Robust Neural Networks

Part 3: Uncertainty at Inference

Objective

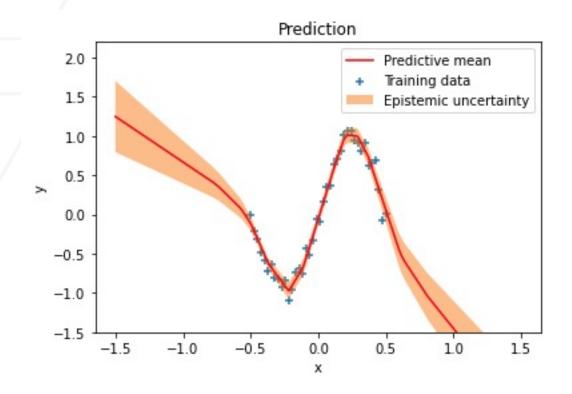
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
 - Uncertainty Definition
 - Uncertainty Quantification
 - Gradient-based Uncertainty
 - Adversarial and Corruption Detection
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

What is Uncertainty?

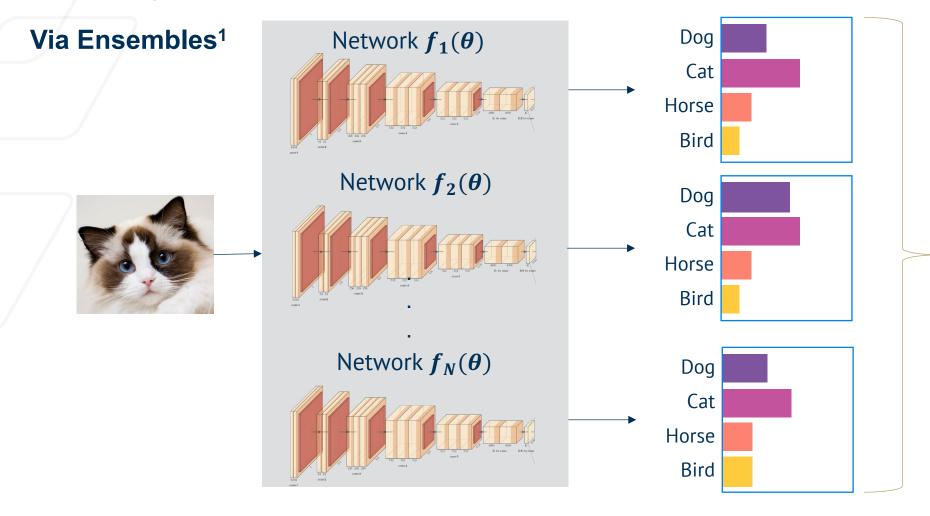
Uncertainty is a model knowing that it does not know



A simple example:

- When training data is available: Less uncertainty
- When training data is unavailable: More uncertainty

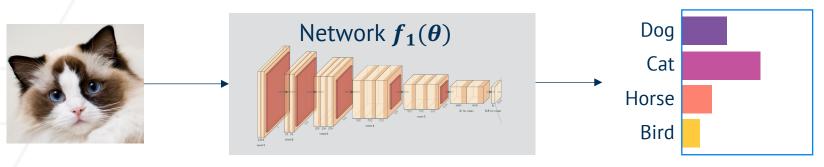
Uncertainty Quantification in Neural Networks



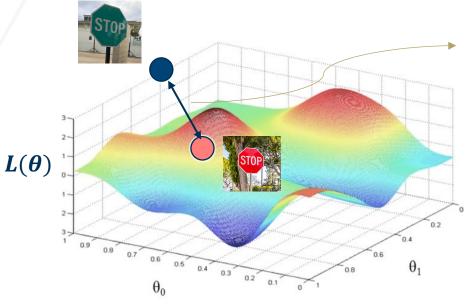
Variation within outputs Var(y) is the uncertainty. Commonly referred to as **Prediction Uncertainty.**

Uncertainty Quantification in Neural Networks

Via Single pass methods¹



Uncertainty quantification using a single network and a single pass



Calculate distance from some trained clusters

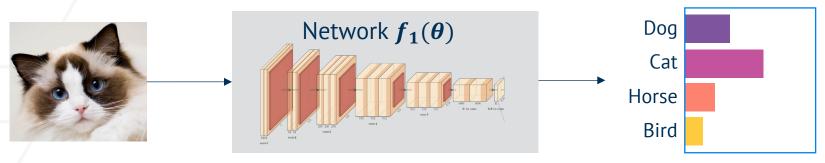
Does not require multiple networks!

60 of 172

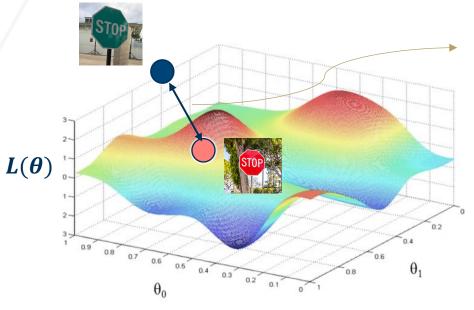
[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference



Uncertainty quantification using a single network and a single pass



Calculate distance from some trained clusters

Does not require multiple networks!

Challenge: Class and prediction cannot be trusted!

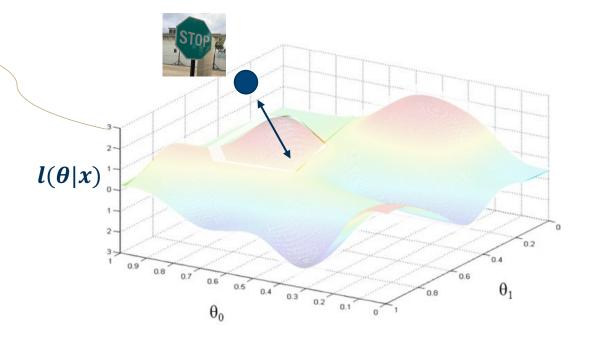
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection



Backpropagated Gradient Representations for Anomaly Detection

Gukyeong Kwon, PhD Amazon AWS

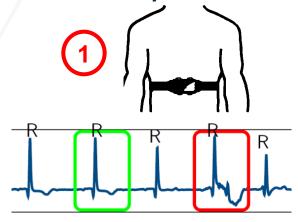
Mohit Prabhushankar, PhD Postdoc, Georgia Tech

Ghassan AlRegib, PhD Professor, Georgia Tech

Anomalies

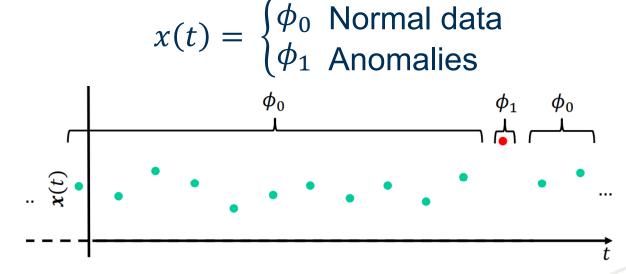
Finding Rare Events in Normal Patterns

'Anomalies are patterns in data that do not conform to a well defined notion of normal behavior' [1]



- Normal data are generated from a stationary process P_N
- Anomalies are generated from a different process $P_A \neq P_N$

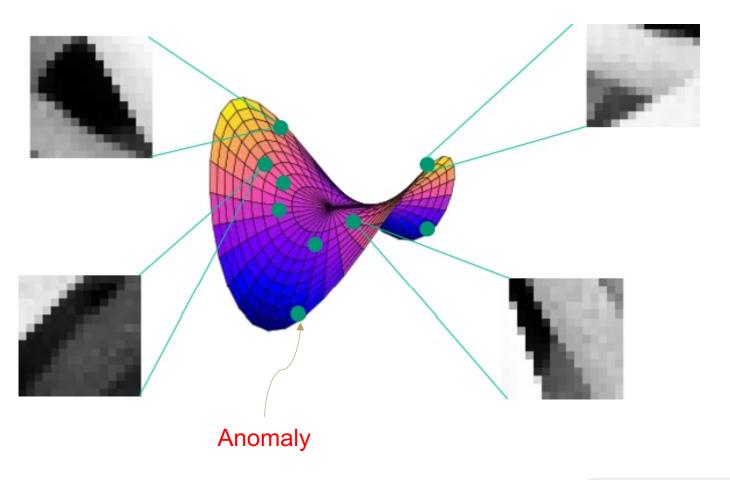
Goal: Detect ϕ_1



Steps for Anomaly Detection

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

- Step 1 ensures that patches from natural images live close to a low dimensional manifold
- Step 2 designs distance functions that detect *implausibility* based on constraints

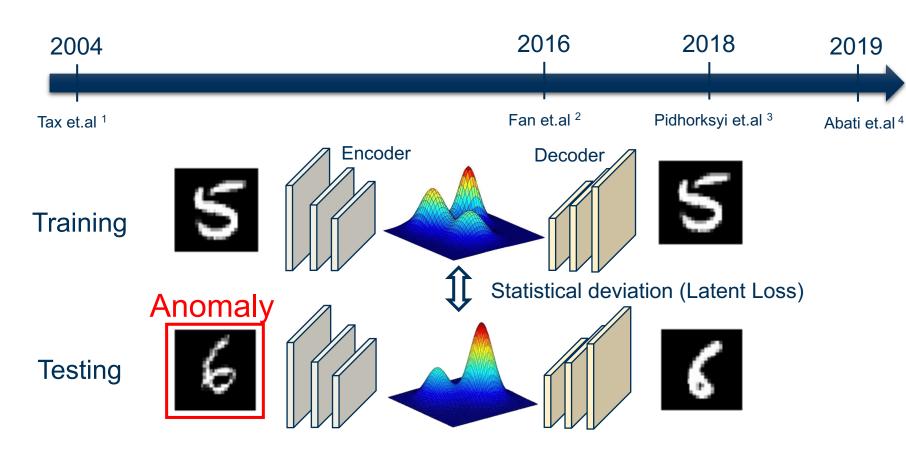


Constraining Manifolds

General Constraints

Constrained Representation

Activations are constrained using GANs, VAEs, etc.



- [1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.
- [2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2
- [3] S. Pidhorskyi, R. Almohsen, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
- [4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, "Latent space autoregression for novelty detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.

Constraining Manifolds

Gradient-based Constraints

Activation Constraints

Forward propagation Trained with '0' **Anomaly** Reconstruction Input Encoder Decoder Backpropagation

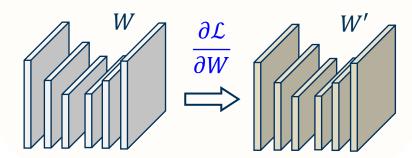
Activation-based representation (Data perspective)

e.g. Reconstruction error (\mathcal{L})

How much of the input does not correspond to the learned information?

Gradient Constraints

Gradient-based Representation (Model perspective)



How much **model update** is required by the input?

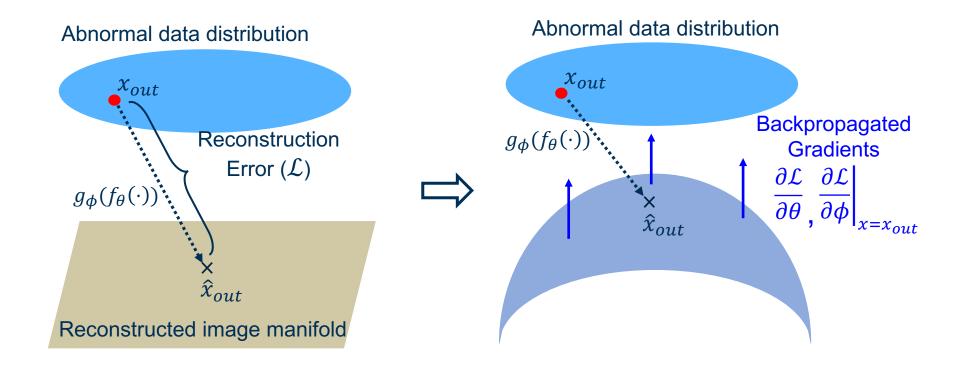
67 of 172

[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Constraining Manifolds

Advantages of Gradient-based Constraints

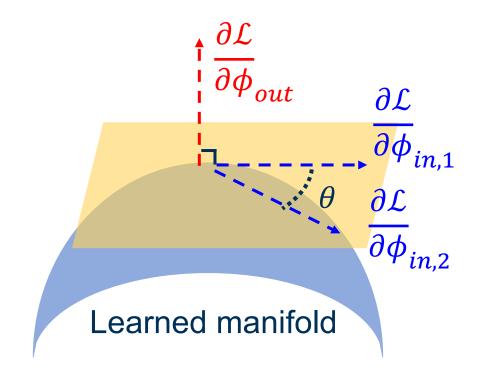
- Gradients provide directional information to characterize anomalies
- Gradients from different layers capture abnormality at different levels of data abstraction



GradCON: Gradient Constraint

Gradient-based Constraints

Constrain gradient-based representations during training to obtain clear separation between normal data and abnormal data



 ϕ : Weights \mathcal{L} : Reconstruction error

At k-th step of training,

Gradient loss

$$J = \mathcal{L} - \mathbb{E}_{i} \left[\cos \text{SIM} \left(\frac{\partial J}{\partial \phi_{i}}_{avg}^{k-1}, \frac{\partial \mathcal{L}}{\partial \phi_{i}}^{k} \right) \right]$$

Avg. training gradients until (k-1) th iter.

Gradients at k-th iter.

where
$$\frac{\partial J}{\partial \phi_i}_{avg}^{k-1} = \sum_{t=1}^{k-1} \frac{\partial J}{\partial \phi_i}^t$$

GradCON: Gradient Constraint

Activations vs Gradients

AUROC Results

Abnormal "class" detection (CIFAR-10)

e.g.



Normal Abnormal

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon			0.640								
+ Grad	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE	Recon								0.515			0.526
VAL	Latent	0.634	0.442	0.640	0.497	0.743	0.515	0.745	0.527	0.674	0.416	0.583
VAE	Recon	0.556	0.606	0.438	0.548	0.392	0.543	0.496	0.518	0.552	0.631	0.528
+ Grad	Latent	0.586	0.396	0.618		0.719		0.698	0.537	0.586	0.413	0.550
+ Grau	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

- (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- (CAE vs. VAE) Performance sacrifice from the latent constraint
- (VAE vs. VAE + Grad) Complementary features from the gradient constraint

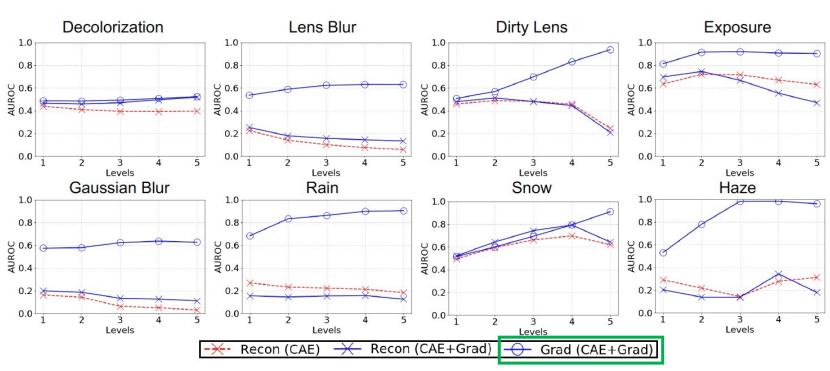
OLIVES

GradCON: Gradient Constraint

Aberrant Condition Detection

AUROC Results

Abnormal "condition" detection (CURE-TSR)



Recon: Reconstruction error, Grad: Gradient loss

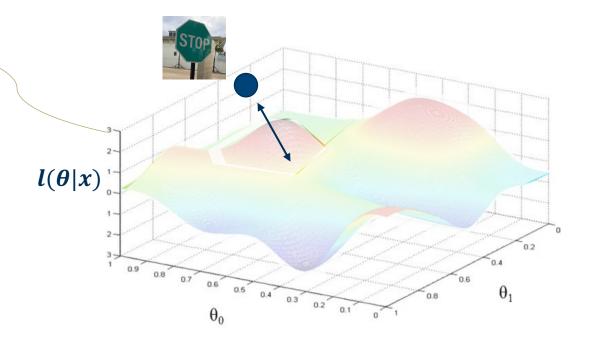
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection



Jinsol Lee, PhD Candidate

Mohit Prabhushankar, PhD Postdoc

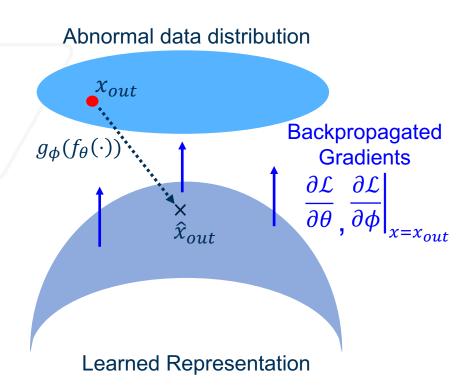
Ghassan AlRegib, PhD Professor

Uncertainty in Neural Networks

Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data



However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth

Uncertainty in Neural Networks

Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

P = Predicted class

 $Q_1 = \text{Contrast class 1}$

 $Q_2 = \text{Contrast class 2}$

Backpropagated Gradients $\frac{\partial \mathcal{L}(P,Q_1)}{\partial \theta}$ Backpropagated Gradients $\frac{\partial \mathcal{L}(P,Q_2)}{\partial \theta}$ Backpropagated Gradients $\frac{\partial \mathcal{L}(P,Q_2)}{\partial \theta}$

Access 11 (2023): 32716-32732.

However, what is \mathcal{L} ?

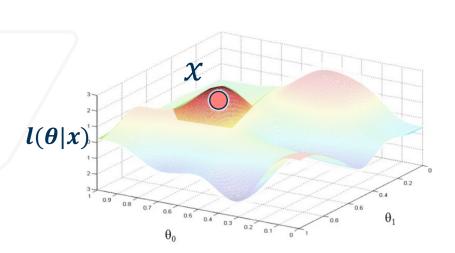
- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth
- We backpropagate all contrast classes $Q_1, Q_2 \dots Q_N$ by backpropagating N one-hot vectors
- Higher the distance, higher the uncertainty score

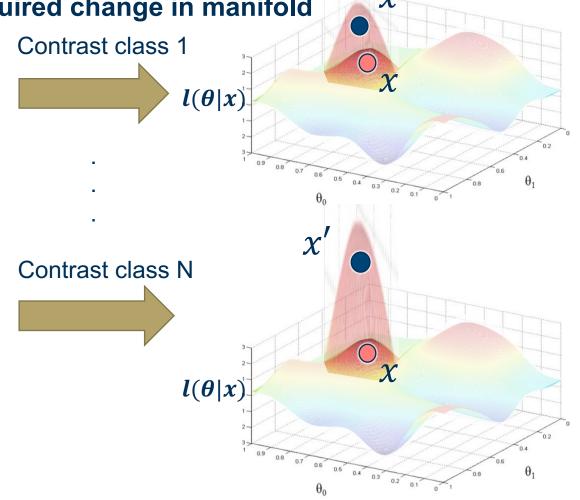
What is uncertainty?

Probing the Purview of Neural Networks via Gradient Analysis

SCAN ME

Gradients represent the local required change in manifold

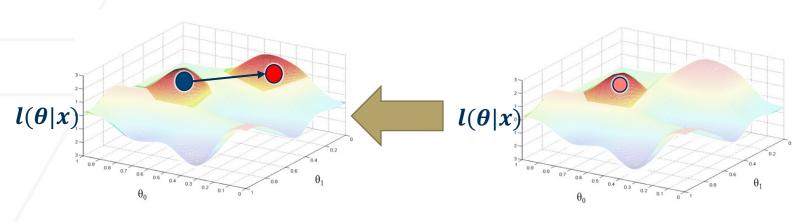




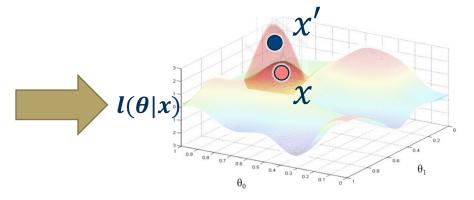
- Gradients
 provide the
 necessary
 change in
 manifold that
 would predict
 the novel data
 'correctly'.
- Correctly means contrastively (or incorrectly)!

76 of 172

Part 2: Explainability

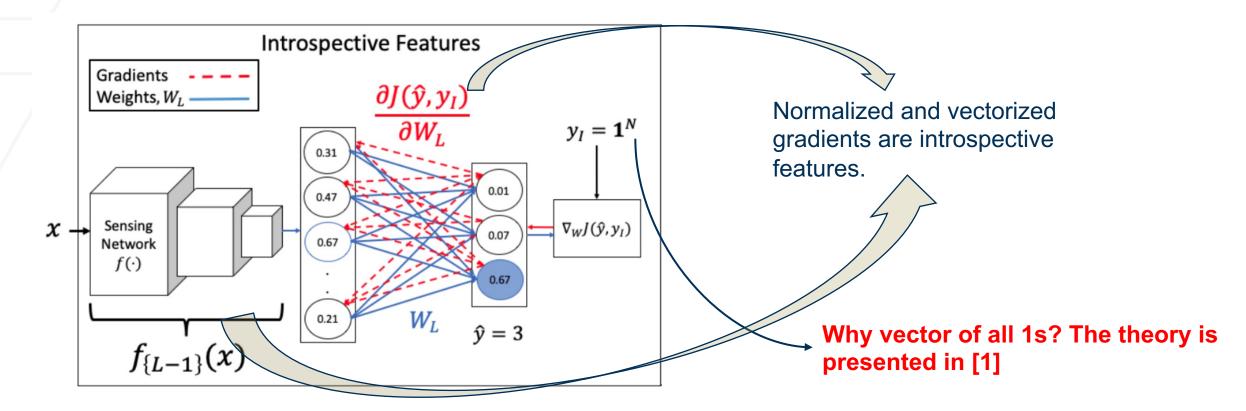


Part 3: Uncertainty

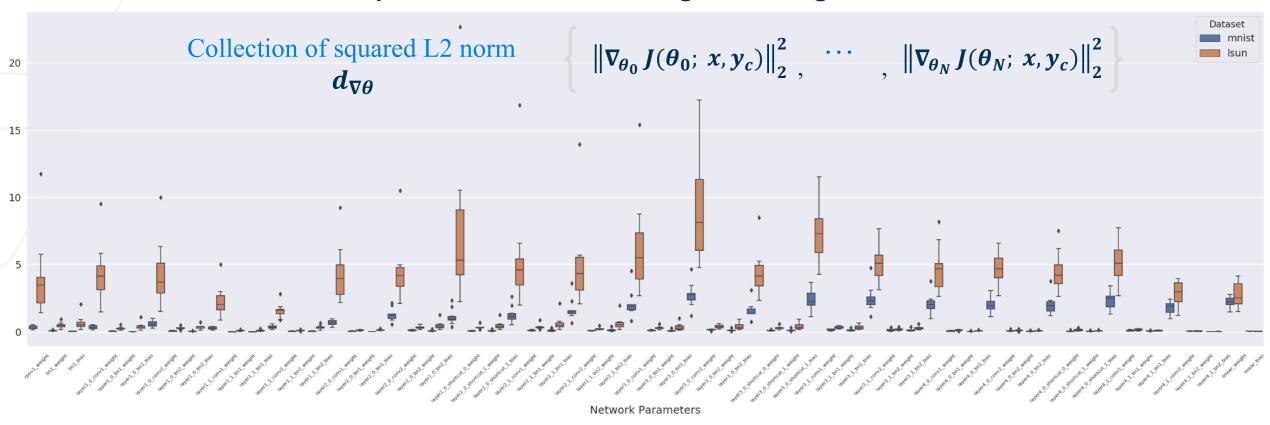


 In Part 2: Activations of learned manifold are weighted by gradients w.r.t. activations to extract information and provide explanations In Part 3: Statistics of gradients w.r.t. the weights (energy) will be directly used as features

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

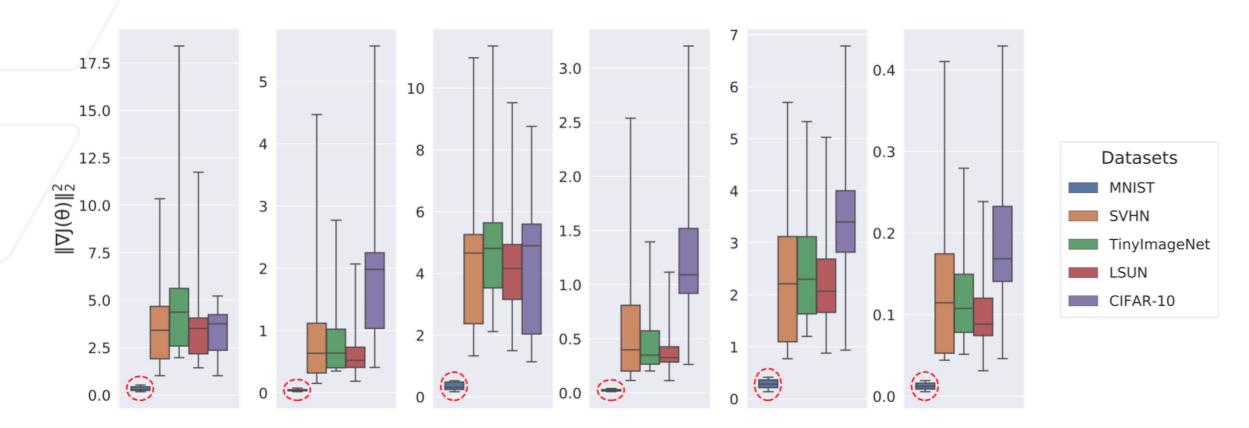


Step 2: Take L2 norm of all generated gradients



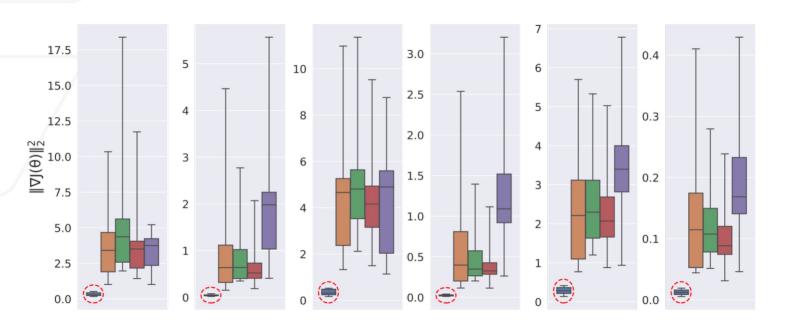
MNIST: In-distribution, SUN: Out-of-Distribution

Squared L2 distances for different parameter sets



MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect adversarial, noisy, and OOD data



Step 1: Train a deep network $f(\cdot)$ on some **training distribution**

Step 2: Introduce challenging (adversarial, noisy, OOD) data

Step 3: Derive gradient uncertainty on both trained and abellance data

both trained and challenge data

Step 4: Train a classifier $H(\cdot)$ to **detect**

challenging from trained data

Step 5: At test time, data is passed

through $f(\cdot)$ and then $H(\cdot)$ to obtain a

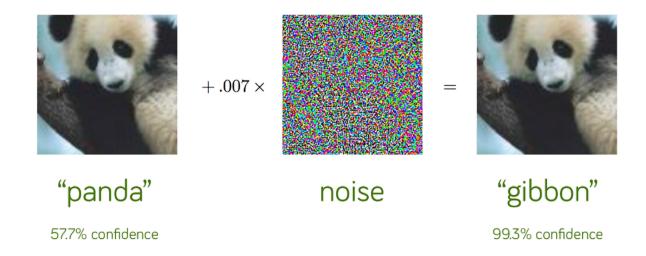
Reliability classification

Gradient-based Uncertainty

Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks via Gradient Analysis

Vulnerable DNNs in the real world



Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks via Gradient Analysis

MODEL	ATTACKS	BASELINE	LID	M(V)	M(P)	M(FE)	M(P+FE)	OURS
	FGSM	51.20	90.06	81.69	84.25	99.95	99.95	93.45
	BIM	49.94	99.21	87.09	89.20	100.0	100.0	96.19
DraNes	C&W	53.40	76.47	74.51	75.71	92.78	92.79	97.07
RESNET	PGD	50.03	67.48	56.27	57.57	65.23	75.98	95.82
	ITERLL	60.40	85.17	62.32	64.10	85.10	92.10	98.17
	SEMANTIC	52.29	86.25	64.18	65.79	83.95	84.38	90.15
	FGSM	52.76	98.23	86.88	87.24	99.98	99.97	96.83
	BIM	49.67	100.0	89.19	89.17	100.0	100.0	96.85
DENSENET	C&W	54.53	80.58	75.77	76.16	90.83	90.76	97.05
DENSENET	PGD	49.87	83.01	70.39	66.52	86.94	83.61	96.77
	ITERLL	55.43	83.16	70.17	66.61	83.20	77.84	98.53
	SEMANTIC	53.54	81.41	62.16	62.15	67.98	67.29	89.55

Same application as Anomaly Detection, except there is no need for an additional AE network!

CIFAR-10-C

CURE-TSR

Gradient-based Uncertainty

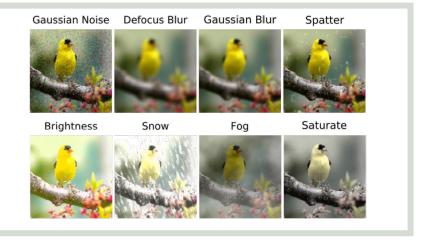
Uncertainty in Detecting Challenging Conditions

	1
SCAN ME	

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Method		Mah	alanobis [12] /	Ours	
Data	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0
7)	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0
CIFAR-10-C	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96
IFAR	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53
CURE-TSR	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70
	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90
0	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88
		100000000000000000000000000000000000000				

48.37 / **62.36** 60.55 / **81.30** 71.73 / **89.93** 87.29 / **95.42** 89.68 / **96.91**



Decolor

Gradient-based Uncertainty

Uncertainty in Detecting Challenging Conditions

Dataset	Method		Mah	alanobis [12] /	Ours	
Data	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0
D	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0
۲-10-	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96
CIFAR-10-C	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53
E-TSF	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70
CURE-TSR	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90
	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88
	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91

Probing the Purview of Neural Networks via Gradient Analysis

Gaussian Noise Defocus Blur Gaussian Blur Spatter Saturate Fog Brightness Snow

Exposure

Noise

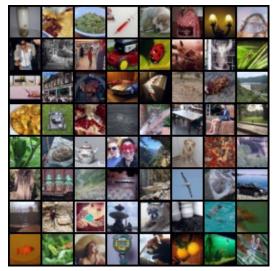
OLIVES

Probing the Purview of Neural Networks via Gradient Analysis

Train set ───

MNIST

Goal: To detect that these datasets are not part of training



SVHN

CIFAR10

TinyImageNet

LSUN

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Distribution	Detection Accuracy	AUROC	AUPR
In	Out	Baseline [5] / ODI	N [6] / Mahalanobis (V) [7] / Mahalano	obis (P+FE) [7] / Ours
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21

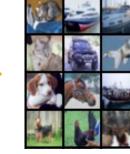
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Distribution	Detection Accuracy	AUROC	AUPR		
In Out		Baseline [5] / ODI	Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours			
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98		
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66		
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87		
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11		
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93		
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21		

Numbers

89 of 172



Objects, natural scenes

CIFAR10

TinylmageNet

LSUN

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR		
In Out		Baseline [5] / ODI	Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours			
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98		
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66		
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87		
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11		
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93		
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21		

More similar datasets (objects)

LSUN

SVHN

Case Study: Introspective Learning

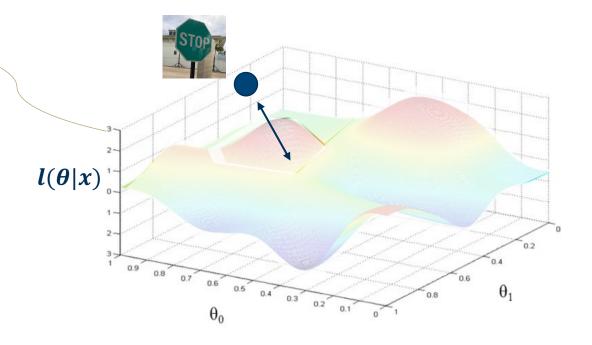
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection



Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Robustness in Neural Networks

Why Robustness?

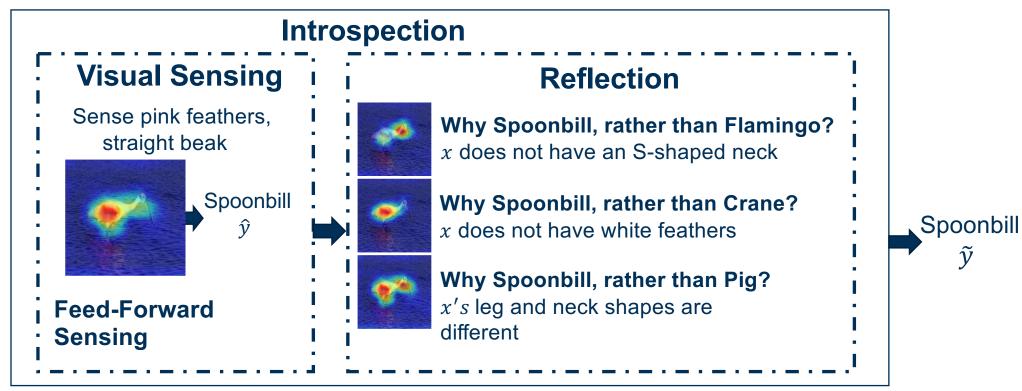
Introspective Learning: A Two-stage Approach for Inference in Neural Networks

How would humans resolve this challenge?

We Introspect!

- Why am I being shown this slide?
- Why images of muffins rather than pastries?
- What if the dog was a bullmastiff?

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



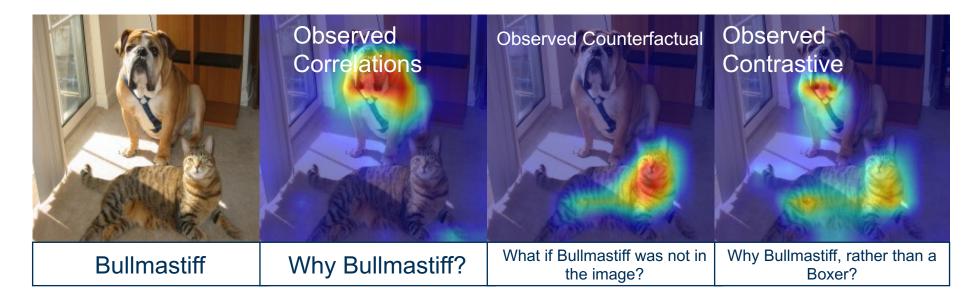
Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal: To simulate Introspection in Neural Networks

Definition: We define introspections as answers to logical and targeted questions.

What are the possible targeted questions?

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



What are the possible targeted questions?

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

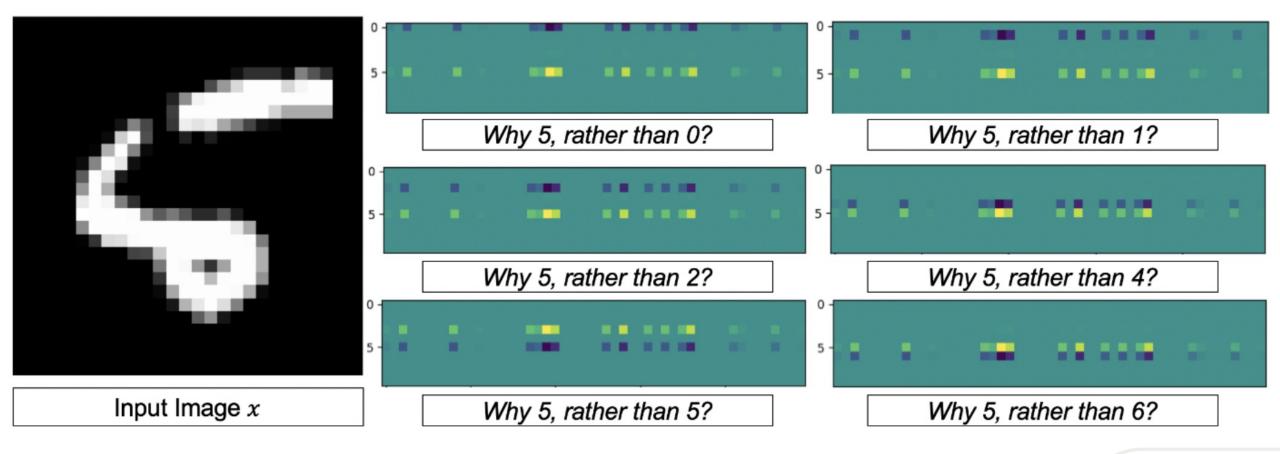
Goal: To simulate Introspection in Neural Networks

Contrastive Definition: Introspection answers questions of the form `Why P, rather than Q?' where P is a network prediction and Q is the introspective class.

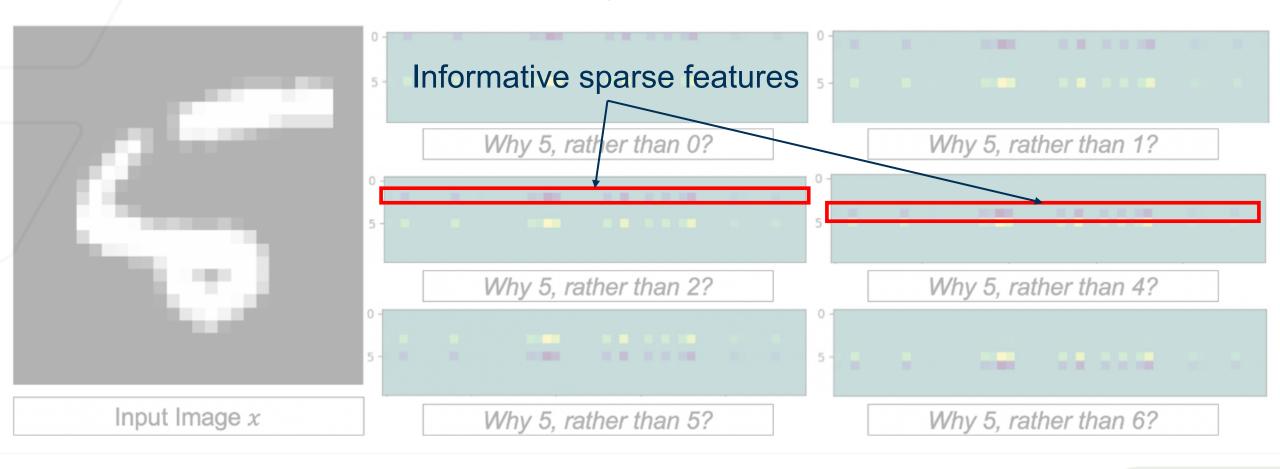
Technical Definition: Given a network f(x), a datum x, and the network's prediction $f(x) = \hat{y}$, introspection in $f(\cdot)$ is the measurement of change induced in the network parameters

when a label Q is introduced as the label for x..

For a well-trained network, the gradients are sparse and informative



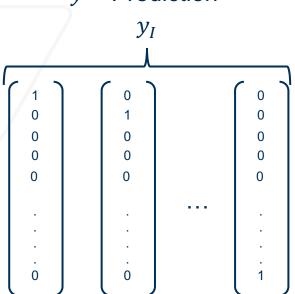
For a well-trained network, the gradients are sparse and informative

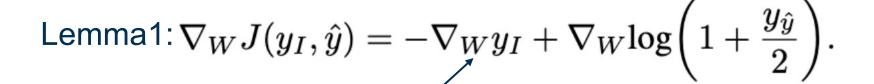


For a well-trained network, the gradients are robust

$$J = Loss function$$

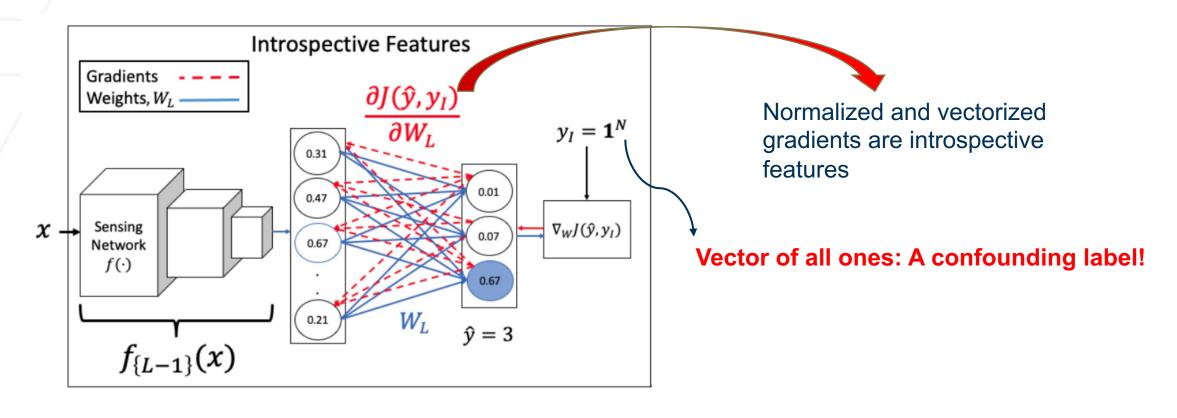
 $\hat{y} = Prediction$





Any change in class requires change in relationship between y_I and \hat{y}

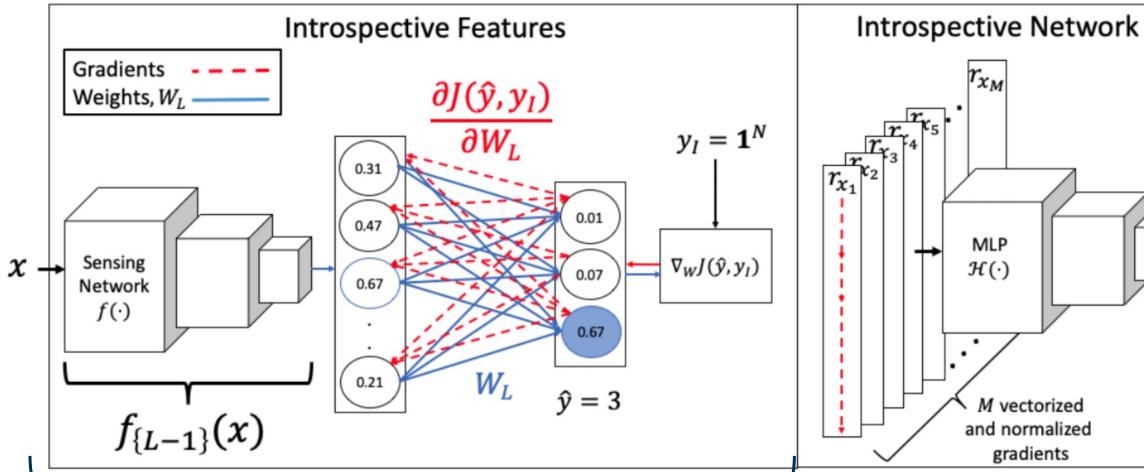
Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

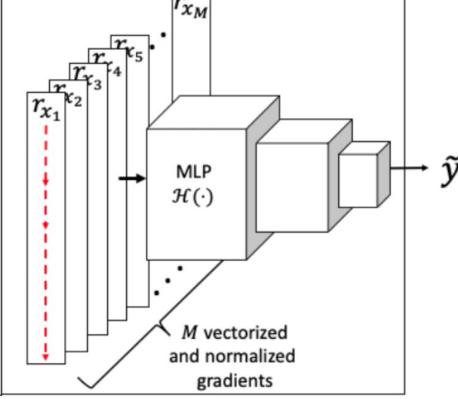


Introspection

Utilizing Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks





Introspective Features

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and calibrated to new testing data

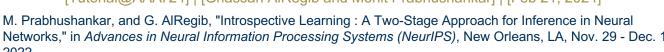
Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

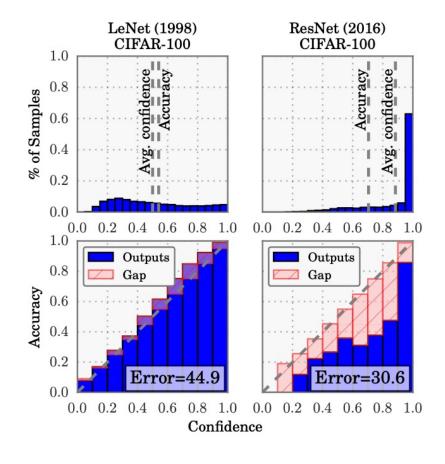
Exposure

Noise

2022.



Calibration occurs when there is mismatch between a network's confidence and its accuracy



- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high

104 of 172

Introspection in Neural Networks

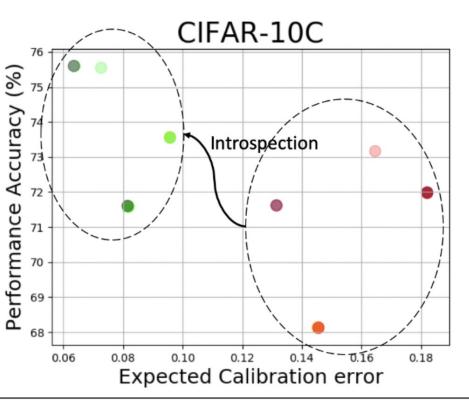
Generalization and Calibration results

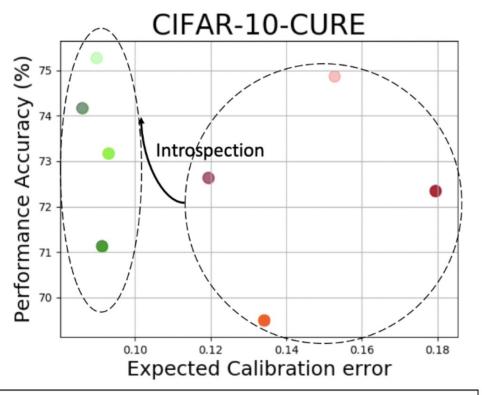
Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Ideal: Top-left corner

Y-Axis: Generalization

X-Axis: Calibration





Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing robustness techniques.

METHODS		ACCURACY
RESNET-18	FEED-FORWARD INTROSPECTIVE	67.89% 71.4 %
DENOISING	FEED-FORWARD INTROSPECTIVE	65.02% 68.86 %
Adversarial Train (27)	FEED-FORWARD INTROSPECTIVE	68.02% 70.86 %
SIMCLR (19)	FEED-FORWARD INTROSPECTIVE	70.28% 73.32 %
Augment Noise (28)	FEED-FORWARD INTROSPECTIVE	76.86% 77.98 %
Augmix (24)	FEED-FORWARD INTROSPECTIVE	89.85% 89.89 %

Introspection is a plug-in approach that works on all networks and on any downstream task!

Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active Learning, and Image Quality Assessment!

Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image Quality Estimators. Top 2 results in each row are highlighted.

	PSNR	IW	SR	FSIMc	Per	CSV	SUM	Feed-Forward	Introspective
Database	HA	SSIM	SIM		SIM		MER	UNIQUE	UNIQUE
	Outlier Ratio (OR, ↓)								
MULTI	0.013	0.013	0.000	0.016	0.004	0.000	0.000	0.000	0.000
TID13	0.615	0.701	0.632	0.728	0.655	0.687	0.620	0.640	0.620
				Root M	ean Squ	are Erro	or (RMS	E , ↓)	
MULTI	11.320	10.049	8.686	10.794	9.898	9.895	8.212	9.258	7.943
TID13	0.652	0.688	0.619	0.687	0.643	0.647	0.630	0.615	0.596
	Pearson Linear Correlation Coefficient (PLCC, ↑)								
MULTI	0.801	0.847	0.888	0.821	0.852	0.852	0.901	0.872	0.908
MULII	-1	-1	0	-1	-1	-1	-1	-1	
TID13	0.851	0.832	0.866	0.832	0.855	0.853	0.861	0.869	0.877
111013	-1	-1	0	-1	-1	-1	0	0	
			Spear	man's Ra	nk Corr	elation (Coefficie	nt (SRCC, †)	
MULTI	0.715	0.884	0.867	0.867	0.818	0.849	0.884	0.867	0.887
MULII	-1	0	0	0	-1	-1	0	0	
TID13	0.847	0.778	0.807	0.851	0.854	0.846	0.856	0.860	0.865
111013	-1	-1	-1	-1	0	-1	0	0	
	Kendall's Rank Correlation Coefficient (KRCC)								
MULTI	0.532	0.702	0.678	0.677	0.624	0.655	0.698	0.679	0.702
MULII	-1	0	0	0	-1	0	0	0	
TID13	0.666	0.598	0.641	0.667	0.678	0.654	0.667	0.667	0.677
11013	0	-1	-1	0	0	0	0	0	

Table 2: Recognition accuracy of Active Learning strategies.

Methods	Architecture	Original Testset		Gaussian Noise	
		R-18	R-34	R-18	R-34
Entropy (34)	Feed-Forward	0.365	0.358	0.244	0.249
	Introspective	0.365	0.359	0.258	0.255
Least (34)	Feed-Forward	0.371	0.359	0.252	0.25
	Introspective	0.373	0.362	0.264	0.26
Margin (32)	Feed-Forward	0.38	0.369	0.251	0.253
	Introspective	0.381	0.373	0.265	0.263
BALD (34)	Feed-Forward	0.393	0.368	0.26	0.253
	Introspective	0.396	0.375	0.273	0.263
BADGE (33)	Feed-Forward	0.388	0.37	0.25	0.247
	Introspective	0.39	0.37	0.265	0. 260

Table 3: Out-of-distribution Detection of existing techniques compared between feed-forward and introspective networks.

Methods	OOD Datasets	FPR (95% at TPR)	Detection Error	AUROC		
	Datasets	()3 % at 11 k) ↓	↓ ↓	1		
		Feed-Forward/Introspective				
	Textures	58.74/19.66	18.04/ 7.49	88.56/ 97.7 9		
MSP (33)	SVHN	61.41/ 51.27	16.92/ 15.67	89.39/91.2		
	Places365	58.04/ 54.43	17.01/ 15.07	89.39/91.3		
	LSUN-C	27.95 /27.5	9.42 /10.29	96.07 /95.73		
	Textures	52.3/ 9.31	22.17/6.12	84.91/ 91. 9		
ODIN (35)	SVHN	66.81/ 48.52	23.51/15.86	83.52/91.07		
	Places365	42.21 /51.87	16.23/15.71	91.06/90.95		
	LSUN-C	6.59 /23.66	5.54/10.2	98.74/ 95.87		

