.30</b> | 71.73 / <b>89.93</b> | 87.29 / <b>95.42</b> | 89.68 / <b>96.91</b> |



Probing the Purview of Neural Networks via Gradient Analysis





85 of 151

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.



Georgia

### Uncertainty in Detecting Challenging Conditions

| aset   | Method       |                      | Mah                  | alanobis [12] /                    | Ours                 |                      |
|--------|--------------|----------------------|----------------------|------------------------------------|----------------------|----------------------|
| Dat    | Corruption   | Level 1              | Level 2              | Level 3                            | Level 4              | Level 5              |
|        | Noise        | 96.63 / <b>99.95</b> | 98.73 / <b>99.97</b> | 99.46 / <b>99.99</b>               | 99.62 / <b>99.97</b> | 99.71 / <b>99.99</b> |
|        | LensBlur     | 94.22 / <b>99.95</b> | 97.51 / <b>99.99</b> | 99.26 / <b>100.0</b>               | 99.78 / <b>100.0</b> | 99.89 / <b>100.0</b> |
| U      | GaussianBlur | 94.19 / <b>99.94</b> | 99.28 / <b>100.0</b> | 99.76 / <b>100.0</b>               | 99.86 / <b>100.0</b> | 99.80 / <b>100.0</b> |
| R-10-6 | DirtyLens    | 93.37 / <b>99.94</b> | 95.31 / <b>99.93</b> | 95.66 / <b>99.96</b>               | 95.37 / <b>99.92</b> | 97.43 / <b>99.96</b> |
| IFAF   | Exposure     | 91.39 / <b>99.87</b> | 91.00 / <b>99.85</b> | 90.71 / <b>99.88</b>               | 90.58 / <b>99.85</b> | 90.68 / <b>99.87</b> |
| 0      | Snow         | 93.64 / <b>99.94</b> | 96.50 / <b>99.94</b> | 94.44 / <b>99.95</b>               | 94.22 / <b>99.95</b> | 95.25 / <b>99.92</b> |
|        | Haze         | 95.52 / <b>99.95</b> | 98.35 / <b>99.99</b> | 99.28 / <b>100.0</b>               | 99.71 / <b>99.99</b> | 99.94 / <b>100.0</b> |
|        | Decolor      | 93.51 / <b>99.96</b> | 93.55 / <b>99.96</b> | 90.30 / <b>99.82</b>               | 89.86 / <b>99.75</b> | 90.43 / <b>99.83</b> |
|        | Noise        | 25.46 / <b>50.20</b> | 47.54 / <b>63.87</b> | 47.32 / <b>81.20</b>               | 66.19 / <b>91.16</b> | 83.14 / <b>94.81</b> |
|        | LensBlur     | 48.06 / 72.63        | 71.61 / <b>87.58</b> | 86.59 / <b>92.56</b>               | 92.19 / <b>93.90</b> | 94.90 / <b>95.65</b> |
| ~      | GaussianBlur | 66.44 / <b>83.07</b> | 77.67 / <b>86.94</b> | 93.15 / <b>94.35</b>               | 80.78 / <b>94.51</b> | <b>97.36</b> / 96.53 |
| E-TSF  | DirtyLens    | 29.78 / <b>51.21</b> | 29.28 / <b>59.10</b> | 46.60 / <b>82.10</b>               | 73.36 / <b>91.87</b> | 98.50 / <b>98.70</b> |
| CURE   | Exposure     | 74.90 / <b>88.13</b> | <b>99.96</b> / 96.78 | <mark>99.99</mark> / 99.26         | <b>100.0</b> / 99.80 | <b>100.0</b> / 99.90 |
| Ŭ      | Snow         | 28.11 / <b>61.34</b> | 61.28 / <b>80.52</b> | <mark>89</mark> .89 / <b>91.30</b> | <b>99.34</b> / 96.13 | <b>99.98</b> / 97.66 |
|        | Haze         | 66.51 / <b>95.83</b> | 97.86 / <b>99.50</b> | 100.0 / 99.95                      | <b>100.0</b> / 99.87 | <b>100.0</b> / 99.88 |
|        | Decolor      | 48.37 / 62.36        | 60.55 / <b>81.30</b> | 71.73 / <b>89.93</b>               | 87.29 / <b>95.42</b> | 89.68 / <b>96.91</b> |



Probing the Purview of Neural Networks via Gradient Analysis



86 of 151

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.



Georgia



Probing the Purview of Neural Networks via Gradient Analysis



### Goal: To detect that these datasets are not part of training



SVHN

CIFAR10

TinyImageNet

LSUN



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07,







Probing the Purview of Neural Networks via Gradient Analysis

| Dataset Distribution |              | Detection Accuracy                           | AUROC                                               | AUPR                                         |  |  |
|----------------------|--------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|--|--|
| In                   | Out          | Baseline [5] / ODI                           | N [6] / Mahalanobis (V) [7] / Mahalano              | obis (P+FE) [7] / Ours                       |  |  |
|                      | SVHN         | 83.36 / 88.81 / 79.39 / 91.95 / <b>98.04</b> | 88.30 / 94.93 / 85.03 / 97.10 / <b>99.84</b>        | 88.26 / 95.45 / 86.15 / 96.12 / <b>99.98</b> |  |  |
| CIFAR-10             | TinyImageNet | 84.01 / 85.21 / 83.60 / <b>97.45</b> / 86.17 | 90.06 / 91.86 / 88.93 / <b>99.68</b> / 93.18        | 89.26 / 91.60 / 88.59 / <b>99.60</b> / 92.66 |  |  |
|                      | LSUN         | 87.34 / 88.42 / 85.02 / <b>98.60</b> / 98.37 | 92.79 / 94.48 / 90.11 / <b>99.86</b> / <b>99.86</b> | 92.30 / 94.22 / 89.80 / 99.82 / <b>99.87</b> |  |  |
|                      | CIFAR-10     | 79.98 / 80.12 / 74.10 / 88.84 / <b>97.90</b> | 81.50 / 81.49 / 79.31 / 95.05 / <b>99.79</b>        | 81.01 / 80.95 / 80.83 / 90.25 / <b>98.11</b> |  |  |
| SVHN                 | TinyImageNet | 81.70 / 81.92 / 79.35 / 96.17 / <b>97.74</b> | 83.69 / 83.82 / 83.85 / 99.23 / <b>99.77</b>        | 82.54 / 82.60 / 85.50 / <b>98.17</b> / 97.93 |  |  |
|                      | LSUN         | 80.96 / 81.15 / 79.52 / 97.50 / <b>99.04</b> | 82.85 / 82.98 / 83.02 / 99.54 / <b>99.93</b>        | 81.97 / 82.01 / 84.67 / 98.84 / <b>99.21</b> |  |  |



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07,

2024] Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." *IEEE Access* 11 (2023): 32716-32732.



Georgia



**Probing the Purview of Neural Networks** via Gradient Analysis

| Dataset Distribution |              | Detection Accuracy                           | AUROC                                               | AUPR                                         |  |
|----------------------|--------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|--|
| In Out               |              | Baseline [5] / ODI                           | N [6] / Mahalanobis (V) [7] / Mahalano              | obis (P+FE) [7] / Ours                       |  |
|                      | SVHN         | 83.36 / 88.81 / 79.39 / 91.95 / <b>98.04</b> | 88.30 / 94.93 / 85.03 / 97.10 / <b>99.84</b>        | 88.26 / 95.45 / 86.15 / 96.12 / <b>99.98</b> |  |
| CIFAR-10             | TinyImageNet | 84.01 / 85.21 / 83.60 / <b>97.45</b> / 86.17 | 90.06 / 91.86 / 88.93 / <b>99.68</b> / 93.18        | 89.26 / 91.60 / 88.59 / <b>99.60</b> / 92.66 |  |
|                      | LSUN         | 87.34 / 88.42 / 85.02 / <b>98.60</b> / 98.37 | 92.79 / 94.48 / 90.11 / <b>99.86</b> / <b>99.86</b> | 92.30 / 94.22 / 89.80 / 99.82 / <b>99.87</b> |  |
|                      | CIFAR-10     | 79.98 / 80.12 / 74.10 / 88.84 / <b>97.90</b> | 81.50 / 81.49 / 79.31 / 95.05 / <b>99.79</b>        | 81.01 / 80.95 / 80.83 / 90.25 / <b>98.11</b> |  |
| SVHN                 | TinyImageNet | 81.70 / 81.92 / 79.35 / 96.17 / <b>97.74</b> | 83.69 / 83.82 / 83.85 / 99.23 / <b>99.77</b>        | 82.54 / 82.60 / 85.50 / <b>98.17</b> / 97.93 |  |
|                      | LSUN         | 80.96 / 81.15 / 79.52 / 97.50 / <b>99.04</b> | 82.85 / 82.98 / 83.02 / 99.54 / <b>99.93</b>        | 81.97 / 82.01 / 84.67 / 98.84 / <b>99.21</b> |  |

Numbers





Objects, natural scenes



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07,

OLIVES





**Probing the Purview of Neural Networks** via Gradient Analysis

| Dataset Distribution |              | Detection Accuracy                           | AUROC                                               | AUPR                                         |
|----------------------|--------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| In Out               |              | Baseline [5] / ODI                           | N [6] / Mahalanobis (V) [7] / Mahalano              | obis (P+FE) [7] / Ours                       |
|                      | SVHN         | 83.36 / 88.81 / 79.39 / 91.95 / <b>98.04</b> | 88.30 / 94.93 / 85.03 / 97.10 / <b>99.84</b>        | 88.26 / 95.45 / 86.15 / 96.12 / <b>99.98</b> |
| CIFAR-10             | TinyImageNet | 84.01 / 85.21 / 83.60 / <b>97.45</b> / 86.17 | 90.06 / 91.86 / 88.93 / <b>99.68</b> / 93.18        | 89.26 / 91.60 / 88.59 / <b>99.60</b> / 92.66 |
|                      | LSUN         | 87.34 / 88.42 / 85.02 / <b>98.60</b> / 98.37 | 92.79 / 94.48 / 90.11 / <b>99.86</b> / <b>99.86</b> | 92.30 / 94.22 / 89.80 / 99.82 / <b>99.87</b> |
| /                    | CIFAR-10     | 79.98 / 80.12 / 74.10 / 88.84 / <b>97.90</b> | 81.50 / 81.49 / 79.31 / 95.05 / <b>99.79</b>        | 81.01 / 80.95 / 80.83 / 90.25 / <b>98.11</b> |
| SVHN                 | TinyImageNet | 81.70 / 81.92 / 79.35 / 96.17 / <b>97.74</b> | 83.69 / 83.82 / 83.85 / 99.23 / <b>99.77</b>        | 82.54 / 82.60 / 85.50 / <b>98.17</b> / 97.93 |
|                      | LSUN         | 80.96 / 81.15 / 79.52 / 97.50 / <b>99.04</b> | 82.85 / 82.98 / 83.02 / 99.54 / <b>99.93</b>        | 81.97 / 82.01 / 84.67 / 98.84 / <b>99.21</b> |





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07,





### **Case Study: Introspective Learning**

Gradients as Single pass Features

# Our Goal: Use gradients to characterize the novel data at Inference, without global information









# Introspective Learning: A Two-Stage Approach for Inference in Neural Networks



Mohit Prabhushankar, PhD Postdoc



Ghassan AlRegib, PhD Professor







### **Robustness in Neural Networks** Why Robustness?



Introspective Learning: A Two-stage Approach for Inference in Neural Networks



# How would humans resolve this challenge?

# We Introspect!

- Why am I being shown this slide?
- Why images of muffins rather than pastries?
- What if the dog was a bull mastiff?









Introspection What is Introspection?



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Introspection Introspection in Neural Networks



Introspective Learning: A Two-stage Approach for Inference in Neural Networks



Goal : To simulate Introspection in Neural Networks

**Definition :** We define introspections as answers to logical and targeted questions.

# What are the possible targeted questions?



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





Introspection Introspection in Neural Networks



Introspective Learning: A Two-stage Approach for Inference in Neural Networks





# What are the possible targeted questions?



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]







Introspective Learning: A Two-stage Approach for Inference in Neural Networks



Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal : To simulate Introspection in Neural Networks

**Contrastive Definition :** Introspection answers questions of the form `Why *P*, rather than *Q*? 'where *P* is a network prediction and *Q* is the *introspective class.* 

**Technical Definition :** Given a network f(x), a datum x, and the network's prediction  $f(x) = \hat{y}$ , introspection in  $f(\cdot)$  is the measurement of change induced in the network parameters when a label Q is introduced as the label for x..



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





### **Introspection** Gradients as Features



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

### For a well-trained network, the gradients are sparse and informative





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





99 of 151

JAN 4-8 **VACV** 2024



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

### For a well-trained network, the gradients are sparse and informative







**Introspection** Gradients as Features



Introspective Learning: A Two-stage Approach for Inference in Neural Networks





Lemma1: 
$$\nabla_W J(y_I, \hat{y}) = -\nabla_W y_I + \nabla_W \log\left(1 + \frac{y_{\hat{y}}}{2}\right).$$

Any change in class requires change in relationship between  $y_I$  and  $\hat{y}$ 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





### Introspection Deriving Gradient Features



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



### Introspection Utilizing Gradient Features



Introspective Learning: A Two-stage Approach for Inference in Neural Networks



### Introspective Features



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





Introspection When is Introspection Useful?



Introspective Learning: A Two-stage Approach for Inference in Neural Networks



Introspection provides robustness when the train and test distributions are different

### We define robustness as being generalizable and calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence







[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





### Calibration

A note on Calibration..



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

### Calibration occurs when there is mismatch between a network's confidence and its accuracy



- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





### **Introspection in Neural Networks**

**Generalization and Calibration results** 



Introspective Learning: A Two-stage Approach for Inference in Neural Networks





[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



### **Introspection in Neural Networks**

Plug-in nature of Introspection



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

### Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing robustness techniques.

| METHODS                |                               | ACCURACY                 |
|------------------------|-------------------------------|--------------------------|
| ResNet-18              | Feed-Forward<br>Introspective | 67.89%<br><b>71.4</b> %  |
| DENOISING              | Feed-Forward<br>Introspective | 65.02%<br><b>68.86</b> % |
| Adversarial Train (27) | Feed-Forward<br>Introspective | 68.02%<br><b>70.86</b> % |
| SIMCLR (19)            | Feed-Forward<br>Introspective | 70.28%<br><b>73.32</b> % |
| Augment Noise (28)     | Feed-Forward<br>Introspective | 76.86%<br><b>77.98</b> % |
| Augmix (23)            | Feed-Forward<br>Introspective | 89.85%<br><b>89.89</b> % |

Introspection is a **plug-in approach** that works on all networks and on any downstream task!



[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





### **Introspection in Neural Networks**

Plug-in nature of Introspection



Introspective Learning: A Two-stage Approach for Inference in Neural Networks

# Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active Learning, and Image Quality Assessment!

Table 13: Performance of Contrastive Features against Feed-Forward Features and other ImageQuality Estimators. Top 2 results in each row are highlighted.

|                       | PSNR   | IW     | SR    | FSIMc     | Per      | CSV       | SUM       | <b>Feed-Forward</b> | Introspective |
|-----------------------|--------|--------|-------|-----------|----------|-----------|-----------|---------------------|---------------|
| Database              | HA     | SSIM   | SIM   |           | SIM      |           | MER       | UNIQUE              | UNIQUE        |
| Outlier Ratio (OR, ↓) |        |        |       |           |          |           |           |                     |               |
| MULTI                 | 0.013  | 0.013  | 0.000 | 0.016     | 0.004    | 0.000     | 0.000     | 0.000               | 0.000         |
| TID13                 | 0.615  | 0.701  | 0.632 | 0.728     | 0.655    | 0.687     | 0.620     | 0.640               | 0.620         |
|                       |        |        |       | Root M    | ean Squ  | are Erro  | or (RMS   | <b>E</b> , ↓)       |               |
| MULTI                 | 11.320 | 10.049 | 8.686 | 10.794    | 9.898    | 9.895     | 8.212     | 9.258               | 7.943         |
| TID13                 | 0.652  | 0.688  | 0.619 | 0.687     | 0.643    | 0.647     | 0.630     | 0.615               | 0.596         |
|                       |        |        | Pear  | son Linea | r Correl | lation C  | oefficien | t (PLCC, ↑)         |               |
| мінті                 | 0.801  | 0.847  | 0.888 | 0.821     | 0.852    | 0.852     | 0.901     | 0.872               | 0.908         |
| MULII                 | -1     | -1     | 0     | -1        | -1       | -1        | -1        | -1                  |               |
| TID13                 | 0.851  | 0.832  | 0.866 | 0.832     | 0.855    | 0.853     | 0.861     | 0.869               | 0.877         |
| 11015                 | -1     | -1     | 0     | -1        | -1       | -1        | 0         | 0                   |               |
|                       |        |        | Spear | man's Ra  | nk Corr  | elation ( | Coefficie | nt (SRCC, ↑)        |               |
| мінті                 | 0.715  | 0.884  | 0.867 | 0.867     | 0.818    | 0.849     | 0.884     | 0.867               | 0.887         |
| MULII                 | -1     | 0      | 0     | 0         | -1       | -1        | 0         | 0                   |               |
| TID13                 | 0.847  | 0.778  | 0.807 | 0.851     | 0.854    | 0.846     | 0.856     | 0.860               | 0.865         |
| 11015                 | -1     | -1     | -1    | -1        | 0        | -1        | 0         | 0                   |               |
|                       |        |        | Ken   | dall's Ra | nk Corr  | elation ( | Coefficie | nt (KRCC)           |               |
| мппті                 | 0.532  | 0.702  | 0.678 | 0.677     | 0.624    | 0.655     | 0.698     | 0.679               | 0.702         |
| MULII                 | -1     | 0      | 0     | 0         | -1       | 0         | 0         | 0                   |               |
| TID13                 | 0.666  | 0.598  | 0.641 | 0.667     | 0.678    | 0.654     | 0.667     | 0.667               | 0.677         |
| 11015                 | 0      | -1     | -1    | 0         | 0        | 0         | 0         | 0                   |               |

Table 2: Recognition accuracy of Active Learning strategies.

| Methods      | Architecture  | Origina | l Testset | Gaussian Noise |               |  |
|--------------|---------------|---------|-----------|----------------|---------------|--|
|              |               | R-18    | R-34      | R-18           | R-34          |  |
| Entropy (34) | Feed-Forward  | 0.365   | 0.358     | 0.244          | 0.249         |  |
|              | Introspective | 0.365   | 0.359     | <b>0.258</b>   | <b>0.255</b>  |  |
| Least (3)    | Feed-Forward  | 0.371   | 0.359     | 0.252          | 0.25          |  |
|              | Introspective | 0.373   | 0.362     | <b>0.264</b>   | <b>0.26</b>   |  |
| Margin (32)  | Feed-Forward  | 0.38    | 0.369     | 0.251          | 0.253         |  |
|              | Introspective | 0.381   | 0.373     | <b>0.265</b>   | <b>0.263</b>  |  |
| BALD (34)    | Feed-Forward  | 0.393   | 0.368     | 0.26           | 0.253         |  |
|              | Introspective | 0.396   | 0.375     | <b>0.273</b>   | <b>0.263</b>  |  |
| BADGE (33)   | Feed-Forward  | 0.388   | 0.37      | 0.25           | 0.247         |  |
|              | Introspective | 0.39    | 0.37      | <b>0.265</b>   | 0. <b>260</b> |  |

Table 3: Out-of-distribution Detection of existing techniques compared between feed-forward and introspective networks.

| Methods  | OOD<br>Datasets | FPR<br>(95% at TPR) | Detection<br>Error | AUROC                |
|----------|-----------------|---------------------|--------------------|----------------------|
|          |                 | Ļ                   | Ļ                  | Ť                    |
|          |                 | Feed-               | Forward/Introspe   | ctive                |
|          | Textures        | 58.74/ <b>19.66</b> | 18.04/ <b>7.49</b> | 88.56/ <b>97.79</b>  |
| MSP (33) | SVHN            | 61.41/ <b>51.27</b> | 16.92/15.67        | 89.39/91.2           |
|          | Places365       | 58.04/54.43         | 17.01/15.07        | 89.39/91.3           |
|          | LSUN-C          | <b>27.95</b> /27.5  | <b>9.42</b> /10.29 | <b>96.07</b> /95.73  |
|          | Textures        | 52.3/ <b>9.31</b>   | 22.17/ <b>6.12</b> | 84.91/ <b>91.9</b>   |
| ODIN (36 | ) SVHN          | 66.81/ <b>48.52</b> | 23.51/15.86        | 83.52/91.07          |
|          | Places365       | 42.21/51.87         | 16.23/15.71        | 91.06/90.95          |
|          | LSUN-C          | <b>6.59</b> /23.66  | <b>5.54</b> /10.2  | <b>98.74</b> / 95.87 |

108 of 151

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]





# **Part I, II and III** Tying it Back







[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Georgia