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Deep Learning
Expectation vs Reality

Expectation vs Reality of Deep Learning

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Expectation vs Reality

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks 
often go awry”

- Engineers, probably

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Requirements and Challenges

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." IEEE 

Transactions on Intelligent Transportation Systems (2017). 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

Novel samples = Most Informative

• The first instance of training must occur with 
less informative samples

• Ex: For autonomous vehicles, less informative 
means

• Highway scenarios

• Parking

• No accidents

• No aberrant events

Benkert, R., Prabushankar, M., AlRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: 

A Second Order Approach to Active Learning. IEEE Transactions on Artificial Intelligence.

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

• The model performs well on the new 
scenarios, while forgetting the old scenarios

• A number of techniques exist to overcome this 
trend

• However, they affect the overall performance 
in large-scale settings

• It is not always clear if and when to 
incorporate novel scenarios in training

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1 

(2021): 2549.

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Training
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Novel data may not 

be available during 

training

Even if 

available, 

novel data 

does not 

easily fit into 

either the 

earlier or 

later stages 

of training

A = Deep Neural Networks

B = Novel data

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

Model Train At Inference

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



Robust Neural Networks

Part I: Inference in Neural Networks
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Neural Network Basics

• Robustness in Deep Learning

• Information at Inference

• Challenges at Inference

• Gradients at Inference

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Overview

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Neurons

Artificial neurons consist of:

• A single output

• Multiple inputs

• Input weights

• A bias input

• An activation function

The underlying computation unit is the Neuron

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

Typically, a neuron is part of a network organized in layers:

• An input layer (Layer 0)

• An output layer (Layer 𝐾)

• Zero or more hidden (middle) layers (Layers 1…𝐾 − 1)

Cat

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Deep Deep Deep Deep … Learning
Recent Advancements

Transformers, Large Language Models and Foundation Models

Cat

Primary reasons for advancements:

1. Expanded interests from the research community

2. Computational resources availability

3. Big data availability

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Inference
Classification

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

Given : One network, One image. Required: Class Prediction

ො𝑦 = 𝑓 𝑥
𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ො𝑦
𝑝( ො𝑦) = 𝑇(𝑓 𝑥 )

ො𝑦 = Logits 

𝑦 = Predicted Class

𝑝( ො𝑦) = Probabilities

𝑓 ⋅ = Trained Network

𝜒 = Training data

89%

9%

If 𝑥 ∈ 𝜒, the data is not 

novel

𝑥

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Inference
Robust Classification in Deep Networks

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

Deep learning robustness: Correctly predict class even when data is novel

ො𝑦 = 𝑓 𝑥′ + 𝜖
𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ො𝑦

𝑝( ො𝑦) = 𝑇(𝑓 𝑥′ + 𝜖 )

ො𝑦 = Logits 

𝑦 = Predicted Class

𝑝( ො𝑦) = Probabilities

𝑓 ⋅ = Trained Network

𝜒 = Training data

𝜖 = Noise

𝑥′

53%

39%

If 𝑥 ∈ 𝜒, the data is 

novel

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Deep Learning at Inference
Robust Classification in Deep Networks

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

Deep learning robustness: Correctly predict class even when data is novel

𝑥′

53%

39%

To achieve robustness at Inference, we need the following:

• Information provided by the novel data as a function of training distribution

• Methodology to extract information from novel data

• Techniques that utilize the information from novel data 

Why is this Challenging?

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

𝑳(𝜽)

Toy visualizations generated using functions

(and thousands of generated data points)

Real data visualizations generated using 

dimensionality reduction algorithms (Isomap)

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Challenges at Inference
Inference

However, at inference only the test data point is available and the underlying structure of the 
manifold is unknown

𝑳(𝜽) 𝑳(𝜽)

At TrainingAt Inference

Trained network knowledge is 

not easily accessible

At training, we have access to all 

training data. 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Information at Inference
Fisher Information

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

Likelihood function

Colloquially, Fisher Information is the “surprise” in a system that observes an event

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-

fisher-information-2720c40867d8
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Information at Inference
Information at Inference

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

Likelihood function

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

At inference, given a single image from a single 

class, we can extract information about other classes

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Gradients infer information about the statistics of underlying manifolds

Information at Inference
Gradients as Fisher Information

𝒍(𝜽|𝒙)

Likelihood function instead of loss manifold

Using variance decomposition, 𝐼 𝜃 reduces to: 

𝐼 𝜃 = 𝐸[𝑈𝜃𝑈𝜃
𝑇] where

𝐸[⋅] = Expectation
𝑈𝜃 = 𝛻𝜃𝑙 𝜃 𝑥 , Gradients w.r.t. the sample

From before, 𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

Kwon, Gukyeong, et al. "Backpropagated gradient representations for anomaly detection." Computer 

Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, 

Part XXI 16. Springer International Publishing, 2020.

Hence, gradients draw information from the 

underlying distribution as learned by the 

network weights! 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Gradients infer information about the statistics of underlying manifolds

Information at Inference
Case Study: Gradients as Fisher Information in Explainability

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-

fisher-information-2720c40867d8

Network 𝒇(𝜽) Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

𝑥

In this case, the image and its 

prediction extracts nose, mouth 

and jowl features. 
Local information (specific to 𝑥) is sufficient!

𝑥

Feature attribution via GradCAM

Hence, gradients draw information from the 

underlying distribution as learned by the 

network weights! 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Gradients at Inference
Local Information 

𝑳(𝜽)

Gradients provide local information around the vicinity of 𝒙, even if 𝒙 is novel. This is 
because 𝒙 projects on the learned knowledge

𝑥
𝑳(𝜽)

Ideal

𝜶 𝛁𝜽 𝑳 𝜽 provides local information up to a small 
distance 𝜶 away from 𝒙

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function 𝑳(𝜽)

𝑳(𝜽)

𝑥

Negative of the gradient provides the descent 
direction towards the local minima, as measured 
by 𝐿(𝜃)

Path 1?

Path 2?

Path 3?

Which direction should we 

optimize towards (knowing 

only the local information)?

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Gradients at Inference
To Characterize the Novel Data at Inference

𝑳(𝜽)

At Inference

Representation 

Traversal using 

Interventions

𝑳(𝜽)

Trained network knowledge is 

not easily accessible

𝑳(𝜽)
𝑥

𝑥′

Counterfactual 

and Contrastive 

Representations 

using Gradients

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Robust Neural Networks 

Part 2: Explainability at Inference



33 of 151

Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Visual Explanations

• Gradient-based Explanations

• GradCAM

• CounterfactualCAM

• ContrastCAM

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural Networks: 
Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD

Postdoc
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

• Explanations are defined as a set of rationales used to understand the reasons behind a 
decision  

• If the decision is based on visual characteristics within the data, the decision-making 
reasons are visual explanations

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Visual Explanations

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Role of Explanations – context and relevance 

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output; They 
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

Input

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

However, localization remains an issue

Explanations
Gradient-based Explanations

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN 

to assign importance values to each activation for a particular decision of interest.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.

image

Grad-CAM (up-sampled to original image dimension)

Gradient and Activation-based Explanations
GradCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.

Grad-CAM generalizes to any task:

• Image classification

• Image captioning

• Visual question answering

• etc.

Rectified Conv 

Feature Maps

+

Backprop 

till conv

Grad-CAM

Gradient and Activation-based Explanations
GradCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant 
and contextual explanations

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Gradient and Activation-based Explanations
Explanatory Paradigms

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, global average pool the negative of gradients to obtain 𝛼𝑐 for each kernel 𝑘

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.

𝜕𝑦𝑐

𝜕𝐴𝑘

𝛼𝑘
𝑐

What if Bullmastiff was not in 

the image?

Negating the gradients effectively removes these regions from analysis

Gradient and Activation-based Explanations
CounterfactualCAM: What if this region were absent in the image?

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to 
last conv layer

Backpropagating the loss highlights the differences between classes P and Q. 

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Contrast-CAM 

𝜕𝐽(𝑃,𝑄)

𝜕𝐴𝑘

𝛼𝑘
𝑐

Why Bullmastiff, rather than a 

Boxer?

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Only traffic sign with a straight

bottom-left edge – enough to 

say `Not STOP Sign’

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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A Callback…
Information at Inference

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

Likelihood function

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

At inference, given a single image from a single 

class, we can extract information about other classes
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Information at Inference
Case Study: Explainability

𝓣 is the set of all features learned by a trained network

Beak

Neck

Legs

Feathers

Water

Grass

Teeth

.

.

Features 𝒯

Network 𝒇(𝜽) Why Spoonbill?

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



55 of 151

Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak

Neck

Legs

Feathers

Water

Grass

Teeth

.

.

Features 𝒯

Network 𝒇(𝜽) Why Spoonbill?Why Spoonbill, rather 

than Flamingo?

All the requisite Information is stored within 𝒇(𝜽)
Goal: To extract and quantify this information at inference
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Robust Neural Networks 

Part 3: Uncertainty at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Uncertainty Definition

• Uncertainty Quantification

• Gradient-based Uncertainty

• Adversarial and Corruption Detection

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions
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Uncertainty is a model knowing that it does not know

A simple example: 

• When training data is available: Less uncertainty

• When training data is unavailable: More uncertainty

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Uncertainty
What is Uncertainty?
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive 

uncertainty estimation using deep ensembles." Advances in neural information processing systems 30 

(2017). 

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽)

Network 𝒇𝟐(𝜽)

Network 𝒇𝑵(𝜽)

.

.

.

Dog

Cat

Horse

Bird

Dog

Cat

Horse

Bird

Via Ensembles1

Variation within outputs 

𝑉𝑎𝑟(𝑦) is the 

uncertainty. Commonly 

referred to as 

Prediction Uncertainty.

Uncertainty
Uncertainty Quantification in Neural Networks
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[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a 

single deep deterministic neural network. In International conference on machine learning (pp. 9690-

9700). PMLR.

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽)

Via Single pass methods1

Uncertainty 

quantification using a 

single network and a 

single pass

𝑳(𝜽)

Calculate distance from some trained clusters

Does not require multiple networks!

Uncertainty
Uncertainty Quantification in Neural Networks
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Our Goal: Use gradients to characterize the novel data at Inference

Uncertainty
Gradients as Single pass Features

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽) Uncertainty 

quantification using a 

single network and a 

single pass

𝑳(𝜽)

Calculate distance from some trained clusters

Does not require multiple networks!

Challenge: Class and prediction cannot be trusted!
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Our Goal: Use gradients to characterize the novel data at Inference, without global 
information

Distance from unknown cluster 

𝒍(𝜽|𝒙)
Two techniques:

1. Gradient constraints during 

Training for Anomaly Detection

2. Backpropagating Confounding labels 

for Out-of-Distribution Detection

Uncertainty
Gradients as Single pass Features
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Backpropagated Gradient Representations for 
Anomaly Detection

Mohit Prabhushankar, PhD

Postdoc, Georgia Tech 

Ghassan AlRegib, PhD

Professor, Georgia Tech

Gukyeong Kwon, PhD

Amazon AWS
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Statistical Definition:

• Normal data are generated from a stationary process 𝑃𝑁

• Anomalies are generated from a different process 𝑃𝐴 ≠ 𝑃𝑁

Goal: Detect 𝜙1

Anomalies
Finding Rare Events in Normal Patterns

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ [1]

[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, 

Article 15 (July 2009), 58 pages

1

2

Backpropagated Gradient 
Representations for Anomaly Detection

𝑥 𝑡 = ቊ
𝜙0

𝜙1

Normal data

Anomalies
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Anomalies
Steps for Anomaly Detection

Backpropagated Gradient 
Representations for Anomaly Detection

• Step 1 ensures that patches from natural 
images live close to a low dimensional 
manifold

• Step 2 designs distance functions that 
detect implausibility based on 
constraints

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

Anomaly
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Constraining Manifolds
General Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

Constrained

Representation

Testing

Training

Encoder Decoder

Statistical deviation (Latent Loss)  
Anomaly

2004

Tax et.al 1

2019

Abati et.al 4

2018

Pidhorksyi et.al 3

2016

Fan et.al 2

Activations are 

constrained 

using GANs, 

VAEs, etc.

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint 

arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.
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Constraining Manifolds
Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

Trained with ‘0’

Encoder Decoder

Input

Forward propagation

Backpropagation

Gradient-based Representation

(Model perspective)

𝑊 𝑊′𝜕ℒ

𝜕𝑊

Activation-based representation

(Data perspective)

Reconstruction error (ℒ)

−

Reconstruction

e.g. 

How much of the input 

does not correspond to 

the learned information?

How much model update is 

required by the input?

Activation Constraints

Gradient Constraints

Anomaly

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020
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Constraining Manifolds
Advantages of Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Reconstructed image manifold

𝑔𝜙(𝑓𝜃 ⋅ )

Abnormal data distribution

ො𝑥𝑜𝑢𝑡

𝑥𝑜𝑢𝑡

Reconstruction 

Error (ℒ)

Abnormal data distribution

𝑥𝑜𝑢𝑡

𝜕ℒ

𝜕𝜃
ቤ

𝜕ℒ

𝜕𝜙
𝑥=𝑥𝑜𝑢𝑡

,

Backpropagated

Gradients

ො𝑥𝑜𝑢𝑡

𝑔𝜙(𝑓𝜃 ⋅ )

• Gradients provide directional information to characterize anomalies

• Gradients from different layers capture abnormality at different levels of data abstraction
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GradCON: Gradient Constraint
Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Learned manifold

𝜕ℒ

𝜕𝜙𝑖𝑛,1

𝜕ℒ

𝜕𝜙𝑜𝑢𝑡

𝜃

𝜙: Weights ℒ: Reconstruction error

𝐽 = ℒ − 𝔼𝑖 cosSIM
𝜕𝐽

𝜕𝜙𝑖𝑎𝑣𝑔

𝑘−1

,
𝜕ℒ

𝜕𝜙𝑖

𝑘

Gradient loss

𝜕𝐽

𝜕𝜙𝑖𝑎𝑣𝑔

𝑘−1

= ෍

𝑡=1

𝑘−1
𝜕𝐽

𝜕𝜙𝑖

𝑡

where

Avg. training 

gradients until (k-1) th iter.
Gradients at

k-th iter.

At k-th step of training,

𝜕ℒ

𝜕𝜙𝑖𝑛,2

Constrain gradient-based representations during training to obtain clear separation between 

normal data and abnormal data
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GradCON: Gradient Constraint
Activations vs Gradients

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Abnormal “class” 

detection (CIFAR-10)

Normal Abnormal

• (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

• (CAE vs. VAE) Performance sacrifice from the latent constraint

• (VAE vs. VAE + Grad) Complementary features from the gradient constraint

e.g.

AUROC Results

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



71 of 151

GradCON: Gradient Constraint
Aberrant Condition Detection

Backpropagated Gradient 
Representations for Anomaly Detection

Abnormal “condition”

detection (CURE-TSR)

Normal Abnormal

AUROC Results

Recon: Reconstruction error, Grad: Gradient loss

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



72 of 151

Our Goal: Use gradients to characterize the novel data at Inference, without global 
information

Distance from unknown cluster 

𝒍(𝜽|𝒙)
Two techniques:

1. Gradient constraints during Training 

for Anomaly Detection

2. Backpropagating Confounding 

labels for Out-of-Distribution 

Detection

Uncertainty
Gradients as Single pass Features
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Probing the Purview of Neural Networks via 
Gradient Analysis

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor

Jinsol Lee,

PhD Candidate
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Principle: Gradients provide a distance measure between the learned representations space 
and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

However, what is ℒ?

• In anomaly detection, the loss was between the input and 

its reconstruction

• In prediction tasks, there is neither the reconstructed input 

nor ground truth

Abnormal data distribution

𝑥𝑜𝑢𝑡

𝜕ℒ

𝜕𝜃
ቤ

𝜕ℒ

𝜕𝜙
𝑥=𝑥𝑜𝑢𝑡

,

Backpropagated

Gradients

ො𝑥𝑜𝑢𝑡

𝑔𝜙(𝑓𝜃 ⋅ )

Learned Representation

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Uncertainty in Neural Networks
Principle

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



75 of 151

Principle: Gradients provide a distance measure between the learned representations space 
and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

𝑄1 𝜕ℒ(𝑃, 𝑄1)

𝜕𝜃

Backpropagated

Gradients

𝑃

Learned Representation

However, what is ℒ?

• In anomaly detection, the loss was between the 

input and its reconstruction

• In prediction tasks, there is neither the 

reconstructed input nor ground truth

• We backpropagate all contrast classes -

𝑸𝟏, 𝑸𝟐 …𝑸𝑵 by backpropagating N one-hot 

vectors 

• Higher the distance, higher the uncertainty 

score

𝑃 = Predicted class

𝑄1 = Contrast class 1

𝑄2 = Contrast class 2

𝑄2

𝜕ℒ(𝑃, 𝑄2)

𝜕𝜃

Backpropagated

Gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Uncertainty in Neural Networks
Principle
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Toy Manifold Example
What is uncertainty?

𝒍(𝜽|𝒙)

𝑥

𝒍(𝜽|𝒙)
𝑥

𝑥′

Similar to introspective learning!

Contrast class 1

𝒍(𝜽|𝒙)
𝑥

𝑥′
Contrast class N

.

.

.

Gradients represent the local required change in manifold

• Gradients 

provide the 

necessary 

change in 

manifold that 

would predict 

the novel data 

‘correctly’.

• Correctly means 

contrastively (or 

incorrectly)!
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Probing the Purview of Neural Networks 
via Gradient Analysis

Toy Manifold Example
How is this different from Explainability?

𝒍(𝜽|𝒙) 𝒍(𝜽|𝒙) 𝑥

𝑥′

Part 3: Explainability

𝒍(𝜽|𝒙)

Part 4: Uncertainty

• In Part 3: Activations of learned 

manifold are weighted by gradients 

w.r.t. activations to extract 

information and provide 

explanations

• In Part 4: Statistics of gradients 

w.r.t. the weights (energy) will be 

directly used as features
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Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Normalized and vectorized

gradients are introspective 

features. 

Why vector of all 1s? The theory is 

presented in [1]

Probing the Purview of Neural Networks 
via Gradient Analysis

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Uncertainty in Neural Networks
Deriving Gradient Features
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Probing the Purview of Neural Networks 
via Gradient Analysis

Step 2: Take L2 norm of all generated gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

𝛁𝜽𝟎 𝑱(𝜽𝟎; 𝒙, 𝒚𝒄) 𝟐

𝟐
𝛁𝜽𝑵 𝑱(𝜽𝑵; 𝒙, 𝒚𝒄) 𝟐

𝟐

,             ,
Collection of squared L2 norm

𝒅𝛁𝜽

. . .

MNIST: In-distribution, SUN: Out-of-Distribution

Uncertainty in Neural Networks
Utilizing Gradient Features
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Probing the Purview of Neural Networks 
via Gradient Analysis

Squared L2 distances for different parameter sets

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets 

Gradient-based Uncertainty
Uncertainty in OOD Setting
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Probing the Purview of Neural Networks 
via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect 
adversarial, noisy, and OOD data

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Experimental Setup

Step 1: Train a deep network 𝑓(⋅) on 

some training distribution 

Step 2: Introduce challenging 

(adversarial, noisy, OOD) data 

Step 3: Derive gradient uncertainty on 

both trained and challenge data

Step 4: Train a classifier 𝐻(⋅) to detect

challenging from trained data

Step 5: At test time, data is passed 

through 𝑓(⋅) and then 𝐻(⋅) to obtain a 

Reliability classification
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Vulnerable DNNs in the real world

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

Gradient-based Uncertainty
Uncertainty in Adversarial Setting
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Adversarial Setting
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

CIFAR-10-C

Same application as Anomaly Detection, except there is no need for an additional AE 
network!

CURE-TSR

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

MNIST

CIFAR10 TinyImageNetSVHN LSUN

Train set

Goal: To detect that these datasets are not part of training

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis
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Out-of-Distribution Detection

CIFAR10 TinyImageNetSVHN LSUN

Numbers Objects, natural scenes

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis
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Out-of-Distribution Detection

CIFAR10TinyImageNet SVHNLSUN

More similar 
datasets
(objects)

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis
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Our Goal: Use gradients to characterize the novel data at Inference, without global 
information

Distance from unknown cluster 

𝒍(𝜽|𝒙)
Two techniques:

1. Gradient constraints during Training 

for Anomaly Detection

2. Backpropagating Confounding 

labels for Out-of-Distribution 

Detection

Case Study: Introspective Learning
Gradients as Single pass Features
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Introspective Learning: A Two-Stage 
Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

How would humans resolve this challenge? 

We Introspect!

• Why am I being shown this slide?

• Why images of muffins rather than 

pastries?

• What if the dog was a bull mastiff?

Robustness in Neural Networks
Why Robustness?

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

Spoonbill

ො𝑦

Visual Sensing

Feed-Forward 

Sensing

Sense pink feathers, 

straight beak
Why Spoonbill, rather than Flamingo?

𝑥 does not have an S-shaped neck

Why Spoonbill, rather than Crane?

𝑥 does not have white feathers

Why Spoonbill, rather than Pig?

𝑥′𝑠 leg and neck shapes are 

different

Reflection

Spoonbill

෤𝑦

Introspection

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Introspection
What is Introspection?
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted 

questions.   

What are the possible targeted questions?

Introspection
Introspection in Neural Networks
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

What are the possible targeted questions?

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

Introspection
Introspection in Neural Networks

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



97 of 151

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Technical Definition : Given a network  𝑓 𝑥 , a datum 𝑥, and the network’s prediction

𝑓 𝑥 = ො𝑦, introspection in 𝑓 ⋅ is the measurement of change induced in the network 

parameters

when a label 𝑄 is introduced as the label for 𝑥..   

Contrastive Definition : Introspection answers questions of the form `Why 

P, rather than Q?’ where P is a network prediction and Q is the 

introspective class.   

Introspection
Introspection in Neural Networks
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are sparse and informative

Introspection
Gradients as Features
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are sparse and informative

Informative sparse features

Introspection
Gradients as Features
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are robust

Introspection
Gradients as Features

Lemma1:

Any change in class requires change in 

relationship between 𝑦𝐼 and ො𝑦

1

0

0

0

0

0

.

.

.

.

0

1

0

0

0

0

.

.

.

.

0

0

0

0

0

1

.

.

.

.

…

𝑦𝐼

ො𝑦 = Prediction

𝐽 = Loss function

𝛻𝑊 = Gradients w.r.t. weights
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Normalized and vectorized

gradients are introspective 

features

Vector of all ones: A confounding label!

Introspection
Deriving Gradient Features
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Introspective Features

Introspection
Utilizing Gradient Features
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

We define robustness as being generalizable and 

calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Introspection provides robustness when the train and test distributions are different  

Introspection
When is Introspection Useful?
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Calibration occurs when there is mismatch between a network’s confidence and its accuracy 

Calibration
A note on Calibration..

• Larger the model, more misplaced is a network’s 

confidence

• On ResNet, the gap between prediction accuracy 

and its corresponding confidence is significantly 

high
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Ideal: Top-left 

corner

Y-Axis: 

Generalization

X-Axis: 

Calibration

Introspection in Neural Networks
Generalization and Calibration results
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection is a plug-in 

approach that works on all 

networks and on any 

downstream task!

Introspection is a light-weight option to resolve robustness issues

Introspection in Neural Networks
Plug-in nature of Introspection
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active 
Learning, and Image Quality Assessment!

Introspection in Neural Networks
Plug-in nature of Introspection
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Part I, II and III
Tying it Back

𝒍(𝜽|𝒙)

Ideal Goal

𝒍(𝜽|𝒙)

In Practice

Trained network 

knowledge is not easily 

accessible

From Part I

𝒍(𝜽|𝒙)

𝒍(𝜽|𝒙)

Novel data projects onto the 

likelihood function (however 

incorrectly), and extracts 

fisher information around 

the projection

By backpropagating

contrast classes (and not 

updating the network), the 

network finds the steepest 

descent towards other 

regions of likelihood 

function

𝒍(𝜽|𝒙)
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Robust Neural Networks 

Part 4: Intervenability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Definitions of Intervenability 

• Causality

• Privacy

• Interpretability

• Prompting

• Benchmarking

• Case Study: Intervenability in Interpretability

• Part 5: Conclusions and Future Directions
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Assess: The amenability of neural network decisions to human interventions

Intervenability
Through the Causal Glass

Causality

“Interventions in data are 

manipulations that are designed to 

test for causal factors”

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward 

causal representation learning. Proceedings of the IEEE, 109(5), 612-634.
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Assure: The amenability of neural network decisions to human interventions

Intervenability
Through the Privacy Glass

Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy protection goals. In: 

Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes, R., Russello, G. (eds.) Privacy and Identity 

Management for Life. IFIP AICT, vol. 375, pp. 14–31. Springer, Heidelberg (2012)

Privacy

“Intervenability aims at the 

possibility for parties involved 

in any privacy-relevant data 

processing to interfere with the 

ongoing or planned data 

processing”
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Interpret: The amenability of neural network decisions to human interventions

Intervenability
Through the Interpretability Glass

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards 

relevant and contextual explanations." IEEE Signal Processing Magazine39.4 (2022): 59-72.

Interpret

“The post-hoc field of 

explainability, that previously 

only justified decisions, 

becomes active by being 

involved in the decision making 

process and providing limited, 

but relevant and contextual 

interventions”
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Verify: The amenability of neural network decisions to human interventions

Intervenability
Through the Benchmarking Glass

Benchmarking

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward 

causal representation learning. Proceedings of the IEEE, 109(5), 612-634.

“... new benchmarks were proposed 

to specifically test generalization of 

classification and detection methods 

with respect to simple

algorithmically generated 

interventions like spatial shifts, 

blur, changes in brightness or 

contrast…”
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Intervenability
Through the Human Glass

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward 

causal representation learning. Proceedings of the IEEE, 109(5), 612-634.

• Assess: Causality

• Assure: Privacy

• Interpret: Interpretability

• Verify: Benchmarking

The amenability of neural network decisions to human interventions
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Common evaluation technique is masking the image and checking for prediction correctness

Case Study: Intervenability in Interpretability
Explanation Evaluation via Masking

Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep 

convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 

2018.

Sx1

Sx2

Trained Model Crane

Trained Model Spoonbill

Sx1

Sx2

If across N images, 

𝐄(𝐘|𝑺𝐱𝟐) > 𝐄(𝐘|𝑺𝐱𝟏), 
explanation technique 2 

is better than explanation 

technique 1

𝑦 = Prediction

Sx = Explanation masked data 

E(Y|Sx) = Expectation of class given Sx

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



120 of 151

VOICE: Variance of Contrastive Explanations for 
Quantifying Uncertainty in Interpretability

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Explanatory techniques have predictive uncertainty

Why Bullmastiff? Uncertainty in answering 

Why Bullmastiff?

Predictive Uncertainty in Explanations

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

Case Study: Intervenability in Interpretability
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Uncertainty due to variance in prediction when model is kept constant 

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1 𝑆𝑥2𝑥

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Case Study: Intervenability in Interpretability
Predictive Uncertainty

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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A ‘good’ explanatory technique is evaluated to have zero 𝑽[𝑬 𝒚|𝑺𝒙 ]

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1 𝑆𝑥2𝑥

zero

Case Study: Intervenability in Interpretability
Visual Explanations (partially) reduce Predictive Uncertainty

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Key Observation 1: Visual Explanations are 

evaluated to partially reduce the predictive 

uncertainty in a neural network

Network evaluations have nothing to do with human 

Explainability!
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1 𝑆𝑥2𝑥

Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Key Observation 2: Uncertainty in Explainability occurs 

due to all combinations of features that the explanation 

did not attribute to the network’s decision
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1 𝑆𝑥2𝑥

Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Key Observation 2: Uncertainty in Explainability occurs 

due to all combinations of features that the explanation 

did not attribute to the network’s decision

The effect of a chosen Interventions can be measured 

based on all the Interventions that were not chosen 
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other dogs. 

Hence, there is uncertainty on 

why this feature is not included 

in the attribution

Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

Key Observation 2: Uncertainty in Explainability occurs 

due to all combinations of features that the explanation 

did not attribute to the network’s decision
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other dogs. 

Hence, there is uncertainty on 

why this feature is not included 

in the attribution

Not chosen features are intractable!

Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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Contrastive explanations are an intelligent way of obtaining other subsets 

Make it finite by only considering the subsets that 

change y
Y1|Sx1
Y2|Sx2
Y3|Sx3
Y4|Sx4
Y5|Sx5

.

.

YN|Sx𝑁

Variance

……..

𝑆𝑥1 𝑆𝑥2 𝑆𝑥𝑁

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])
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Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

• Is GradCAM better than GradCAM++?

• Is a SWIN transformer more reliable than VGG-16?

Need objective quantification of Intervention Residuals

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Objective Metric: 

Signal to Noise 

Ratio of the 

Uncertainty map

Higher the SNR of 

uncertainty, more is the 

dispersal (or less trustworthy 

is the prediction) 

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



134 of 151

On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Objective Metric 2: 

Signal to Noise 

Ratio of the 

Uncertainty map

Higher the SNR of 

uncertainty, more is the 

dispersal (or less trustworthy 

is the prediction) 

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 

Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 

on Aug. 27, 2023.
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Robust Neural Networks 

Part 5: Conclusions and Future Directions
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Key Takeaways

Role of Gradients

• Robustness under distributional shift in domains, environments, and adversaries are challenges for neural 
networks

• Gradients at Inference provide a holistic solution to the above challenges

• Gradients can help traverse through a trained and unknown manifold

• They approximate Fisher Information on the projection

• They can be manipulated by providing contrast classes

• They can be used to construct localized contrastive manifolds

• They provide implicit knowledge about all classes, when only one data point is available at inference

• Gradients are useful in a number of Image Understanding applications

• Highlighting features of the current prediction as well as counterfactual data and contrastive classes

• Providing directional information in anomaly detection

• Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection

• Providing expectancy mismatch for human vision related applications
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Future Directions

Research at Inference Stage

• Test Time Augmentation (TTA) Research

• Multiple augmentations of data are passed through the network at inference

• Research is in designing the best augmentations 

• Active Inference

• Utilize the knowledge in Neural Networks to ask it to ask us

• Neural networks ask for the best augmentation of the data point given that one data point at inference

• Uncertainty in Explainability, Label Interpretation, and Trust quantification

• Uncertainty research has to expand beyond model and data uncertainty

• In some applications within medical and seismic communities, there is no agreed upon label for data. 
Uncertainty in label interpretation is its own research

• Test-time Interventions for AI alignment

• Human interventions at test time to alter the decision-making process is essential trustworthy AI

• Further research in intelligently involving experts in a non end-to-end framework is required
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Cannot depend on training to construct 
robust models

Memes to Wrap it Up

Robustness at Inference

Robustness

Deep Learning

Adversarial 

Images

Deep Learning
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Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection 

• Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in 
Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

• Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International 
Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

• Gradients for Open set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image 
Processing (ICIP). IEEE, 2021.

• GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. 
In European Conference on Computer Vision (pp. 206-226). Springer, Cham.

• Gradients for adversarial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," 
in IEEE Access, Mar. 21 2023.

• Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

• Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

• Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal 
Processing Magazine, 39(4), 59-72.

• Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International 
Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

• Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, ”Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference 
on Image Processing (ICIP), Sept. 2021.

• Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," 
in Frontiers in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Self Supervised Learning

• Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker 
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023. 

• Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye 
Data," in Open Journal of Signals Processing, Apr. 28 2023.

• Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in 
OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation," 
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction 

• Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on 
Intelligent Transportation Systems, submitted on Dec. 28 2022.

• Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

• Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

• CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics,"
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

• CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural 
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

• CURE-OR: D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning 
and Applications (ICMLA), Orlando, FL, Dec. 2018 
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Active Learning

• Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A 
Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

• Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. 
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

• Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," 
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

• Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

• Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural 
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

• Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With 
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

• Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurIPS
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

• Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency 
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.

References

[Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]



151 of 151

Tutorial Materials 
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