Robust Neural Networks
Part 3: Uncertainty at Inference
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Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

e Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference
» Uncertainty Definition
« Uncertainty Quantification
« Gradient-based Uncertainty
» Adversarial and Corruption Detection

* Part 4: Intervenability at Inference
e Part 5: Conclusions and Future Directions
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Prediction
20 1 - Predictive mean A Slmple example:
+ Taining data o ] . .
15 Epistemic uncertainty « When training data is available: Less uncertainty
= « When training data is unavailable: More uncertainty
05
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Uncertainty

Uncertainty Quantification in Neural Networks

Via Ensembles’
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive
uncertainty estimation using deep ensembles." Advances in neural information processing systems 30

Variation within outputs
Var(y) is the
uncertainty. Commonly
referred to as
Prediction Uncertainty.
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Uncertainty
Uncertainty Quantification in Neural Networks

Via Single pass methods’

Network f1(0) Dog Uncertainty

. Lt quantification using a

Horse single network and a
AR | Bird single pass

L(O)
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference

Network £+ (6) Dog Uncertainty

Cat quantification using a
Horse single network and a
[P == «. Bird single pass

/ Calculate distance from some trained clusters

Does not require multiple networks!
Challenge: Class and prediction cannot be trusted!

L(O)

61 of 151 JA'“-BWACVNM [Tutorial@WACV'24] | [Ghassan AlIRegib and Mohit Prabhushankar] | [Jan 07, 2024]

WAIKOLOA HAWAII

Gr Georgia
Tech.




Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques: 1(6]x)
1. Gradient constraints during L] =
Training for Anomaly Detection 5> | g o
2. Backpropagating Confounding labels T i Y
for Out-of-Distribution Detection 0, o
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Backpropagated Gradient Representations for
Anomaly Detection
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Anomalles : Backpropagated Gradient

[=] Representations for Anomaly Detection

Finding Rare Events in Normal Patterns SCAN ME

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ !/

@ r Statistical Definition:
H « Normal data are generated from a stationary process Py

* Anomalies are generated from a different process P, + Py

R R R
_‘L’__L,_‘L_ —J«- Goal: Detect ¢,

() = ®o Normal data
$1 Anomalies
b0 ¢ do

-

x(t)

- — — —

Sty
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SCAN ME

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

« Step 1 ensures that patches from natural
images live close to a low dimensional
manifold

« Step 2 designs distance functions that
detect implausibility based on
constraints

Anomaly
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[m] 3%+ [x]

L
[=]
SCAN ME
2004 2016 2018 2019
Tax et.al * Fan et.al 2 Pidhorksyi et.al 3 Abati et.al4

Encoder Decoder
& B
Training ’ .
Activations are

constrained Statistical deviation (Latent Loss)

using GANSs, Anomal
VAEs, etc. |
Testing |

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint
arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. AlImohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822—6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481-490.
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SCAN ME

Activation Constraints

Activation-based representation

Forward propagation (Data perspective) How much of the input

. . e.g. Reconstruction error ( does not correspond to
Trained with ‘0

Anomaly

. . the learned information?

» Gradient Constraints
Input || | / Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w oL w' How much model update is
ow required by the input?
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G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



Backpropagated Gradient

Constraining Manifolds _ |
) ) [=] Representations for Anomaly Detection
Advantages of Gradient-based Constraints SCAN ME

» Gradients provide directional information to characterize anomalies
« Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution

| o Backpropagated
econstruction 9o (fo())™, Gfad%ng[s
Error (L) 0L
“ : a0 , 710 R
x
Xout

Reconstructed image manifold
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GradCON: Gradient Constraint P

: Backpropagated Gradient
=]
Gradient-based Constraints

Representations for Anomaly Detection
SCAN ME

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data

Gradient loss
out 0L _ A

[ At k-th step of training,
' 0

|

|

|

-
I in,1
< L ’ ]=£—IE-[COSSIM( ) )]

Avg. training Gradients at
gradients until (k-1) th iter. k-th iter.

k-1 k=1 ¢
where 9] = 9]
| | 0bigug 0¢;
¢: Weights L: Reconstruction error
690f 151 s s s WNAC Vs
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SCAN ME

AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average

detection (C”:AR 10 CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 0.711 0.390 0.564
CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554

+ Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661
VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
(I.D L tatent V.boad U.44s V.04 U.4J( V.20 U019 U.(a9 U.oz( U D= U.210 U.000 |

Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
econ

Latent O 586 O 396 0. 618 O 476 O 719 O 474 O 698 O 5oF W 586 0. 413 O 550
Grad 0.736 0.625 0.591 0.596 0.707 0.570 0.740 0.543 0.738 0.629 0.647

VAE
+ Grad

Normal Abnormal

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss
« (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
« (CAE vs. VAE) Performance sacrifice from the latent constraint

« (VAE vs. VAE + Grad) Complementary features from the gradient constraint
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GradCON: Gradient Constraint i | Backpropagated Gradient

[=] Representations for Anomaly Detection

Aberrant Condition Detection SCAN ME

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure

AUROC

Abnormal “condition”
detection (CURE-TSR)

Levels

Gaussian Blur Rain o

. 0.8 @/@/—e——'@_—e | s

D6 e e U016 906
o o [~
N m | Ab | 204 204 204
o) d norma ; i R e A 0.2
0.0 2 3 0.073 2 3 a 5
Levels Levels Levels

[->¢- Recon (CAE) —<— Recon (CAE+Grad) |—e— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques: 1(0]x)

1. Gradient constraints during Training
for Anomaly Detection

2. Backpropagating Confounding
labels for Out-of-Distribution
Detection
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data

However, what is L?

Abnormal data distribution

* |In anomaly detection, the loss was between the input and
its reconstruction
* In prediction tasks, there is neither the reconstructed input

Backpropagated

9o (fo())™, Gradients nor ground truth
k 0L
60  d0¢ =Xons
Learned Representation
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Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE
Access 11 (2023): 32716-32732.



Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data
P = Predicted class
Q, = Contrast class 1

» = Contrast class 2 However, what is L?
Backpropagated * In anomaly detection, the loss was between the
Gradients input and its reconstruction

dL(P, Q1) « In prediction tasks, there is neither the
00 reconstructed input nor ground truth

 We backpropagate all contrast classes -
Q4,Q, .. Qy by backpropagating N one-hot

vectors
Backpropagated « Higher the distance, higher the uncertainty
Gradients score
Learned Representation 0L(P,Q>)
d0
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Probing the Purview of Neural Networks
via Gradient Analysis

Toy Manifold Example

What is uncertainty?

Gradients represent the local required change in manifold ‘X
Contrast class 1

Similar to introspective learning! ‘ 1(0]x)]

2~

» Gradients
provide the
necessary
change in
manifold that

X o would predict

the novel data

‘correctly’.

* Correctly means
contrastively (or
incorrectly)!

35
1

Contrast class N

8
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Probing the Purview of Neural Networks
via Gradient Analysis

Toy Manifold Example

How is this different from Explainability?

SCAN ME

Part 3: Explainability Part 4: Uncertainty

* In Part 3: Activations of learned * InPart 4: Statistics of gradients
w.r.t. the weights (energy) will be

manifold are weighted by gradients _
w.r.t. activations to extract directly used as features
information and provide

explanations
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Uncertainty in Neural Networks
Deriving Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Introspective Features
Gradients = = = — .
Weights, W, d ] (y ’ y,)
é"d{i Vi =::1IV
X -+ Sensing Vwl(3.y1)
Network
O y
! 9
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[11 M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural
Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

2022.

Y

Normalized and vectorized
gradients are introspective
features.

Why vector of all 1s? The theory is
presented in [1]

Gr Georgia
Tech.




Uncertainty in Neural Networks
Utilizing Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 2: Take L2 norm of all generated gradients

. Dataset
EEE mnist

. Collection of Lsiquared L2 norm IV, J(B0; x, yc)”z Ve, J(On; x, J’c)”z ———
Vo ’ ’

. L/ ¢ o2 )
0= 4.'I'_é9 —4‘_9i —""...4'- S ...+.'i'i Al g W =7 4" .;'Ai’ _-'-4.!. - 1-"4.;. .;-1-4.; -y dd L e Ay s b s e —_— —

* o * * o * s o > s« o > . o . . o . . o & & o . . o . . o . . o . . o . & 5 . . o * « o 3 -~ o « . o < . .
& I $§ o o $ & S I s 5 o o
§ & & & & R & & P & & & & & & & & & & @ & & & S & &F & & & & & F & F PO & & & & & PO G S R &
& o g & & o7 & & &’ & & & & B > & & o & & o & & o & & Q& B e > & & & & & & & B o> B & & & & > & & o &
> < o 3 o > > < o a2 « D) ~ 3 > > S & 3 c > > S o 2 N o ~ kS > > o o a2 c > > & o 3 o o ~ S ™ > o a
bt & F o & & e 5 R R A 2 &Sy R & & 0 & & & & F & Sy & & 0 & & 0 & & A 1

Network Parameters

MNIST: In-distribution, SUN: Out-of-Distribution
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Gradient-based Uncertainty
Uncertainty in OOD Setting

17.5

15.0

-
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Probing the Purview of Neural Networks
via Gradient Analysis

Datasets
BN MNIST
Bl SVHN
Bl TinylmageNet
BN LSUN
Bl CIFAR-10

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets
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Gradient-based Uncertainty
Experimental Setup

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect
adversarial, noisy, and OOD data

B B B . = B Step 1: Train a deep network f(-) on
175 ; o 3.0 ) o4 T some training distribution
15.0 T i . . T Step 2: Introduce challenging
4. 4 8 T| o3 (adversarial, noisy, OOD) data
£ 3 6 20 ) Step 3: Derive gradient uncertainty on
g 15 0.2 both trained and challenge data
=73 2 , Step 4: Train a classifier H(+) to detect
5.0 e . challenging from trained data
)5 ! : 05 Step 5: At test time, data is passed
\ o E 0 & - 0o o through f(-) and then H(-) to obtain a
Reliability classification
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Gradient-based Uncertainty
Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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SCAN ME

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

Access 11 (2023): 32716-32732.

MODEL ATTACKS BASELINE  LID M(V) M®P) MFE) M(P+FE) OURS
FGSM 51.20 90.06 81.69 84.25 99.95 99.95 93.45

BIM 49.94 99.21 87.09 89.20 100.0 100.0 96.19

RESNET C&W 53.40 76.47 74.51 75.71 92.78 92.79 97.07
PGD 50.03 67.48 56.27 57.57 65.23 75.98 95.82

ITERLL 60.40 85.17 62.32 64.10 85.10 92.10 98.17

SEMANTIC 52.29 86.25 64.18 65.79 83.95 84.38 90.15

FGSM 52.76 98.23 86.88 87.24 99.98 99.97 96.83

BIM 49.67 100.0 89.19 89.17 100.0 100.0 96.85

C&W 54.53 80.58 75.77 76.16 90.83 90.76 97.05

DENSENET  ppy 49.87  83.01 7039 6652 8694  83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84 98.53

SEMANTIC 53.54 81.41 62.16 62.15 67.98 67.29 89.55

8301151 0  \WAC Viozs [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024] OLIVES = Georgia
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Gaussian Noise Defocus Blur  Gaussian Blur Spatter

" . -

No Decolor-
Challenge ization

Lens Dirty

Blur Lens
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

85 of 151

g Method Mabhalanobis [12] / Ours

8| Comuption | Levell  Levelz  Leveld  Levlld  Level5

Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99

LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0

- GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0

9: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96

E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87

~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92

Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0

Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83

Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81

LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65

GaussianBlur | 66.44/83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53

é DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70

g Exposure 74.90 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90

N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66

Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88

Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91

s WAC Ve
F X WAKOLOA RAWAN
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Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

Access 11 (2023): 32716-32732.

via Gradient Analysis

SCAN ME

Gaussian Noise Defocus Blur  Gaussian Blur Spatter

Snow

o §olol
SEcEEE

Gauman

No
Challenge

Decolor-
1zation

Lens
Blur

Dirty
Lens

Snow
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions
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g Method Mabhalanobis [12] / Ours

8| comuption | Levll  Levelz  Leveld  Levld  Levels

Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99

LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0

- GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0

9: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96

E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87

~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92

Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0

Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83

Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81

LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65

GaussianBlur | 66.44/83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53

é DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70

g Exposure 74.90 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90

N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66

Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88

Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91
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Probing the Purview of Neural Networks
via Gradient Analysis
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

SCAN ME

Train set -

33T 112
EEH DO
110344 PR |
E - ‘

CIFAR10 TinylmageNet
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution

SVHN
CIFAR-10  TinyImageNet

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 /93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

LSUN
CIFAR-10

87.34/88.42/85.02/98.60 / 98.37
79.98/80.12/74.10 / 88.84 / 97.90

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 /99.87
81.01/80.95/80.83/90.25/98.11

SVHN TinyImageNet

81.70/81.92/79.35/96.17/97.74

83.69/83.82/83.85/99.23/99.77

82.54/82.60/85.50/98.17 /97.93

LSUN

80.96/81.15/79.52/97.50/99.04

82.85/82.98/83.02/99.54/99.93

81.97/82.01/84.67/98.84/99.21
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Out-of-Distribution Detection

Dataset Distribution Detection Accuracy

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

via Gradient Analysis

Probing the Purview of Neural Networks

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 /93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 /99.87
81.01/80.95/80.83/90.25/98.11

83.69/83.82/83.85/99.23/99.77

82.54/82.60/85.50/98.17 /97.93

In Out
SVHN © 83.36/88.81/79.39/91.95/98.04
CIFAR-10  TinyImageNet ' 84.01/85.21/83.60/97.45/86.17
LSUN 87.34 /88.42/85.02/98.60 / 98.37
CIFAR-10  79.98/80.12/74.10/88.84 /97.90
SVHN  TinylmageNet 81.70/81.92/79.35/96.17/97.74
LSUN 80.96 /81.15/79.52/97.50 / 99.04

82.85/82.98/83.02/99.54/99.93

Numbers
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Out-of-Distribution Detection

via Gradient Analysis

Dataset Distribution

SVHN

CIFAR-10  TinyImageNet

Detection Accuracy

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 / 93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

LSUN

87.34 / 88.42/85.02/98.60 / 98.37

92.79/94.48 /90.11/99.86 / 99.86

92.30/94.22/89.80/99.82 / 99.87

CIFAR-10 79.98/80.12/74.10/88.84/97.90 81.50/81.49/79.31/95.05/99.79 81.01/80.95/80.83/90.25/98.11
SVHN TinylmageNet = 81.70/81.92/79.35/96.17/97.74 83.69/83.82/83.85/99.23/99.77 82.54/82.60/85.50/98.17/97.93
LSUN 80.96/81.15/79.52/97.50/99.04 82.85/82.98/83.02/99.54/99.93 &81.97/82.01/84.67/98.84/99.21
More similar
datasets
(objects)
TinylmageNet CIFAR10
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Case Study: Introspective Learning
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

3~

2~

Two techniques: 1(0]x)
1. Gradient constraints during Training N

for Anomaly Detection 5
2. Backpropagating Confounding

labels for Out-of-Distribution

Detection
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Robustnhess in Neural Networks
Why Robustness?

How would humans resolve this challenge?

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bull mastiff?

We Introspect!

93 0f 151  uue

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks




SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspectlon
S U |
- Visual Sensing 1 Reflection

| .. .

: |

+ Sense .plnk feathers, Why Spoonbill, rather than Flamingo?
straight beak x does not have an S-shaped neck

Spoonbill Why Spoonbill, rather than Crane? : _
y x does not have white feathers : »SpOOnblH
! y

o Why Spoonbill, rather than Pig? :
 Feed-Forward . B x's leg and neck shapes are :
- Sensing I different |
I - .
——————————————— ol _.—-—.—.—.—.—.—.—.—.—.—.—.—-I
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection

Introspection in Neural Networks
SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Counterfactual Observed
Corrdlations Contras;[i.\_/e

N

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form Why
P, rather than Q? where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the networks prediction
f(x) =9, introspection in f (-) is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Why 5, rather than 0?

Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

For a well-trained network, the gradients are sparse and informative

T .| |

I Informative sparse features
| Why 5, rather than 0?\Why 5, rather than 1? |

: ' 0+
| B =38 5o \
‘ 1 - - ~
Why 5, rather than 27? Why 5, rather than 4?
I
[ o » l
l [ & B [=
\
Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

SCAN ME

For a well-trained network, the gradients are robust

Vyy = Gradients w.r.t. weights

J = Loss function ) Yy
9 = Prediction Lemmal:Vy J(yr,9) = —Vwyr + Vwlog| 1 + 3 )
Yi
\
{r N r N r \\

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

_ _ _ Any change in class requires change in

0 0 | relationship between y; and y
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features
Gradients =« = = = 1o
Weights, W, E : :
e 9/&.y) Normalized and vectorized
gradients are introspective
features
X -+ Sensing \
Network .
£0) Vector of all ones: A confounding label!
\ )
|
fi-13(%)
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Introspection

Utilizing Gradient Features

Networks

Gradients =« = = =
Weights, W,

Introspective Features

X —» Sensing
Network

fC)

Y
fiL-13(x)

Vwl(3.y1)

[

4————————0——0-———);*

Txm

MLP
H()

M vectorized
and normalized
gradients

Introspecti\}e Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Gaussuan Norse Defocus Blur  Gaussian Blur Spatter

'.',A'f«. Wil J
T BT §
e oy ;
v L /
r - /’
- ‘ »
s b )
4

; | .
T 2\ e - . . n." - . -
¥ N
< e >
ol N
- . %
- - £ .

No Decolor- Lens Dirty Gaussian
Challenge  ization Blur Lens Expoeure Blur Noise Snow
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SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy

LeNet (1998) ResNet (2016)

- CIFAR-100 CIFAR-100

' LT al o
2
g 0.6 EnS 1B . . ,
g Sy S « Larger the model, more misplaced is a network’s
w 0.4 I Y .
S = o confidence
® 9 S | 1 <

]| I I . .
o e — * On ResNet, the gap between prediction accuracy
) e e O OZE 28 NP S B ) and its corresponding confidence is significantly
Bl Outputs Il Outputs .

0.8 ||z3 Gap E=Z Gap hlgh
& 0.6
3
8 0.4
<

0.2

00 Error=44.9 Error=30.6

0.0 02 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 10

Confidence
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Introspection in Neural Networks
Generalization and Calibration results

. CIFAR-10C

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

76 A ,'. ” ,/ \\

—_ / Ly S——

o\o 75 A \\\ o\o Loy ,I/ \\\ % T el

S / S | S // N

> | ‘ p ™ > | \ / R
Ideal: Top-left & 7 ‘| 7 e Q7 y @ / N

o Introspéction \ = /
corner 3 73 /" ?é pe 3 ] 'l Intrg$pection \\\

O \ \ W) | /

. < 2y ,// ,/ e\ < : | @ o |
Y-Axis: N N L » Y — |
Generalization & PR { l,' s | ’,‘ \

g 7 4 \ ] g n i o / \ /

. O \\ / (@) \\ / \\ //
X'AXIS: E 69 1 \\ // E 70 - \\ // \\ //

. . / ~_7 \\ o 4
Calibration o S ! ot ) L
0.06 0.08 0.10 0.12 014 =-0I6 o018 0.10 0.12 014"~ 016 0.18
Expected Calibration error Expected Calibration error
Legend
Feed-Forward Networks ® ResNet-18 @ ResNet-34 @ ResNet-50 ResNet-101
After Introspection ® ResNet-18 ResNet-34 @ ResNet-50 ResNet-101
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Introspection in Neural Networks
Plug-in nature of Introspection

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
Drospeenve | TLAX Introspection is a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN Z7) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% n etWO rkS an d on a ny
SIMCLR (39) FEED-FORWARD 70.28% down Stream task'
INTROSPECTIVE 73.32%
AUGMENT NOISE (239) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (2%) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active

SCAN ME

Learning, and Image Quality Assessment!

Table 2: Recognition accuracy of Active Learn-

Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image  ing strategies.
Quality Estimators. Top 2 results in each row are highlighted.

PSNR Iw SR FSIMc Per CSV SUM Feed-Forward Introspective
Database HA SSIM  SIM SIM MER UNIQUE UNIQUE
Outlier Ratio (OR, |)
MULTI 0.013 0.013 0.000 0.016 0.004 0.000 0.000 0.000 0.000
TID13 0.615 0.701 0.632 0.728 0.655 0.687 0.620 0.640 0.620
Root Mean Square Error (RMSE, |)
MULTI 11.320 10.049 8.686 10.794 9.898 9.895 8.212 9.258 7.943
TID13 0.652 0.688 0.619 0.687 0.643 0.647 0.630 0.615 0.596
Pearson Linear Correlation Coefficient (PLCC, 1)
MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
-1 -1 0 -1 -1 -1 -1 -1
TID13 0.851 0.832 0.866 0.832 0.855 0.853 0.861 0.869 0.877
-1 -1 0 -1 -1 -1 0 0
Spearman’s Rank Correlation Coefficient (SRCC, 1)
0715 0.884 0.867 0.867 0.818 0.849 0.884 0.867 0.887
UL -1 0 0 0 -1 -1 0 0
TID13 0.847 0.778 0.807 0.851 0.854 0.846 0.856 0.860 0.865
-1 -1 -1 -1 0 -1 0 0
Kendall’s Rank Correlation Coefficient (KRCC)
0.532 0.702 0.678 0.677 0.624 0.655 0.698 0.679 0.702
MULs -1 0 0 0 -1 0 0 0
TID13 0.666 0.598 0.641 0.667 0.678 0.654 0.667 0.667 0.677
0 -1 -1 0 0 0 0 0
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Methods Architecture Original Testset Gaussian Noise
R-18 R-34 R-18 R-34
Entropy &1) Feed-Forward 0.365 0.358 0.244 0.249

Introspective 0.365 0.359 0.258 0.255

Feed-Forward 0.371 0.359 0.252 0.25

Least &1) Intospective 0373 0362 0264 026
Magin @)  Feed-Forward 038 0369 0251 0253
& Introspective  0.381 0373 0265  0.263
FeedForward 0393 0368 026 0253

BALD 8% Introspective 0396 0375 0273 0.263
BADGE (@3) Feed-Forward 0.388 0.37 0.25 0.247

Introspective 0.39 0.37 0.265 0.260

Table 3: Out-of-distribution Detection of exist-
ing techniques compared between feed-forward
and introspective networks.

Methods OOD FPR Detection AUROC
Datasets (95% at TPR) Error
4 T

Feed-Forward/Introspective

Textures 58.74/19.66 18.04/7.49 88.56/97.79
MSP @5) SVHN 61.41/51.27 16.92/15.67 89.39/91.2
Places365 58.04/54.43 17.01/15.07 89.39/91.3
LSUN-C 27.95/21.5 9.42/10.29 96.07/95.73

Textures 52.3/9.31 22.17/6.12 84.91/91.9
ODIN #6) SVHN 66.81/48.52 23.51/15.86 83.52/91.07
Places365 42.21/51.87 16.23/15.71 91.06/90.95
LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87

\OLIVES ,

Cr

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

2022.
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