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Deep Learning
Expectation vs Reality

Expectation vs Reality of Deep Learning
v - \ -

A0S

>
: iw

- SMENUPREP ~ %
. ~EXPECTATION VS REALITY:

30of 151 JMMWACVZ024 [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

Georgia
GI' Tech.




Deep Learning

Expectation vs Reality
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Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop Dumb-bell
-

Even natural images
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks
often go awry”

- Engineers, probably
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Deep Learning
Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data
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Novel data sources:

-

* Test distributions

« Anomalous data
e Qut-Of-Distribution data
e Adversarial data

« Corrupted data

* Noisy data

 New classes
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Transactions on Intelligent Transportation Systems (2017).



Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

> Model Representation
A
: ®0 L . :
Low Information _ e 0o « The first instance of training must occur with
) . . .
i} %o A less informative samples
= - @ « Ex: For autonomous vehicles, less informative
£ means
o - -
E  Highway scenarios
« Parking
i . * No accidents
1 niormation
¢ R  No aberrant events
Samples @ Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

« The model performs well on the new

00— s " scenarios, while forgetting the old scenarios
s Q Catastrophic | ) _ _ _
" Forgetting | « A number of techniques exist to overcome this
8 60F o\ — mnist trend
R & N ) — rvnisT
< 40f ' : « However, they affect the overall performance
8 20} ] in large-scale settings
T S TR TITI * Itis not always clear if and when to
Epochs incorporate novel scenarios in training
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Novel data packs a 1-2 punch!

Even if
available,
novel data
does not
easily fit into
either the
earlier or
later stages
of training

Novel data may not
be available during
training

————

R §

A = Deep Neural Networks
B = Novel data

Georgia
Tech
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Deep Learning at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Model Train At Inference

Novel data sources:

» Test distributions

* Anomalous data

» Out-Of-Distribution data
» Adversarial data

« Corrupted data

* Noisy data

* New classes
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

» Part 1. Inference in Neural Networks

« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference

« Part 4: Intervenability at Inference

« Part 5: Conclusions and Future Directions
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Robust Neural Networks
Part I: Inference in Neural Networks
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

 Part 1: Inference in Neural Networks

* Neural Network Basics
Robustness in Deep Learning
Information at Inference
Challenges at Inference
Gradients at Inference

« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference

» Part 4: Intervenability at Inference

« Part 5: Conclusions and Future Directions
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Deep Learning
Overview

Low-Level - Mid-Level
Feature

High-Level ” Trainable .

Feature Feature Classifier

Ex. LeCun, 2015
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Deep Learning
Neurons

The underlying computation unit is the Neuron

Artificial neurons consist of:

« A single output
Multiple inputs

Input weights

A bias input

An activation function
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Artificial Neuron

summation activation

2.

@ bias

output

Georgia



Neurons are stacked and densely connected to construct ANNs

O' Cat
output layer

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
« An input layer (Layer 0)
« An output layer (Layer K)
« Zero or more hidden (middle) layers (Layers 1...K — 1)
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

High-Level|
e ]

Feature

Trainable
Classifier

Ex. LeCun, 2015
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Transformers, Large Language Models and Foundation Models

15,000x increase in 5 years

GPT-3 1T
1 trillion

Megatron-Turing

o
N
w
—
©
-}
o
=

GPT-3
1756

Transformers BERT GPT-2 GPT-28B T5  Turing-NLG

65M 340M 1.5B 8.3B 118 17B

MID 2018 2019 MID LATE 2020 MID LATE
2017 2019 2019 2020 2021

Time

Primary reasons for advancements:

1. Expanded interests from the research community
2. Computational resources availability

3. Big data availability

19 of 151 JAM-&WACVZOM [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024] OLIVES Gr Georgia
Tech

~ WAIKOLOA HAWAII



Deep Learning at Inference
Classification

Given : One network, One image. Required: Class Prediction

Predicted
Class Probability
Network f(0) Dog 9%
44 7 .. Cat 89%
[Pk
B Bird

If x € y, the data Is not
y = y = Logits
y =yargfrgccl)xi P i = Predicted Class n OVEI

p(y) =T(f(x)) p(y) = Probabilities
f(-) = Trained Network

x = Training data
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Deep Learning at Inference
Robust Classification in Deep Networks
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Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
e Dog 39%
7 7 / P ﬁ Cat 53%

If x € y, the data Is
y=f(x'+€) ¥ =Logits

y = argmax; § ¥ = Predicted Class novel
p() = T(f(x' +¢€)) p(y) = Probabilities
f(-) = Trained Network
x = Training data
e = Noise




Deep Learning at Inference
Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
e Dog 39%
7 7 / P ﬁ Cat 53%

X

To achieve robustness at Inference, we need the following:

* Information provided by the novel data as a function of training distribution
» Methodology to extract information from novel data
« Techniques that utilize the information from novel data

Why is this Challenging?
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)
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Challenges at Inference
Inference

However, at inference only the test data point is available and the underlying structure of the
manifold is unknown

i‘ At Inference

L(O) . Trained network knowledge is L(O)
' not easily accessible "

At training, we have access to all
training data.
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Information at Inference
Fisher Information

Colloquially, Fisher Information is the “surprise” in a system that observes an event

Predicted
Class Probability

Network f(0) Dog
4 Cat

Horse
Bird

Fisher Information

I

0
1(6) = Var(%l(elx))

6 = Statistic of distribution
£(6 | x) = Likelihood function

Georgia
GI' Tech.

Likelihood function
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Information at Inference
Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes
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Information at Inference
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

From before, 1(0) = Var(%l(@lx))
Using variance decomposition, I1(6) reduces to:

1(0]x) 1(6) = E[UyUj] where

E[-] = Expectation
Ug = Vpl(0]x), Gradients w.r.t. the sample

o

Hence, gradients draw information from the
underlying distribution as learned by the

Likelihood function instead of loss manifold network weights!
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Information at Inference
Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds

In this case, the image and its
prediction extracts nose, mouth
and jowl features.

Hence, gradients draw information from the
/ underlying distribution as learned by the

< e ; network weights!

8o

Feature attribution via GradCAM
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Gradients at Inference
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

L) |
g ’ a Vg L(0) provides local information up to a small
. _ ik distance a away from x
7 os 05 o4 03’:&\//{06 91
60 01 0' 1
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(0)
=== Path 17?
Which direction should we

=== Path 2?  Optimize towards (knowing
only the local information)?

X
3 m==l)  Path 37
L) | @)
. ~—~,  Negative of the gradient provides the descent
solec” | //0;/“ direction towards the local minima, as measured
o 7 os 05 > 4"/;6 by L(H)
04 03"\027\\-// 08 61
90 01 0/
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Gradients at Inference
To Characterize the Novel Data at Inference

At Inference

| Trained network knowledge is
not easily accessible

Counterfactual
and Contrastive Representation
Representations Traversal using
using Gradients Interventions
!
1‘}1 ,

i

L(6)

0,

6o
31 of 151 JAM_EWACVM, [Tutorial@WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

WAIKOLOA HAWAII

Gr Georgia
Tech.




Robust Neural Networks
Part 2: Explainability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

e Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference
» Visual Explanations

Gradient-based Explanations

GradCAM

Counterfactual CAM

ContrastCAM

« Part 3: Uncertainty at Inference

» Part 4: Intervenability at Inference
 Part 5: Conclusions and Future Directions
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SignalP

THE MULTIZFACETED,
NATUREOF . - =%
EXPLAINABILITY %
-

and Repli

Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor SCAN ME
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Visual Explanations SCAN ME

 Explanations are defined as a set of rationales used to understand the reasons behind a
decision

« If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed

Corrdlations ContrasQe
X,

. . What if Bullmastiff was not in | Why Bullmastiff, rather than a
Bullmastiff Why Bullmastiff? the image? Boxor?
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SCAN ME

\ 4

Kid

h; Why Spoonbill? —

Why Spoonbill,
ratherthana —
. Flamingo?

Ornithologist

Why Spoonbill,

Fox

rather than a —

& Fox?

Neural Network, f(-)

Pink and
round body,
straight
beak

Lack of S-
shaped
neck

Neck, beak,
body, legs
are all
different

The network
taught me
about spoonbills

The network
does not know
about the
difference in
~ legs

n | trust the

\w network

> It is a Spoonbill Explainability

Explain f(-)’s
decision

Assess f(+)

Garners
trustin f(+)
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Gradient-based Explanations

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output; They
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

However, localization remains an issue
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SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

A :,5 ? Z % T }Image Classification

image LB

Rectified Conv
Feature Maps global average pooling

7 -~ sl ™~
Al 1 Sy y*
—» TasK-specific X, — —
.................... Network k 7 b £ 0A,
i ) . ¢ J
! €—— Gradients ! Al
——> Activations = ; ;
. K [ | gradients via backprop
4—) c . § : c Ak
Backprop till conv LGrad-C AM — RelLU g A
k
Grad-CAM (up-sampled to original image dimension) _ ~~
linear combination
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SCAN ME

Grad-CAM generalizes to any task:
* Image classification

* Image captioning

 Visual question answering

* eftc.
:5—“%—%—)§ Boxer Image Classification
y

Rectified Conv

Feature Maps
T A (or)

— TagRspecific i "1 A cat lying on Image Captioning
___________________ Network P the ground
E «—— Gradients E
E ——>» Activations E
N i ! (or)
S ey oy
9‘ Visual
ANNILSTM FC Layer Question Answering
Backprop P Question
till conv
Grad-CAM
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Explanatory Paradigms

SCAN ME

GradCAM provides answers to ‘Why P?’questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Cotnterfactual Observed
Corralations Contrastive

‘ p
€y o s
5 » _
- "r
,

N J
: ;,'.c' - 4
5 .

S

)

| il
el
: et 3
{ i
¥
i
WLl (
Ny

.
| ]"ll

Why Bullmastiff? What if Bullmastiff was not in | Why Bullmastiff, rather than a

Bullmastiff the image? Boxer?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if this region were absent in the image”?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain a¢ for each kernel k

y

:5—%%—)% S }Imae Classification

Rectified Conv

Feature Maps global average pooling
L/ -~ o ™~

A y c . 1 3y':

— TagK-specific & — — —
____________________ Network [ et aAk.
E <«— Gradients E Wad L J ]
| % Activations | . ¢ G
: Activations \CACRER N 1§47 gradients via backprop

....................

=N

ay°

What if Bullmastiff was not in 0Ak & <
the image? R

linear combination

<—J k
Backprop till conv Lérad—C AM — RelLU E (95 Z A
k

N

Negating the gradients effectively removes these regions from analysis
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

y

Rectified Conv
Feature Maps global average pooling

7 i )
Al ug g,k Z Z 8J(P,Q)
— TagK-specific A, = — B
.................... Network Z &~ - aAi.“j
E <«—— Gradients E ) ¢ J
Activations L ] a}i gradients via backprop

____________________

aJ(P,Q)
Why Bullmastiff, rather than a 9Ak % J
Boxer? K™

Contrast-CAM linear combination
Backpropagating the loss highlights the differences between classes P and Q.

Georgia
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<—J k
Backprop till conv L(c}rad-C AM — ReLU E (8 Z A
k
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM
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s WAC Ve

WAIKOLOA HAWAII

Input Contrastive Contrastive
Image Grad-CAM Contrast1 Explanation 1 Contrast2 Explanation 2
E 2

? .
‘*:‘ >
ImageNet dataset : ’ Grad-CAM : Why Representauve Why Spoonbill, rather Representative Pig Why Spoonbill, rather Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?

\@ &

, .~

ImageNet dataset : | Grad-CAM : Why : Bull Representatlve Boxer Why Bull Mastiff, Representative Blue jay Why Bull Mastiff,

Bull Mastiff Masnff? |ma e rather than Boxer image rather than Blue jay?

a

\

~; )4

CURE-TSR dataset : Grad-CAM : Why No- Representative No- Why No-Left, rather Representatave Stop hy "No-Left, rather Why not No-Left with
No-Left Image Left? Right image than No-Right? Sign than Stop? 100% confidence?

l

-

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input
Image

SCAN ME

Contrastive Contrastive

Grad-CAM Contrast1 Explanation 1 Contrast2 Explanation 2

=
fF

i g P
R e [ e,
than Flamingo? _ image p— than Pig? with 100% confidence?
1 o) "
' ' ‘w-

Grad-CAM : Why
Spoonbill?

Representative
Flamingo image

ImageNet dataset : ’
Spoonbill

y &
.f‘

Why Bull Mastiff, Why not Bull Mastiff,
rather than Blue jay? | with 100% confidence?
'S
Why not No-Left with
100% confidence?

.

Representative Boxer
image

Why Bull Mastiff,
rather than Boxer

Representative Blue jay
image

R : o
Representive Stop
_ Sign

/0 g —
e s v,

]

Why o-Left, rather
than Stop?

Stanford Cars Dataset:
Bugatti Convertible

Grad-CAM: Why
Bugatti Convertible?

Representative Bugatti
Coupe image

Representative Audi A6
image

Why Convertible,
rather than Coupe?

Why Bugatti, rather
than Audi A6?

Why not Bugatti with
100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM Contrast 1 Explanation 1 Contrast 2 Explanation 2

SCAN ME

Representative Why Spoonbill, rather Representatwe Plg ‘ Why Spoonbill, rather Why not Spoonbill,
Flamingo image than Flamingo? image than Pig? with 100% confidence?

{

Why Bull Mastiff, |Representative Blue jay | Why Bull Mastiff,
rather than Boxer image rather than Blue jay?

'S
‘ﬁé" v, /
CURE-TSR dataset Grad-CAM : Why No- Representative No Why No-Left, rather Representat:ve Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? R|ght image than No-Right? Sign than Stop? 100% confidence?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM Contrast 1 Explanation 1 Contrast 2 Explanation 2

3

"
Y

Ima
7=

JT () r W

4 » . "~ ’, Y \. b 1 4 b
ImageNet dataset : | Grad-CAM : Why : Bull presetlve Blue jay Why Bull Mastiff, Why not Bull Mastiff,
_Bull Mastiff Mastiff? image rather than Blue jay? || with 100% confidence?

@

’ Grad-CAM : Why Representative Why Spoonbill, rather |  Represent Pig ‘ Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image | than Pig? with 100% confidence?
173 i

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

SCAN ME

Human
Interpretable

Same as Grad-
CAM

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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SCAN ME

Only traffic sign with a straight
bottom-left edge — enough to
say Not STOP Sign’

BEEeaEEN-YHnaVE
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A Callback...

Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes
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Information at Inference
Case Study: Explainability

T is the set of all features learned by a trained network

Beak
Neck 7
Network f(60) Legs Why Spoonbill?
Z Feathers
gdd i »Water - Features T
778 =
, &(W/‘m‘ Wﬁ Grass
= Teeth
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Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

—

Beak
Neck Why Spoonbil, rath
y Spoonbill, rather
Network £(8) Legs than Flamingo?

Feathers
Water — Features T°

I 4%
Teeth

All the requisite Information is stored within f(0)

Goal: To extract and quantify this information at inference
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Robust Neural Networks
Part 3. Uncertainty at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

 Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference
» Uncertainty Definition
» Uncertainty Quantification
» Gradient-based Uncertainty
» Adversarial and Corruption Detection

« Part 4: Intervenability at Inference
e Part 5: Conclusions and Future Directions
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Prediction
20 1 —— Predictive mean A Slmple example:
+ Taining data o ] . .
15 - Epistemic uncertainty « When training data is available: Less uncertainty
107 « When training data is unavailable: More uncertainty
0.5 1
ey
0.0 ¥
-05
-1.0 -
_].5' I I I I I I I
-15 -10  -05 0.0 0.5 10 15
X
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Uncertainty

Uncertainty Quantification in Neural Networks

Via Ensembles!?
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Network f1(0)

Dog
Cat
Horse
Bird

Dog
Cat
Horse
Bird

Dog
Cat
Horse
Bird
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive
uncertainty estimation using deep ensembles."” Advances in neural information processing systems 30

Variation within outputs
Var(y) is the
uncertainty. Commonly
referred to as
Prediction Uncertainty.
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Uncertainty
Uncertainty Quantification in Neural Networks

Via Single pass methods?

etw

ork £1(6) Dog Uncertainty

- Cat . g . .
7 w q_uantlflcatlon using a
AP Horse single network and a

Bird single pass

L(6)

60 of 151 JA,M_E,WACVZ024 [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

WAIKOLOA HAWAII [1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a
single deep deterministic neural network. In International conference on machine learning (pp. 9690-
9700). PMLR.

Georgia
GI' Tech.




Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference

Netw
 a

ork f1(0) Dog Uncertainty
77 Cat quantification using a

AP Horse single network and a
Bird single pass

Does not require multiple networks!

L(6) Challenge: Class and prediction cannot be trusted!
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques:

1. Gradient constraints during
Training for Anomaly Detection

2. Backpropagating Confounding labels
for Out-of-Distribution Detection

02
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ONLINE

23-28 AUGUST 2020

4

Backpropagated Gradient Representations for
Anomaly Detection

L
Gukyeong Kwon, PhD Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc, Georgia Tech Professor, Georgia Tech SCAN ME

Amazon AWS
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Backpropagated Gradient

Anomalies . |
. . . [=] Representations for Anomaly Detection
Finding Rare Events in Normal Patterns SCAN ME

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ 1]

@ f Statistical Definition:
)lro.h « Normal data are generated from a stationary process Py

" « Anomalies are generated from a different process P, + Py

R R
_L,_—L-—tl-—- "\L* Goal: Detect ¢,

() = ®o Normal data
$1 Anomalies

@ d’lo b1 do

>

~ ® ° [
e . 4 e ° ° °
o
= ° ]
t
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=]
SCAN ME

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

« Step 1 ensures that patches from natural
iImages live close to a low dimensional
manifold

» Step 2 designs distance functions that
detect implausibility based on
constraints

Anomaly

~ WAIKOLOA HAWAII
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SCAN ME
2004 2016 2018 2019
Tax et.al 1 Fan et.al 2 Pidhorksyi et.al 3 Abati et.al 4
Encoder Decoder
- : s
7N
Training ’
Activations are
constrained ﬁ Statistical deviation (Latent Loss)
using GANSs, Anomal
VAES, etc. o
Testing

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint
arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. AlImohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822—6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481-490.
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SCAN ME

Activation Constraints

Activation-based representation

Forward propagation (Data perspective) How much of the input

i does not correspond to
Trained with O e.g. Reconstruction error (£) P

. o
Anomaly the learned information”

H S

b Gradient Constraints

S

Input | ] 4] 1]/ Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w oL w' How much model update is
ow required by the input?
JAN 4-3WACV2024 O LIVE S Ge Drgia
R ey Tech

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



Backpropagated Gradient

Constraining Manifolds , |
) ) [= Representations for Anomaly Detection
Advantages of Gradient-based Constraints SCAN ME

« Gradients provide directional information to characterize anomalies
« Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution

Backpropagated
Gradients

econstruction
Error (L)
9o (fo (D)™,

“
Xout

Reconstructed image manifold
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GradCON: Gradient Constraint

Backpropagated Gradient
Gradient-based Constraints

Representations for Anomaly Detection

SCAN ME

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data

t 6_12 At k-th step of training, .

] 6¢ Gradient loss

| out aL AL

| - s ™
k—1 k

:'I: ______ ~ aqbin,l a] 0L

J = L — E; |cosSIM

0Dig4 "9,

Avg. training Gradients at
gradients until (k-1) th iter. k-th iter.

9] k-1 k=1 9] t

where =
| _ 0igpy 4t 0O
¢: Weights L: Reconstruction error
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SCAN ME

AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
detection (C”:AR_]_O) CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 0.711 0.390 0.564

CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554
+ Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661

Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
econ U. . ; : ) ) k ; ; : :
Latent 0.586 0.396 0.618 0.476 0.719 0.474 0.698 0.537 0.586 0.413 0.550
Grad 0.736 0.625 0.591 0.596 0.707 0.570 0.740 0.543 0.738 0.629 0.647 |

VAE

VAE
+ Grad

Normal Abnormal

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss
« (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
« (CAE vs. VAE) Performance sacrifice from the latent constraint

« (VAE vs. VAE + Grad) Complementary features from the gradient constraint
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GradCON: Gradient Constraint
Aberrant Condition Detection SCAN ME

Backpropagated Gradient
Representations for Anomaly Detection

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure
1.0 1.0
0.8 0.8
o §0.6 §
Abnormal “condition” 204’ 2
detection (CURE-TSR)
00 1 2 . 3 ‘ 4 5 00
Gaussian Blur Rain
1.0 1.0 1.0
0.8 0.8 @//_@,,—e——@ o8
gk G0 goe g
204 204 : 204
Normal Abnormal ol 02| e | o 02|
0.0 2 3 4 R 2 3 4 5 %0 2 3 4 2
Levels Levels Levels Levels

|->¢- Recon (CAE) —<— Recon (CAE+Grad) I—@— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques: 1(0)x)
1. Gradient constraints during Training g | 5
for Anomaly Detection 5 ? . Z=
2. Backpropagating (_:onfour)dlng TN g e ~ \\// 0,
labels for Out-of-Distribution 0, il e
Detection
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data

However, what is L?

Abnormal data distribution

* In anomaly detection, the loss was between the input and

Its reconstruction
* In prediction tasks, there is neither the reconstructed input

nor ground truth

Backpropagated
Gradients

9o Fo ()™,

Learned Representation
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data
P = Predicted class
Q, = Contrast class 1

Q, = Contrast class 2 However, what is L?
Backpropagated * In anomaly detection, the loss was between the
Gradients iInput and its reconstruction

0L(P, Q1) - In prediction tasks, there is neither the
a0 reconstructed input nor ground truth

« We backpropagate all contrast classes -
Q1,0Q, ...Qy by backpropagating N one-hot

vectors
Backpropagated - Higher the distance, higher the uncertainty
Gradients score
Learned Representation 0L(P, Q)
006
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Toy Manifold Example
What is uncertainty?

Probing the Purview of Neural Networks
via Gradient Analysis

Gradients represent the local required change in manifold ‘1 X
Contrast class 1

Similar to introspective learning! ‘ 1(0]x) . Gradients
i provide the
: : necessary
change in
manifold that

X P would predict
Contrast class N the novel data

> corectly.
N « Correctly means

. ot contrastively (or
1(0]x) | iIncorrectly)!
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Probing the Purview of Neural Networks
via Gradient Analysis

Toy Manifold Example
How is this different from Explainability?

SCAN ME

Part 3: Explainability Part 4: Uncertainty

* In Part 4: Statistics of gradients
w.r.t. the weights (energy) will be
directly used as features

* In Part 3: Activations of learned
manifold are weighted by gradients
w.r.t. activations to extract
information and provide
explanations
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Uncertainty in Neural Networks
Deriving Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Gradients

Weights, W,

X -+ Sensing
Network

)

I

fir-1)(

2\

SN

Introspective Feature%

}’1=1N

|

Vwl(3.y1)
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[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural
Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

2022.
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Normalized and vectorized
gradients are introspective
features.

Why vector of all 1s? The theory is
presented in [1]
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Uncertainty in Neural Networks
Utilizing Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 2: Take L2 norm of all generated gradients

Dataset
HEl mnist
2

B Collection of flquared L2 norm IV, J(B0; x, yc)”z Ve, J(O; x, yC)Hz —
Vo

+
15 2
*
*
10 ) ' -
*
U *
*
5 . . = -
L]
‘ S N UL BN NN A S S
' " i N > = ‘o . + ! . T 5 o . +
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Gradient-based Uncertainty
Uncertainty in OOD Setting
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Probing the Purview of Neural Networks
via Gradient Analysis
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Gradient-based Uncertainty
Experimental Setup

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect
adversarial, noisy, and OOD data

- - ~ 7 B - Step 1. Train a deep network f(-) on
17 . o 3.0 . 04 T some training distribution
15.0 - I , . T Step 2: Introduce challenging
4 4 8 T (adversarial, noisy, OOD) data
e 20 Step 3: Derive gradient uncertainty on
—~ 10.0 3 6 .
= 15 both trained and challenge data
- 2 . Step 4: Train a classifier H(+) to detect
5.0 N challenging from trained data
25 ! 2 05 Step 5: At test time, data is passed
Lo I ) = 0o & through f(-) and then H(-) to obtain a
Reliability classification
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Gradient-based Uncertainty
Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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(=15

[=]

[=]

o

SCAN ME

MODEL ATTACKS BASELINE LID M((V) MP) MFE) M(P+FE) OURS
FGSM 51.20 90.06 81.69 84.25 99.95 99.95  93.45

BIM 4994 9921 87.09 89.20 100.0 100.0  96.19

ResNgr | C&W 53.40  76.47 7451 75.71 92.78 92.79  97.07
PGD 50.03  67.48 5627 57.57 65.23 75.98  95.82

ITERLL 60.40  85.17 6232 64.10 85.10 92.10  98.17

SEMANTIC  52.29  86.25 64.18 65.79 83.95 8438  90.15

FGSM 5276 9823 86.88 87.24 99.98 99.97  96.83

BIM 49.67  100.0 89.19 89.17 100.0 100.0  96.85

C&W 54.53 80.58 75.77 76.16 90.83 90.76  97.05

DENSENET  papy 49.87  83.01 70.39 66.52 86.94 83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84  98.53

SEMANTIC  53.54  81.41 62.16 62.15 67.98 67.29  89.55

e WAC Vi OLIVES
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Gau ian Nouse Defocus Blur  Gaussian Blur Spatter

Lens

No
Challenge  ization Blur

Dint
Lcnz

Gaussian

Blur Haze

F.xposure
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

Bl Method Mahalanobis [12] / Ours
2 | Commpiion | Lotttz | tees | leed  Lewls
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur | 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
_, | GaussianBlur 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
E: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure | 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
N Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor | 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 / 83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
a‘@d DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
% Exposure | 74.90/88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
U Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor | 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91
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Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Gaussian Blur
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

% Method Mabhalanobis [12] / Ours
| Comption | Lewll  Level2  Leveld  Leveld  Lewel5
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
O GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
E: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
N Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 05.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
o GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
E. DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
% Exposure 74.90 / 88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
U Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36  60.55/81.30 71.73/89.93 87.29/9542 89.68/96.91
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via Gradient Analysis

SCAN ME

Gaussian Blur

Spatter
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

SCAN ME

Train set = 3

TR W x,\";g

"_ ‘l

EW%'W?
;m lﬁu

CIFART0 TinylmageNet
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution
In Out

SVHN
CIFAR-10  TinyImageNet

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06 /91.86 / 88.93/99.68 / 93.18

88.26 /95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

LSUN
CIFAR-10
TinylmageNet
LSUN

SVHN
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87.34 / 88.42/85.02/98.60 / 98.37
79.98/80.12/74.10/ 88.84 / 97.90
81.70/81.92/79.35/96.17/97.74
80.96/81.15/79.52/97.50/99.04

92.79/94.48 /90.11 /99.86 / 99.86
81.50/81.49/79.31/95.05/99.79
83.69/83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93
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92.30/94.22/89.80/99.82/99.87
81.01/80.95/80.83/90.25/98.11
82.54/82.60/85.50/98.17/97.93
81.97/82.01/84.67/98.84/99.21
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Out-of-Distribution Detection

Dataset Distribution Detection Accuracy

AUROC

via Gradient Analysis

SCAN ME

Probing the Purview of Neural Networks

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68/93.18

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 7/ 99.60 / 92.66

In Out
SVHN 83.36/88.81/79.39/91.95/98.04
CIFAR-10  TinyImageNet  84.01/85.21/83.60/97.45/86.17
LSUN 87.34 /88.42/85.02 / 98.60 / 98.37
CIFAR-10  79.98/80.12/74.10/88.84 /97.90
SVHN  TinylmageNet ' 81.70/81.92/79.35/96.17 / 97.74
LSUN 80.96/81.15/79.52197.50 / 99.04

92.79/94.48/90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79
83.69 / 83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

Numbers
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TinylmageNet
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

Dataset Distribution Detection Accuracy AUROC AUPR

In Out Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours
SVHN 83.36/88.81/79.39/91.95/98.04 88.30/94.93/85.03/97.10/99.84 88.26/95.45/86.15/96.12/99.98

CIFAR-10  TinyImageNet | 84.01/85.21/83.60/97.45/86.17 90.06/91.86/88.93/99.68/93.18 89.26/91.60/88.59/99.60 /92.66
LSUN 87.34/88.42/85.02/98.60/98.37 92.79/94.48/90.11/99.86/99.86 92.30/94.22/89.80/99.82/99.87

CIFAR-10 79.98 /80.12/74.10/88.84/97.90 81.50/81.49/79.31/95.05/99.79 81.01/80.95/80.83/90.25/98.11
SVHN TinylmageNet 81.70/81.92/79.35/96.17/97.74 83.69/83.82/83.85/99.23/99.77 82.54/82.60/85.50/98.17/97.93
LSUN 80.96/81.15/79.52/97.50/99.04 82.85/82.98/83.02/99.54/99.93 81.97/82.01/84.67/98.84/99.21

More similar
datasets
(objects)
TinylmageNet CIFAR10
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Case Study: Introspective Learning
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques:

1. Gradient constraints during Training
for Anomaly Detection

2. Backpropagating Confounding
labels for Out-of-Distribution
Detection
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

How would humans resolve this challenge?

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bull mastiff?
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspection
: . . T .
I Visual Sensing , - Reflection

I Sense pink feathers, |
: straight beak

Why Spoonbill, rather than Flamingo? |
x does not have an S-shaped neck

Why Spoonbill, rather than Crane? I

x does not have white feathers : Spoonbill
1 7
- T Why Spoonbill, rather than Pig? I
! Feed-Forward x's leg and neck shapes are |
| Sensing i i different i
s ¢ =m ¢ e o o o o o Ew o Em —. S D EEE F EES O EEE F EEE E EEE § ESS N EEE N EEE § EEE § ESE O ESE O ESE § o &
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?

Georgia
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection

Introspection in Neural Networks
SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Colnterfactual Observed
Corrdlations Contrastive

¢

: What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxar?
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form "Why
P, rather than Q? where P is a network prediction and Q is the
Introspective class.

Technical Definition : Given a network f(x), a datum x, and the network s prediction
f(x) =y, introspection in f(-) is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..

Georgia
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Why 5, rather than 0?

Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Input Image x Why 5, rather than 5? Why 5, rather than 67
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Informative sparse features
I\

Why 5, rather than O?\\ Why 5, rather than 17

y | v

— W .
._| | [ [ |
Why 5, rather than 27 _ Why 5, rather than 47?

L ] i
| [ ] m
Input Image x | | Why 5, rather than 5? | Why 5, rather than 6? |
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

SCAN ME

For a well-trained network, the gradients are robust

Vi = Gradients w.r.t. weights

J = Loss function Yy
9 = Prediction Lemmal:Vw J(yr,9) = —Vwyr + Vwlog| 1 + 5 |-
Vi
A
- 1 SN s 0 SN s 0 \\
0 1 0
0 0 0
0 0 0
0 0 0
_ _ _ Any change in class requires change in
0 0 : relationship between y; and y
. J \. J \. J
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features
Gradients =« = = =

Weights, W, y, i i
eights, W, o] (¥, y1) Normalized and vectorized

gradients are introspective

features
X -+ Sensing \
e Vector of all ones: A confounding label!
\ J

|
fiL-13(x)
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Introspection

Utilizing Gradient Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence
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SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy
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» Larger the model, more misplaced is a network’s
confidence

* On ResNet, the gap between prediction accuracy
and its corresponding confidence is significantly
high
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Introspection in Neural Networks
Generalization and Calibration results

. CIFAR-10C

Networks

Introspective Learning: A Two-stage
Approach for Inference in Neural
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Introspection in Neural Networks
Plug-in nature of Introspection

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
IRospecTve | TLA% Introspection is a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% n EtWO I’kS an d O n any
SIMCLR (19) FEED-FORWARD 70.28% d ownstream tas kl
INTROSPECTIVE 73.32%
AUGMENT NOISE (23) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (25) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Introspection in Neural Networks
Plug-in nature of Introspection

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active
Learning, and Image Quality Assessment!

Table 2:

Recognition accuracy of Active Learn-

Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image  ing strategies.
Quality Estimators. Top 2 results in each row are highlighted.

PSNR W SR FSIMc Per CSV SUM Feed-Forward Introspective
Database HA SSIM  SIM SIM MER UNIQUE UNIQUE
QOutlier Ratio (OR, )
MULTI 0.013 0.013 0.000 0.016 0.004 0.000 0.000 0.000 0.000
TID13 0.615 0.701 0.632 0.728 0.655 0.687 0.620 0.640 0.620
Root Mean Square Error (RMSE, |)
MULTI 11.320 10.049 8.686 10.794 9.898 9.895 8.212 9.258 7.943
TID13 0.652 0.688 0.619 0.687 0.643 0.647 0.630 0.615 0.596
Pearson Linear Correlation Coefficient (PLCC, 1)
MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
-1 -1 0 -1 -1 -1 -1 -1
0.851 0.832 0.866 0.832 0.855 0.853 0.861 0.869 0.877
s -1 -1 0 -1 -1 -1 0 0
Spearman’s Rank Correlation Coefficient (SRCC, 1)
0.715 0.884 0.867 0.867 0.818 0.849 0.884 0.867 0.887
L -1 0 0 0 -1 -1 0 0
TID13 0.847 0.778 0.807 0.851 0.854 0.846 0.856 0.860 0.865
-1 -1 -1 -1 0 -1 0 0
Kendall’s Rank Correlation Coefficient (KRCC)
0.532 0.702 0.678 0.677 0.624 0.655 0.698 0.679 0.702
MuLT -1 0 0 0 -1 0 0 0
TID13 0.666 0598 0.641 0.667 0.678 0.654 0.667 0.667 0.677
0 -1 -1 0 0 0 0 0
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Methods Architecture Original Testset Gaussian Noise
R-18 R34 R-18 R34
Entopy (3)  Feed-Forward 0365 0358 0244 0249
tropy 4 Introspective  0.365 0359 0258  0.255
Least 81) Feed-Forward 0371 0359 0252 025
s Introspective 0.373 0362  0.264 0.26
Morgin @2y  Feed-Forward 038 0369 0251 0253
gin 2 Introspective 0381 0373 0265  0.263
Feed-Forward 0393 0368 026 0253
2]

BALD &%) Introspective 0396 0375 0273 0263
Feed-Forward 0.388 0.37 0.25 0.247

DGE &3
B E @9 Introspective 0.39 0.37 0.265 0.260
Table 3: Out-of-distribution Detection of exist-

ing techniques compared between feed-forward
and introspective networks.

Methods OOD FPR Detection AUROC
Datasets (95% at TPR) Error

4 T

Feed-Forward/Introspective

Textures 58.74/19.66 18.04/7.49 88.56/97.79

MSP (25) SVHN 61.41/51.27 16.92/15.67 89.39/91.2

Places365 58.04/54.43 17.01/15.07 89.39/91.3

LSUN-C 27.95/21.5 9.42/10.29 96.07/95.73

Textures 52.3/9.31 22.17/6.12 84.91/91.9

ODIN (29) SVHN 66.81/48.52 23.51/15.86 83.52/91.07

Places365 42.21/51.87 16.23/15.71 91.06/90.95

LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87
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Part I, Il and IlI
Tying it Back

|deal Goal
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Novel data projects onto the

likelihood function (however . @
From Part | incorrectly), and extracts 1C] x)" |
I P t fisher information around ; P
N Factice the projection ’ p i
08" g \N\/;a/ 0,
By backpropagating
: Train network contrast classes (and not
L(O|x) n ed- 2o : | updating the network), the
; knowledge 'S_nOt easily ! network finds the steepest
accessible : descent towards other
T T & regions of likelihood
% - function
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Robust Neural Networks
Part 4. Intervenability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

Part 1: Inference in Neural Networks

Part 2: Explainability at Inference

Part 3: Uncertainty at Inference

Part 4: Intervenability at Inference

» Definitions of Intervenability
« Causality
* Privacy
* Interpretability
* Prompting
« Benchmarking

« Case Study: Intervenability in Interpretability

 Part 5: Conclusions and Future Directions
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. The amenability of neural network decisions to human interventions

“Interventions In data are
manipulations that are designed to
test for causal factors”

s WAC Vi OLIVES Georgia
£ 2 WAIKOLOA HAWAII Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



. The amenability of neural network decisions to human interventions

“Intervenability aims at the
possibility for parties involved
In any privacy-relevant data
processing to interfere with the
ongoing or planned data
processing”

OLIVES Georgia

! Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy protection goals. In: Tech
Camenisch, J., Crispo, B., Fischer-Hubner, S., Leenes, R., Russello, G. (eds.) Privacy and Identity
Management for Life. IFIP AICT, vol. 375, pp. 14-31. Springer, Heidelberg (2012)




: The amenability of neural network decisions to human interventions

“The post-hoc field of
explainability, that previously
only justified decisions,
becomes active by being
Involved In the decision making
process and providing limited,
but relevant and contextual
Interventions”

OLIVES Georgia

! AlIRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards Tech
relevant and contextual explanations." IEEE Signal Processing Magazine39.4 (2022): 59-72.




. The amenability of neural network decisions to human interventions

“... new benchmarks were proposed
to specifically test generalization of
classification and detection methods
Benchmarking with respect to simple
algorithmically generated
Interventions like spatial shifts,
blur, changes in brightness or
contrast...”

2 4

s WAC Vi OLIVES Georgia
£ 2 WAIKOLOA HAWAII Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



The amenability of neural network decisions to human interventions

. Causality
. Privacy
. Interpretability
: Benchmarking

v os WWAC Vs OLIVES Georgia
T X wnioron nawan Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward Tech

causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



Common evaluation technique is masking the image and checking for prediction correctness

’ ’ ..

[ | Crane

y = Prediction
Sy = Explanation masked data

E(Y|Sy) = Expectation of class given S,

If across N images,
E(Y|Sx2) > E(Y|Sx1),
explanation technique 2
IS better than explanation

[ 1 Spoonbill

v os WWAC Vs OLIVES Georgia
~ & WAIKOLOA HAWAII Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep Tech

convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACV). IEEE,
2018.
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Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations

Explanatory techniques have predictive uncertainty

Explanation of Prediction Uncertainty of Explanation

Uncertainty in answering
Why Bullmastiff?

Why Bullmastiff?

121 of 151 ,, WACV [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

z 3 WAIKOLOA HAWAII M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify
Uncertainty in Neural Network Interpretability,” Journal of Selected Topics in Signal Processing, submitted -
on Aug. 27, 2023.

Georgia
Gl" Tech.




Uncertainty due to variance in prediction when model is kept constant

VIyISxl = VIEIS)] + EV[yISk]D)

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
S« = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals
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on Aug. 27, 2023.



A ‘good’ explanatory technique is evaluated to have zero V[E(y|S,)]

VIyISxl = VIEIS)] + EV[yISk]D)

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
S« = Subset of data (Some intervention)

2ero E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 1: Visual Explanations are

_ 0 Network evaluations have nothing to do with human
evaluated to partially reduce the predictive

_ _ Explainability!
uncertainty in a neural network
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

VIyISxl = VIEIS)] + EV[yISk]D)

y= Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
S« = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

The effect of a chosen Interventions can be measured
based on all the Interventions that were not chosen
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Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Not chosen features are intractable!
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

Contrastive explanations are an intelligent way of obtaining other subsets

VIyISxl = VIEIS)] + EV YISk

J—
Make it finite by only considering the subsets that

changey Y, 1S,

YZ |Sx2
Y3 |Sx3
Y4 | Sx4
YS |SX5

— \ariance

YN | SXN
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

e |s GradCAM better than GradCAM++7?
e |[s a SWIN transformer more reliable than VGG-167?

Need objective guantification of Intervention Residuals
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: miOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

- E‘ﬁiiZ?ii?G.?:::jcﬁ;;"EiT&S‘ E“ﬁii%?igzjm”“;.éﬁ‘.l:‘ Sz:ied.Ba:kp“r:Iaga;o? E"é',iﬂ?;ign:fth‘;g:‘;ﬁ:’ O bJ ective Metric:
¥ Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
mecne., gk less trustworthy is the

e <4 prediction)

Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions Incorrect Predictions

Explanation of Prediction Uncertainty of Explanation | Explanation of Prediction  Uncertainty of Explanation

Objective Metric:
Signal to Noise
Ratio of the
Uncertainty map

VGG-16

(a) (b) (@ (d)
£ Higher the SNR of
G uncertainty, more Is the
= dispersal (or less trustworthy
C . . .
3 IS the prediction)
(e) (f) (8) (h)
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: miOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image GradCAM GradCAM++ Guided Backpropagation SmoothGrad b . . . .
Explanation of  Uncertainty of Explanation of  Uncertainty of Explanation of  Uncertainty of Explanation of  Uncertainty of O J e Ct I Ve M etr I C 1 "

Predigtlon Explanation Prediction Explanation Prediction Explanation Prediction Explanation

Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
e, gk less trustworthy is the

e @ 4 prediction)

Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: miOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

- “ﬁii%?ii?ﬁ?fcﬁ;eﬁi‘;‘z:‘ E‘ﬁ',il?;is?’zjm”;.%:‘a"&l:' SE:Td.Ba‘Ckp“r:.aga.t:o? f*::zx;ig?th%:c:‘:m::f O bJ ective Metric 1.
| ' Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
e, gk less trustworthy is the

e @ 4 prediction)

Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions Incorrect Predictions

Explanation of Prediction Uncertainty of Explanation | Explanation of Prediction  Uncertainty of Explanation

Objective Metric 2:
Signal to Noise
Ratio of the
Uncertainty map

VGG-16

(a) (b) (@ (d)
£ Higher the SNR of
G uncertainty, more Is the
= dispersal (or less trustworthy
C . . .
3 IS the prediction)
(e) (f) (8) (h)
135 of 151 JAM_BWACVZM [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024]

Georgia
waikoLoa wawai M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Gr Tech.
Uncertainty in Neural Network Interpretability,” Journal of Selected Topics in Signal Processing, submitted

on Aug. 27, 2023.




Robust Neural Networks
Part 5: Conclusions and Future Directions
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« Robustness under distributional shift in domains, environments, and adversaries are challenges for neural
networks

» Gradients at Inference provide a holistic solution to the above challenges

« Gradients can help traverse through a trained and unknown manifold
« They approximate Fisher Information on the projection
* They can be manipulated by providing contrast classes
* They can be used to construct localized contrastive manifolds
* They provide implicit knowledge about all classes, when only one data point is available at inference

« Gradients are useful in a number of Image Understanding applications
« Highlighting features of the current prediction as well as counterfactual data and contrastive classes
* Providing directional information in anomaly detection
* Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
* Providing expectancy mismatch for human vision related applications

~ WAIKOLOA HAWAII

143 of 151 JAM-&WACVZOM [Tutorial @WACV'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Jan 07, 2024] OLIVES Gr Georgia
Tech



Test Time Augmentation (TTA) Research
« Multiple augmentations of data are passed through the network at inference
* Research is in designing the best augmentations

Active Inference
 Utilize the knowledge in Neural Networks to ask it to ask us
» Neural networks ask for the best augmentation of the data point given that one data point at inference

Uncertainty in Explainability, Label Interpretation, and Trust quantification
« Uncertainty research has to expand beyond model and data uncertainty

* In some applications within medical and seismic communities, there is no agreed upon label for data.
Uncertainty in label interpretation is its own research

Test-time Interventions for Al alignment
* Human interventions at test time to alter the decision-making process is essential trustworthy Al
» Further research in intelligently involving experts in a non end-to-end framework is required

Georgia
Tech
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Memes to Wrap it Up
Robustness at Inference

|

“. -

TRAIN & TEST WERE DIFFERENT DISTRIBUTIONS

imgflip.com 4 @SCOtt.aI

Cannot depend on training to construct
robust models
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Gradient representations for Robustness, 00D, Anomaly, Novelty, and Adversarial Detection

+ Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib "Intros;I)ective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in
Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

+ Gradients for adversarial, 00D, corruleltion detection: J. Lee, M. Prabhushankar, and G. AI_Reg?_ib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International
Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

* Gradients for Olgen set reco?nition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2027 IEEE International Conference on Image
Processing (ICIP). IEEE, 202T.

+ GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection.
In European Conference on Computer Vision (pp. 206-226). Springer, Cham.

» Gradients for adversarial, 00D, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis,"
in IEEE Access, Mar. 21 2023.

» Gradients for NoveItE Detection: Kwon, G., Prabhushankar, M., Temel, D., & AIRe%ib G. (2020, October). Novelty detection through model-based characterization of neural
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

+ Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AII?
p.

i : : t Ten gib, "Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Ibrocessmg (ICIP), Taipei, Taiwan, Sep. 20

e
9.
Explainability in Neural Networks

« Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal
Processing' Magazine, 39(4), -72.

« Contrastive Explanations: Prabhushankar, M., Kwon, G, Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International
Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

* Explainabilty in Limited Label Settin%s: M. Prabhushankar, and G. AlRegib, "Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference
on Image Processing (ICIP), Sept. 2021.

. ExEIainabiIty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks,"
in Frontiers in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Self Supervised Learning

. Weak]y_ supervised Contrastive Learning; K. Kokilﬂ)ersaud S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023.

» Contrastive Learning for Fisheye Images: K. Kokilegersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye
Data," in Open Journal of Signals Processing, Apr. 23 2023.

» Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejzo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in
OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. T6-19 202

+ Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation,"
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX,, Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction

» Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on
Intelligent Transportation Systems, submitted on Dec. 28 2022.

* Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu'Dhabi, United Arab Emirates, Oct. 2020.

+ Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no.
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

* CURE-TSD:D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics,"
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

* CURE-TSR:D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR; Challenging Unreal and Real Environments for Traffic S;gn Recognition," in Advances in Neural
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 201

* CURE-OR:D. Temel*, J. Lee* and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning
and Applications (ICMLA), Orfando, FL, De¢. 2018
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Active Learning

« Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A
Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 052023

» Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AIRe%ib, K. Singh, E. Corona and A.
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

« Active Learning on 00D data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

« Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification,"
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

« Gradient-based Uncertaintg: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

« Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

» Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

« Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurlPS
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

* Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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