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Deep Learning
Expectation vs Reality

Expectation vs Reality of Deep Learning
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Deep Learning
Expectation vs Reality

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop Dumb-bell Racket
— -
[

Even natural images Manhole cover Pretzel
can fool a DNN, *
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.

enature
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks
often go awry”
- Engineers, probably

Gr Georgia
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Deep Learning
Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Novel data sources:

e Test distributions

« Anomalous data
e QOut-Of-Distribution data
 Adversarial data

» Corrupted data

* Noisy data

* New classes

) s . -
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

»  Model Representation

i Y] o . |
Low Information : o 0o » The first instance of training must occur with
A @ . .
® 0, o less informative samples
g o o * Ex: For autonomous vehicles, less informative
£ means
O . |
Z‘:i » Highway scenarios
+ Parking

 No accidents
 No aberrant events

High Information

v

Samples @ Class1 @ Class 2
O Dtrgin == Boundary

Novel samples = Most Informative
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

» The model performs well on the new

100 pe—— - / scenarios, while forgetting the old scenarios

2 | Catastrophic | | | . _ _

g N Forgetting § | * A number of techniques exist to overcome this

8 60} Wl \ — mmist trend

2 .l N Y — FmnisT

< 40r \ ; * However, they affect the overall performance
' [ [

8 20f in large-scale settings

* It is not always clear if and when to
incorporate novel scenarios in training
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Novel data packs a 1-2 punch!

Even if
available,
novel data
does not
easily fit into
either the
earlier or
later stages
of training

Novel data may not
be available during
training

éj~ v ———
s IR T

A = Deep Neural Networks
B = Novel data
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Deep Learning at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Model Train At Inference

Novel data sources:

 Test distributions

* Anomalous data

» Out-Of-Distribution data
* Adversarial data

» Corrupted data

* Noisy data

* New classes

Gr Georgia
Tech.
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To discuss methodologies that promote robustness in neural networks at inference

« Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference

* Part 4: Intervenability at Inference

« Part 5: Conclusions and Future Directions
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Robust Neural Networks
Part I: Inference in Neural Networks

AOLIVES :
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Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

Part 1: Inference in Neural Networks
* Neural Network Basics
* Robustness in Deep Learning
» |nformation at Inference
» Challenges at Inference
« Gradients at Inference

Part 2: Explainability at Inference

Part 3: Uncertainty at Inference

Part 4: Intervenability at Inference

Part 5;: Conclusions and Future Directions
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Deep Learning
Overview

Low-Level L. Mid-Level ___ngh-Level___’ Trainable
Feature Feature Feature Classifier
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Deep Learning

Neurons
The underlying computation unit is the Neuron
@ Artificial Neuron
P . . LV@/
Artificial neurons consist of: o Sy
« Asingle output ety | -
. M |t| |e in ts _g summation activation
utip _ pu =t output
° |an,It V\{elghts g D
A bias input S
« An activation function " )
e‘\‘?\é\
@ @ bias
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Neurons are stacked and densely connected to construct ANNs

O' C
O’ at

output layer

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
« An input layer (Layer 0)

* An output layer (Layer K)
« Zero or more hidden (middle) layers (Layers 1...K — 1)
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

Low-Level| |Mid-Level| |High-Level Trainable
—_— — —
Feature Feature Featu{e Classifier

Ex. LeCun, 2015

18 of 172 // [Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Gr Georgia
Tech.




Transformers, Large Language Models and Foundation Models

15,000x increase in 5 years

GPT-31T
1 trillion

Megatron-Turing
530B

~ Cat

[
N
w
-
[}
©
o
=

GPT-3
1758

Transformers BERT GPT-2 GPT-28B TS5  Turing-NLG
65M 340M 1.5B 8.3B 118 178

MID 2018 2019 MID LATE 2020 MID LATE 2022
2017 2019 2019 2020 2021

Time

Primary reasons for advancements:

1. Expanded interests from the research community
2. Computational resources availability

3. Big data availability
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Deep Learning at Inference
Classification

Given : One network, One image. Required: Class Prediction

Predicted
Class Probability
Network f(0) Dog 9%
Cat 89%
ja = ﬁ - Horse

Bird

If x € y, the data is not
y = y = Logits
y =yargfn(zgccz)xl- 9 g = Predicted Class novel

p(y) =T(f(x)) p(y) = Probabilities
f(-) = Trained Network

x = Training data

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Deep Learning at Inference
Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
Network f(8) Dog 399,
Cat 53%
7 Horse
Bird

If x € y, the data is
y=f(x"+¢€) y = Logits

y = argmax; 9 y = Predicted Class novel

p(d) = T(f(x' + €)) p(y) = Probabilities
f(-) = Trained Network
x = Training data
€ = Noise
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Deep Learning at Inference
Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
Network f(8) Dog 399,
Cat 53%
7 Horse
Bird

To achieve robustness at Inference, we need the following:

* Information provided by the novel data as a function of training distribution
« Methodology to extract information from novel data

« Techniques that utilize the information from novel data

Why is this Challenging?

22 of 172 // [Tutorial@AAAI'24] | [Ghassan AlIRegib and Mohit Prabhushankar] | [Feb 21, 2024] GI‘ Georgia
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)

Gr Georgia
Tech.
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Challenges at Inference
Inference

However, at inference only the test data point is available and the underlying structure of the
manifold is unknown

Bl o At Inference Bl e At Training

L(O) . Trained network knowledge is L(O) .
1 not easily accessible ,

At training, we have access to all
training data.

Gr Georgia
Tech.
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Information at Inference
Fisher Information

Colloquially, Fisher Information is the “surprise” in a system that observes an event

Predicted
Class Probability

Network f(B) Dog
Cat

Horse
Bird

Fisher Information

i

0
1(6) = Var(%l(elx))

e 6 = Statistic of distribution
6, £(6 | x) = Likelihood function

Gr Georgia
Tech.

Likelihood function
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Information at Inference
Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes

Gr Georgia
Tech.
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Information at Inference
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

From before, 1(6) = Var(>-1(8|x))

Using variance decomposition, I1(6) reduces to:

1(0]x) 7. ( NS 1(6) = E[UgU{] where

E[-] = Expectation
Ug = Vyl(0]x), Gradients w.r.t. the sample

Hence, gradients draw information from the
underlying distribution as learned by the

Likelihood function instead of loss manifold network weights!
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Information at Inference
Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds

In this case, the image and its
prediction extracts nose, mouth
and jowl features.

Hence, gradients draw information from the

~ underlying distribution as learned by the
/"'// network weights!

8o

Feature attribution via GradCAM
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Gradients at Inference
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

|deal
3~ ( ) \\w = >
L(O) '
g /ﬁ a Vy L(0) provides local information up to a small
5 e distance a away from x
°? os 07 o8 . /_/;)5
05 44 & 7.\)_#/"‘03 91
60 0.1 a a

Gr Georgia
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(0)

=== Path 1?
Which direction should we
=== Path2? Optimize towards (knowing

X only the local information)?
- B ===  Path 3?
T R

L(o) | O |
. - Negative of the gradient provides the descent
oode” /// direction towards the local minima, as measured
Eirg-— o by L(6)
0% o4 ?:7\/__\//“03 0,
60 ” g
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Gradients at Inference
To Characterize the Novel Data at Inference

® At Inference
(8 | Trained network knowledge is
( )‘j not easily accessible
Counterfactual
and Contrastive Representation
Representations Traversal using
using Gradients Interventions

06

08 61

03

8o
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Robust Neural Networks

Part 2: Explainability at Inference

Gr Georgia
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Objective

Obijective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

 Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference
* Visual Explanations
» Gradient-based Explanations
« GradCAM
» Counterfactual CAM
« ContrastCAM

« Part 3: Uncertainty at Inference
* Part 4: Intervenability at Inference
« Part 5: Conclusions and Future Directions
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1 Explanatory Paradigms in Neural
Explanatlons >, aox | Networks: Towards Relevant and
. . - Contextual Explanations
Visual Explanations ——-

« Explanations are defined as a set of rationales used to understand the reasons behind a
decision

 If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed
Corralations Contras;i‘\_/e

N

. . What if Bullmastiff was not in | Why Bullmastiff, rather than a
Bullmastiff Why Bullmastiff? the image? Boxer?

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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SCAN ME

A 4

Kid

C

-

Y

Why Spoonbill,
rather than a
Flamingo?

Ornithologist

Why Spoonbill,

n rather than a
v,

= Fox?

Fox

;) Why Spoonbill? —

—

—

~
)
S
~
[ -
2
@
=2
o
=
]
=2

—

Pink and
round body,
straight
beak

Lack of S-
shaped
neck

o ;
or \

Neck, beak,
body, legs
are all
different

& The network
") taught me
about spoonbills

The network
does not know
about the
difference in
 legs

n | trust the

X network

Explain f(-)’s
decision

Assess f(+)

Garners
trustin f(-)

> It is a Spoonbill Explainability

o

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Gradient-based Explanations

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output; They
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

However, localization remains an issue

Gr Georgia
Tech.
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SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

#{>—M % Boxer Image Classification
3

y
Rectified Conv

Feature Maps global average pooling

N
= i) c
A y c 1 dy
— TagK-specific Q. — — -
____________________ Retwork k Z Z Z OAF,
' . ) 1 ]
' <«—— Gradients ! Asls
! Acti A ' R v
——>» Activations ! . .
. ; a gradients via backprop
4—) c L E : c Ak
Backprop till conv LGrad—C AM — R@L U (84 k A
4 B4 k
Grad-CAM (up-sampled to original image dimension) _ ~
linear combination
42 of 172 [Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024] OLIVES) Gl" Georgia
/A Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient- Tech.
based localization." Proceedings of the IEEE international conference on computer vision. 2017.



SCAN ME

Grad-CAM generalizes to any task:
* Image classification
* Image captioning

Visual question answering

e efc. i

Image Classification

y
Rectified Conv
Feature Maps
(or)
A ey
TagRgpecific ] "] A cat lying on Image Captioning
___________________ Netwaork P the ground
E <«€—— Gradients E
E —> Activations E
N e ! A (or)
4—) % Q Visual
Backprop RNN/LSTM SRl Question Answering
till conv )
Grad-CAM
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Explanatory Paradigms

SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Counterfactual Observed
Corralations Contras;[i}./e

N

BuIImastiff Why BuIImastiff’P What if Bullmastiff was not in | Why Bullmastiff, rather than a

the image? Boxer?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if this region were absent in the image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain a¢ for each kernel k

1< C | Boxer . .
I:D—M__)i }Image Classification

y

Rectified Conv
Feature Maps global average pooling

/N
S N

A y ¢ . 1 2 : 2 : 8y°

— TagK-specific O, — — —
____________________ Network [ e Ak
E <«—— Gradients E % J t

—> Activati : e c : ¥
civatons Lefer ¢ wle| Qg gradients via backprop

....................

4—) C c Ak

Backprop till conv LGrad-C AM — ReLU E O A

oy°¢ 2

What if Bullmastiff was not in oAk “ i
the image? ; s

linear combination

Negating the gradients effectively removes these regions from analysis
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

‘:S—M % Boxey }Image Classification
e

y

Rectified Conv
Feature Maps global average pooling

Al af c_ 1 SOy B9
— TagK-specific Q. = — M
__________________ Network b aAk
e ; Y i ] 1]
' <«—— Cradients ! vV
__________ Ac“vatlons | E'jf"‘l"'éﬂl a](é gradients via backprop
4—J k
Backprop till conv Lg}rad-C AM — ReLU E (8% Z A
dJ(P,Q) 2
Why Bullmastiff, rather than a " PYX: w _
Boxer? " Vb' ]
Contl’ast-CAM 1near combination
Backpropagating the loss highlights the differences between classes P and Q.
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

47 of 172
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SCAN ME

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

’ -
ImageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?

@m

_=_1—-—

ImageNet dataset : | Grad-CAM : Why : Bull Why Bull Mastiff, Representative Blue jay [  Why Bull Mastiff,
BuII Mastiff Masnff? imae rather than Boxer image rather than Blue jay?

wD

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?

_—
— -
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Gradient and Activation-based Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

SCAN ME
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A

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

Grad-CAM : Why Representative Why Spoonbill, rather Why Spoonbill, rather | Why not Spoonbill,
Spoonbill? Flamingo image lhan Flamingo? image than Pig? with 100% confidence?

W .
Representative Boxer Why Bull Mastiff, Representative Bluejay Why Bull Mastiff,
image rather than Boxer image rather than Blue jay?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

SCAN ME

Contrastive

Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

Human
Interpretable

Grad-CAM : Why Representative Why Spoonbill, rather ’ Why Spoonbill, rather | Why not Spoonbill,
Spoonbill? Flamingo image _than Flamingo? image than Pig? with 100% confidence? Sa me aS G rad_

Why Bull Mastiff,
rather than Boxer

f , CAM

Why Bull Mastiff,

rather than Blue jay?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible,

Representative Audi A6
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image

Why Bugatti, rather Why not Bugatti with
than Audi A6? 100% confidence?

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Gradient and Activation-based Explanations

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM v

50 of 172

/N

Contrastive Contrastive
Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

Input
Image

7 )  aned 3 2
X = § vHD
& —dl ,” s
Grad-CAM : Why Representative Why Spoonbill, rather Representative Pig ’ Why Spoonbill, rather | Why not Spoonbill,
i i than Flamingo? image than Pig? with 100% confidence?

Spoonbill? Flamingo image
1/ S (’
/» \ >
x p -
v

|"' 1 i
v

ImageNet dataset : | Grad-CAM : Why : Bull Representauve Boxer Why Bull MaStlff Representatlve Blue jay | Why Bull Mastiff, Why not Bull Mastiff,
_Bull Mastiff Mastlff? ra!her than Boxer image rather than Blue jay? | with 100% confidence?

Why Bugatti, rather Why not Bugatti with
than Audi A6? 100% confidence?

Why Convertible, Representative Audi A6
rather than Coupe? image

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti

Bugatti Convertible Bugatti Convertible? Coupe image
[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Human
Interpretable

Same as Grad-
CAM
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SCAN ME
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SCAN ME

Only traffic sign with a straight
bottom-left edge — enough to
say Not STOP Sign’

BEEeaEEN-EnaVE

Prabhushankar, M., Kwon, G., Temel, D., & AlIRegib, G. (2020, October). Contrastive explanations in neural
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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A Callback...

Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes

Gr Georgia
Tech.
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Information at Inference
Case Study: Explainability

T is the set of all features learned by a trained network

Beak
Neck |
Network f(0) Legs Why Spoonbill?

Feathers
; »Water - Features T
{ Grass

Teeth
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Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak

Neck Why S bill, rath
y Spoonbill, rather
Network f(8) Legs than Flamingo?

Feathers - )
Water — Features T° . .

Grass
Teeth

All the requisite Information is stored within f(0)

Goal: To extract and quantify this information at inference
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Robust Neural Networks
Part 3: Uncertainty at Inference

Gr Georgia
Tech.
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Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

e Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference
» Uncertainty Definition
« Uncertainty Quantification
« Gradient-based Uncertainty
» Adversarial and Corruption Detection

* Part 4: Intervenability at Inference
e Part 5: Conclusions and Future Directions
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Prediction
20 1 - Predictive mean A Slmple example:
+ Taining data o ] . .
15 Epistemic uncertainty * When training data is available: Less uncertainty
= « When training data is unavailable: More uncertainty
0.5 -
-

00 1 -

-05

-1.0 - 4

_15 1 ] ] ] | L ]

-15 -1.0 -0.5 0.0 0.5 10 15
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Uncertainty

Uncertainty Quantification in Neural Networks

Via Ensembles’

M

Network f1(0)

Dog
Cat
Horse
Bird

Dog
Cat
Horse
Bird

Dog
Cat
Horse
Bird

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive
uncertainty estimation using deep ensembles." Advances in neural information processing systems 30

Variation within outputs
Var(y) is the
uncertainty. Commonly
referred to as
Prediction Uncertainty.
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Uncertainty
Uncertainty Quantification in Neural Networks

Via Single pass methods’

NEIEI () Pog Uncertainty
. Lt quantification using a
Horse single network and a
AR | Bird single pass

L(O)

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference

NI 3 (2 Pog Uncertainty
‘ | Cat quantification using a
| || UL LA Horse single network and a

| A | Bird single pass

/ Calculate distance from some trained clusters

Does not require multiple networks!

L(®) Challenge: Class and prediction cannot be trusted!

Gr Georgia
Tech.
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques:

1. Gradient constraints during
Training for Anomaly Detection

2. Backpropagating Confounding labels
for Out-of-Distribution Detection
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ECCV'20

ONLINE

23-28 AUGUST 2020

|

Backpropagated Gradient Representations for
Anomaly Detection

L
Gukyeong Kwon, PhD Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc, Georgia Tech Professor, Georgia Tech SCAN ME

Amazon AWS
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Anomalies

[m] ¥ [=]

Backpropagated Gradient
[=] Representations for Anomaly Detection

Finding Rare Events in Normal Patterns SCAN ME

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ !/

Statistical Definition:
» Normal data are generated from a stationary process Py
* Anomalies are generated from a different process P, + Py

L

O i
SIgkuIy

R

J" Goal: Detect ¢,

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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/A [11V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3,
Article 15 (July 2009), 58 pages

() = ®o Normal data
$1 Anomalies
b0 ¢ do

-

x(t)

- — — —

Sty
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=]
SCAN ME

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

« Step 1 ensures that patches from natural
images live close to a low dimensional
manifold

« Step 2 designs distance functions that
detect implausibility based on
constraints

Anomaly
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[m] 3%+ [x]

L
[=]
SCAN ME
2004 2016 2018 2019
Tax et.al * Fan et.al 2 Pidhorksyi et.al 3 Abati et.al4

Encoder Decoder
& B
Training ’ .
Activations are

constrained Statistical deviation (Latent Loss)

using GANSs, Anomal
VAEs, etc. |
Testing |

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint
arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. AlImohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822—6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481-490.
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=]
SCAN ME

Activation Constraints

Activation-based representation

Forward propagation (Data perspective) How much of the input

. . e.g. Reconstruction error ( does not correspond to
Trained with ‘0

Anomaly

. . the learned information?

» Gradient Constraints
Input || | / Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w oL w’ How much model update is
ow required by the input?

—>

OLIVES

Georgia
A Tech

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



. . . [=] ¥ [m]
ConStralnlng ManlfOIdS 3 Backpropagated Gradient

[=] Representations for Anomaly Detection

Advantages of Gradient-based Constraints SCAN ME

» Gradients provide directional information to characterize anomalies
« Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution

| o Backpropagated
econstruction g¢(f9('))"‘." GFr)adian[s
Error (L) 0L 0L
‘ = 20,09|,_,
p
Xout

Reconstructed image manifold

[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024] o
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GradCON: Gradient Constraint P

: Backpropagated Gradient
=]
Gradient-based Constraints

Representations for Anomaly Detection
SCAN ME

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data

Gradient loss
out 0L _ A

[ At k-th step of training,
' 0

|

|

|

-
I in,1
< L ’ ]=£—IE-[COSSIM( ) )]

Avg. training Gradients at
gradients until (k-1) th iter. k-th iter.

Learned manifold

k-1 k-1 t
where Z 2

| | 0bigug 0¢;
¢: Weights L: Reconstruction error

69 of 172 // [Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024] o

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

t=1

=9 o Gr Georgia
‘ Tech.



SCAN ME

AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average

detection (C”:AR 10 CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 0.711 0.390 0.564
CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554

+ Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661
VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
(I.D L tatent V.boad U.44s V.04 U.4J( V.20 U019 U.(a9 U.oz( U D= U.210 U.000 |

Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
econ

Latent O 586 O 396 0. 618 O 476 O 719 O 474 O 698 O 5oF W 586 0. 413 O 550
Grad 0.736 0.625 0.591 0.596 0.707 0.570 0.740 0.543 0.738 0.629 0.647

VAE
+ Grad

Normal Abnormal

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss
« (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
« (CAE vs. VAE) Performance sacrifice from the latent constraint

« (VAE vs. VAE + Grad) Complementary features from the gradient constraint
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. . [m] ¥ [w]
GradCON: Gradient Constraint i | Backpropagated Gradient

[=] Representations for Anomaly Detection

Aberrant Condition Detection SCAN ME

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure

AUROC

Abnormal “condition”
detection (CURE-TSR)

Levels
Gaussian Blur
1.0
0.8

Normal Abnormal

AUROC

Levels Levels Levels

[->¢- Recon (CAE) —<— Recon (CAE+Grad) |—e— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss

Gr Georgia
Tech.
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

®
Two techniques: 16]%) " \
1. Gradient constraints during Training o] s
for Anomaly Detection ‘ | //
2. Backpropagating Confounding o g .
labels for Out-of-Distribution "G
Detection

Gr Georgia
Tech.
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data

However, what is L?

Abnormal data distribution

* |In anomaly detection, the loss was between the input and
its reconstruction
* In prediction tasks, there is neither the reconstructed input

nor ground truth

Backpropagated
Gradients

9o (fo ())

Learned Representation

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data
P = Predicted class
Q, = Contrast class 1

Q, = Contrast class 2 However, what is L?
Backpropagated * In anomaly detection, the loss was between the
Gradients input and its reconstruction
dL(P, Q1) « In prediction tasks, there is neither the

00 reconstructed input nor ground truth

 We backpropagate all contrast classes -
Q4,Q, .. Qy by backpropagating N one-hot

vectors
Backpropagated « Higher the distance, higher the uncertainty
Gradients score
Learned Representation 0L(P,Q>)
a0

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Probing the Purview of Neural Networks
via Gradient Analysis

Toy Manifold Example

What is uncertainty?

Gradients represent the local required change in manifold ‘x
Contrast class 1

) o1

2~

» Gradients
provide the
necessary
change in
manifold that

X P would predict

the novel data
‘correctly’.

» Correctly means
contrastively (or
incorrectly)!

35
1

Contrast class N

)
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Probing the Purview of Neural Networks
via Gradient Analysis

Toy Manifold Example

How is this different from Explainability?
SCAN ME

Part 2: Explainability Part 3: Uncertainty

4 o3 “7>\\>/
o1 el

» In Part 3: Statistics of gradients

* In Part 2: Activations of learned _ _
manifold are weighted by gradients w.rt. the weights (energy) will be
w.r.t. activations to extract directly used as features
information and provide
explanations

o

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Uncertainty in Neural Networks

Deriving Gradient

Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Gradients - -
Weights, W,

X -+ Sensing
Network

)

|

fi-1)(

B

S

Introspective Feature%’

Vwl(@.y1)

o

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

[11 M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural
Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

2022.

Y

Normalized and vectorized
gradients are introspective
features.

Why vector of all 1s? The theory is
presented in [1]

Gr Georgia
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Uncertainty in Neural Networks
Utilizing Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 2: Take L2 norm of all generated gradients

. Dataset
llection of red L2 norm . 2 .. . - il
. Collection of squared 0 1V, J(80; x,yc)nz | | Vo, J(On; x'yc)”z =
dyg
15 S
10 . ¢ ,
5 N ‘ N * | % ﬁ ! i #
. * ' : o i
0= ":E'_éﬁ _-4-_;i _+_,_é- A A= _*_-i-i e -i-_‘_ _‘.—‘;T ,_1-,‘?’ _,.'.4,! -— ~F _‘, ¢ _‘4-_‘_; _p_._i “_g&- —— NG AT CAIA — — _

& o * s o s+ s o > Y * S > . o s - o & & o . s + . o . s o . ~ o & & o . 5 o > s« o . s e . . o & & >
& s § & o $ $ $ c I 5 $ & o o
§ & & & F & & S & & P & & &F & & & & & & & S & & & & & & & & & & & & & & & & F & & & S & &P & & ¢

& & E &
F oF A LS

Network Parameters

MNIST: In-distribution, SUN: Out-of-Distribution
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Gradient-based Uncertainty
Uncertainty in OOD Setting

17.5

15.0

1V)(8)]2
o N
o w

—
wn

e
(=]

2.5

0.0
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Probing the Purview of Neural Networks
via Gradient Analysis

Datasets
BN MNIST
Bl SVHN
Bl TinylmageNet
BN LSUN
Bl CIFAR-10

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE
Access 11 (2023): 32716-32732.
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Gradient-based Uncertainty

Experimental Setup -
SCAN ME

Probing the Purview of Neural Networks
via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect
adversarial, noisy, and OOD data

B B B . - - Step 1: Train a deep network f(-) on
173 ; o ] 3.0 ] 04 T some training distribution
15.0 T i . . T Step 2: Introduce challenging
4. 4 8 T| o3 (adversarial, noisy, OOD) data
£ 3 20 ) Step 3: Derive gradient uncertainty on
s ° 15 o both trained and challenge data
e 2 . Step 4: Train a classifier H(-) to detect
1.0 . .
5.0 o challenging from trained data
S5 ! ? 05 Step 5: At test time, data is passed
\ o E . = - oy o through f(-) and then H(-) to obtain a
Reliability classification
81 0of 172 [Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024] Gr Georgia
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Gradient-based Uncertainty
Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

Gr Georgia
Tech.
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SCAN ME

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

Access 11 (2023): 32716-32732.

MODEL ATTACKS BASELINE  LID M(V) M®P) MFE) M(P+FE) OURS
FGSM 51.20 90.06 81.69 84.25 99.95 99.95 93.45

BIM 49.94 99.21 87.09 89.20 100.0 100.0 96.19

RESNET C&W 53.40 76.47 74.51 75.71 92.78 92.79 97.07
PGD 50.03 67.48 56.27 57.57 65.23 75.98 95.82

ITERLL 60.40 85.17 62.32 64.10 85.10 92.10 98.17

SEMANTIC 52.29 86.25 64.18 65.79 83.95 84.38 90.15

FGSM 52.76 908.23 86.88 87.24 99.98 99.97 96.83

BIM 49.67 100.0 89.19 89.17 100.0 100.0 96.85

C&W 54.53 80.58 75.77 76.16 90.83 90.76 97.05

DENSENET  ppy 49.87  83.01 7039 6652 8694  83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84 98.53

SEMANTIC 53.54 81.41 62.16 62.15 67.98 67.29 89.55
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Gaussian Noise Defocus Blur  Gaussian Blur Spatter

" . -

No Decolor-
Challenge ization

Lens Dirty

Blur Lens
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

g Method Mabhalanobis [12] / Ours

8| Comuption | Levell  Levelz  Leveld  Levlld  Level5

Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99

LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0

- GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0

9: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96

E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87

~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92

Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0

Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83

Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81

LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65

GaussianBlur | 66.44/83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53

é DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70

g Exposure 74.90 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90

N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66

Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88

Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

g Method Mabhalanobis [12] / Ours

8| comuption | Levll  Levelz  Leveld  Levld  Levels
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- GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
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Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0

Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83

Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81

LensBlur 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65

GaussianBlur | 66.44/83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53

é DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70

g Exposure 74.90 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90

N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66

Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
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Probing the Purview of Neural Networks
via Gradient Analysis
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

SCAN ME

MNIST

Train set -

2 pidio|F] | [
EE . - Doniss)
110 |
v -

Z1200]

CIFAR10 TinylmageNet
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution

SVHN
CIFAR-10  TinyImageNet

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 /93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

LSUN
CIFAR-10

87.34/88.42/85.02/98.60 / 98.37
79.98/80.12/74.10 / 88.84 / 97.90

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 /99.87
81.01/80.95/80.83/90.25/98.11

SVHN TinyImageNet

81.70/81.92/79.35/96.17/97.74

83.69/83.82/83.85/99.23/99.77

82.54/82.60/85.50/98.17 /97.93

LSUN

80.96/81.15/79.52/97.50/99.04

82.85/82.98/83.02/99.54/99.93

81.97/82.01/84.67/98.84/99.21

M
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Out-of-Distribution Detection

Dataset Distribution Detection Accuracy

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

via Gradient Analysis

Probing the Purview of Neural Networks

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 /93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 /99.87
81.01/80.95/80.83/90.25/98.11

83.69/83.82/83.85/99.23/99.77

82.54/82.60/85.50/98.17 /97.93

In Out
SVHN 83.36/88.81/79.39/91.95/98.04
CIFAR-10  TinyImageNet ' 84.01/85.21/83.60/97.45/86.17
LSUN 87.34 /88.42/85.02/98.60 / 98.37
CIFAR-10  79.98/80.12/74.10/88.84 /97.90
SVHN  TinylmageNet 81.70/81.92/79.35/96.17/97.74
LSUN 80.96 /81.15/79.52/97.50 / 99.04

82.85/82.98/83.02/99.54/99.93

Numbers

M
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Out-of-Distribution Detection

via Gradient Analysis

Dataset Distribution

SVHN

CIFAR-10  TinyImageNet

Detection Accuracy

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 / 93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 / 99.60 / 92.66

LSUN

87.34 / 88.42/85.02/98.60 / 98.37

92.79/94.48 /90.11/99.86 / 99.86

92.30/94.22/89.80/99.82 / 99.87

CIFAR-10

79.98/80.12/74.10/ 88.84 / 97.90

81.50/81.49/79.31/95.05/99.79

81.01/80.95780.83/90.25/98.11

SVHN TinyImageNet

81.70/81.92/79.35/96.17/97.74

83.69/83.82/83.85/99.23/99.77

82.54/82.60/85.50/98.17 / 97.93

LSUN

80.96/81.15/79.52/97.50/99.04

82.85/82.98/83.02/99.54/99.93

81.97/82.01/84.67/98.84/99.21

More similar
datasets
(objects)

o

TinylmageNet

CIFAR10
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Case Study: Introspective Learning
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

3~
: ™\
2~ i

Two techniques: 1(0]x)

1

1. Gradient constraints during Training |
for Anomaly Detection s
2. Backpropagating Confounding
labels for Out-of-Distribution
Detection
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustnhess in Neural Networks
Why Robustness?

How would humans resolve this challenge?

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bullmastiff?

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspectlon
S U |
- Visual Sensing o Reflection

Sense pink feathers,

_ Why Spoonbill, rather than Flamingo?
straight beak

x does not have an S-shaped neck

Spoonbill Why Spoonbill, rather than Crane? ,
y x does not have white feathers . »Spoonblll
' y
& Why Spoonbill, rather than Pig? I
i Feed-Forward . ' x's leg and neck shapes are |
- Sensing I different _
| - .
IIIIIIIIIIIIIII J — n L] L] — n _— L —_— - _— n L] - —_— n L] L — n _— n L] L ] —_— n L] II
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection

Introspection in Neural Networks
SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Counterfactual Observed
Corrdlations Contras;[i.\_/e

N

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?

Gr Georgia
Tech.

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form Why
P, rather than Q? where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the networks prediction
f(x) =9, introspection in f (-) is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Why 5, rather than 0?

Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

For a well-trained network, the gradients are sparse and informative

T .| |

I Informative sparse features
| Why 5, rather than 0?\Why 5, rather than 1? |

: ' 0+
| — .
‘ 1 - - ~
Why 5, rather than 27? Why 5, rather than 4?
|
- @ B l
l - B -
\
Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

SCAN ME

For a well-trained network, the gradients are robust

Vyy = Gradients w.r.t. weights

J = Loss function A Yi
y = Prediction Lemmal:Vw J(yr,9) = —Vwyr + Vwlog( 1+ 5
Vi
A
{f 3 r N r \\
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
| _ _ Any change in class requires change in
0 0 | relationship between y; and y
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features
Gradients =« = = =

Weights, W, . .

S Normalized and vectorized
gradients are introspective
features

N

Vector of all ones: A confounding label!

X -+ Sensing
Network

)

Y
fiL-13(x)

Gr Georgia
Tech.

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
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Introspection

Utilizing Gradient Features

Networks

Gradients =« = = =
Weights, W,

Introspective Features

X —» Sensing
Network

fC)

Y
fiL-13(x)

[

4————————0——0-———);*

Txm

MLP
H()

M vectorized
and normalized
gradients

Introspecti\}e Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Gaussuan Noise Defocus Blur  Gaussian Blur Spatter

PR e ¥
g 3250 S J
Rt f
e oy ;
v L /
r - /’
- ‘ »
e ’
4
i

e - . . n.'w - . -

No Decolor- Lens Dirty Gaussian
Challenge  ization Blur Lens Expoeure Blur Noise Snow
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SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy

LeNet (1998) ResNet (2016)

i CIFAR-100 CIFAR-100

' LT al o
o 018 glg @l
2 <115 EI S
g 0.6 EnS 1B . . ,
g Sy S « Larger the model, more misplaced is a network’s
w 0.4 I Y .
s 2 o confidence
® - <n 1<

1 [ o
o e — * On ResNet, the gap between prediction accuracy
) e e O OZE 28 NP S B ) and its corresponding confidence is significantly
Bl Outputs Il Outputs .

0.8 ||z3 Gap E=Z Gap hlgh
& 0.6
5
8 0.4
<

0.2

00 Error=44.9 Error=30.6

0.0 02 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 10

Confidence
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Introspection in Neural Networks
Generalization and Calibration results

. CIFAR-10C

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

76 4 /,'. 5 ,/ \\
X 75 A \\\ X 751 ,// \\\ % T o=
S / eSS S // ~
> ! ‘ Jioe S > | \ ’ e
Ideal: Top-left & 7 ‘| R O'gaf @ g N
corner S 73 " Introse;éctlon N S \ Intr S/ ection \
O o / / X O 73 } ? P \
<% 72\3\ / / ) g W : ;@ ° |
Y-AXxis: g [N ® )/ | @ ) - |
Generalization §7'| - i s | b '
© \ ] © . L e 1 \ ;
g 70 - \ // g \ l, \\ //
- O \ /] O \ & \ /
X'AXIS. E 69 1 \\ // E 70 - \\ // \\\ ///
Calibration a R ! o e @ L
0.06 0.08 0.10 0.12 014> ~—70I6 0.18 0.10 0.12 014~ 016 0.18
Expected Calibration error Expected Calibration error
Legend
Feed-Forward Networks ® ResNet-18 @ ResNet-34 @ ResNet-50 ResNet-101
After Introspection ® ResNet-18 ResNet-34 @ ResNet-50 ResNet-101
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Introspection in Neural Networks
Plug-in nature of Introspection

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
Drospeenve | TLAX Introspection is a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% netWO rkS and on any
SIMCLR (39) FEED-FORWARD 70.28% down Stream task'
INTROSPECTIVE 73.32% )
AUGMENT NOISE (239) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (2%) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active

108 of 172

SCAN ME

Learning, and Image Quality Assessment!

Table 2: Recognition accuracy of Active Learn-

Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image  ing strategies.
Quality Estimators. Top 2 results in each row are highlighted.

PSNR Iw SR FSIMc Per CSV SUM Feed-Forward Introspective
Database HA SSIM  SIM SIM MER UNIQUE UNIQUE
Outlier Ratio (OR, |)
MULTI 0.013 0.013 0.000 0.016 0.004 0.000 0.000 0.000 0.000
TID13 0.615 0.701 0.632 0.728 0.655 0.687 0.620 0.640 0.620
Root Mean Square Error (RMSE, |)
MULTI 11.320 10.049 8.686 10.794 9.898 9.895 8.212 9.258 7.943
TID13 0.652 0.688 0.619 0.687 0.643 0.647 0.630 0.615 0.596
Pearson Linear Correlation Coefficient (PLCC, 1)
MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
-1 -1 0 -1 -1 -1 -1 -1
TID13 0.851 0.832 0.866 0.832 0.855 0.853 0.861 0.869 0.877
-1 -1 0 -1 -1 -1 0 0
Spearman’s Rank Correlation Coefficient (SRCC, 1)
0715 0.884 0.867 0.867 0.818 0.849 0.884 0.867 0.887
UL -1 0 0 0 -1 -1 0 0
TID13 0.847 0.778 0.807 0.851 0.854 0.846 0.856 0.860 0.865
-1 -1 -1 -1 0 -1 0 0
Kendall’s Rank Correlation Coefficient (KRCC)
0.532 0.702 0.678 0.677 0.624 0.655 0.698 0.679 0.702
MULs -1 0 0 0 -1 0 0 0
TID13 0.666 0.598 0.641 0.667 0.678 0.654 0.667 0.667 0.677
0 -1 -1 0 0 0 0 0

A
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M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural

Methods Architecture Original Testset Gaussian Noise
R-18 R-34 R-18 R-34
Entropy &1) Feed-Forward 0.365 0.358 0.244 0.249

Introspective 0.365 0.359 0.258 0.255

Feed-Forward 0.371 0.359 0.252 0.25

Least &1) Intospective 0373 0362 0264 026
Magin @)  Feed-Forward 038 0369 0251 0253
& Introspective  0.381 0373 0265  0.263
FeedForward 0393 0368 026 0253

BALD 8% Introspective 0396 0375 0273 0.263
BADGE (@3) Feed-Forward 0.388 0.37 0.25 0.247

Introspective 0.39 0.37 0.265 0.260

Table 3: Out-of-distribution Detection of exist-
ing techniques compared between feed-forward
and introspective networks.

Methods OOD FPR Detection AUROC
Datasets (95% at TPR) Error
4 T

Feed-Forward/Introspective

Textures 58.74/19.66 18.04/7.49 88.56/97.79

MSP &5) SVHN 61.41/51.27 16.92/15.67 89.39/91.2
Places365 58.04/54.43 17.01/15.07 89.39/91.3
LSUN-C 27.95/27.5 9.42/10.29 96.07/95.73
Textures 52.3/9.31 22.17/6.12 84.91/91.9
ODIN #6) SVHN 66.81/48.52 23.51/15.86 83.52/91.07
Places365 42.21/51.87 16.23/15.71 91.06/90.95
LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87

\OLIVES ,

Cr

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

2022.
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Robust Neural Networks
Part 4: Intervenability at Inference

Gr Georgia
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Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

Part 1: Inference in Neural Networks

Part 2: Explainability at Inference

Part 3: Uncertainty at Inference

Part 4: Intervenability at Inference
 Definitions of Intervenability
« Causality
* Privacy
* Interpretability
* Prompting
« Benchmarking
« Case Study: Intervenability in Interpretability

e Part 5: Conclusions and Future Directions
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: The amenability of neural network decisions to human interventions

“Interventions in data are
manipulations that are designed to
test for causal factors”

OLIVES Georgia

Schalkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



: The amenability of neural network decisions to human interventions

“Intervenability aims at the
possibility for parties involved
in any privacy-relevant data
processing to interfere with the
ongoing or planned data

processing”
OLIVES Georgia
Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy protection goals. In: Tech
Camenisch, J., Crispo, B., Fischer-HUbner, S., Leenes, R., Russello, G. (eds.) Privacy and Identity

Management for Life. IFIP AICT, vol. 375, pp. 14-31. Springer, Heidelberg (2012)



: The amenability of neural network decisions to human interventions

“The post-hoc field of
explainability, that previously
only justified decisions,
becomes active by being
involved in the decision making
process and providing limited,
but relevant and contextual
interventions

OLIVES Georgia

AIRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards Tech
relevant and contextual explanations." IEEE Signal Processing Magazine39.4 (2022): 59-72.



: The amenability of neural network decisions to human interventions

“... new benchmarks were proposed
to specifically test generalization of

classification and detection methods

Benchmarking with respect to simple

algorithmically generated
interventions like spatial shifts,
blur, changes in brightness or
contrast...”

2 4

OLIVES Georgia

Schalkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



The amenability of neural network decisions to human interventions

: Causality
: Privacy
: Interpretability
: Benchmarking

Challenges:

* Residuals of Interventions: Uncertainty

OLIVES

Georgia
A Tech



Case Study: Intervenability in Interpretability

Explanation Evaluation

Visual explanations are evaluated via masking the important regions in the image and
passing it through the network

Three types of Masking: _
Trained Model Crane
. Masking using explanation heatmap

2. Pixel-wise masking using explanation as

importance :
3. Structure-wise masking using information Trained Model Spoonbill
encoded in explanation

Masking = Intelligent Intervention

A
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Common evaluation technique is masking the image and checking for prediction correctness

' . ..

If across N images, [ } c
E(Y|Sx2) > E(Y|Sx1), rane

y = Prediction
Sy = Explanation masked data

E(Y|S,) = Expectation of class given S,

explanation technique 2

IS better than explanation } Spoonbill
technique 1
// OLIVES Georgia
Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep Tech
A convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACYV). IEEE,

2018.



However, explanation masking encourages ‘larger’ explanations

. y .
Larger explanations imply more | \‘
features in masked images are intact =
(unmasked)

This increases likelihood of a correct

prediction

Spoonbill

OLIVES Georgia

Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep Tech
convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACYV). IEEE,

2018.



Case Study: Intervenability in Interpretability

Explanation Evaluation

Common evaluation technique is masking the image and checking for prediction correctness

Three types of Masking: _
Trained Model Crane
. Masking using explanation heatmap

2. Pixel-wise masking using explanation

as importance _
3. Structure-wise masking using information Trained Model Spoonbill
encoded in explanation

—
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Pixel-wise Deletion: Sequentially delete (mask) pixels in an image based on their explanation
assigned importance scores

Highest Step 1: Mask highest importance pixel and pass

importance the image through the network. Note the probability
of spoonbill.

S_econd Step 2: Mask the second highest importance pixel

!—hghest from the image in Step 1 and pass the image

Importance through the network. Note the probability of
spoonbill.
Step 3: Repeat until all pixels are deleted
(masked)

Least

importance
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Case Study: Intervenability in Interpretability

Evaluation 2: Progressive Pixel-wise Insertion and Deletion

The removal of the "cause” (important pixels) will force the base model to change its

decision.
Deletion
» Deletion approximates
AUC=0.049 Necessity criterion of a “good”
explanation
« AUC for a good explanation will
Deletion be |OW

« Deletion encourages fine-
AUC=0.127 grained explanations by
choosing those heatmaps that
, select the most relevant pixels

[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Pixel-wise Insertion: Sequentially add pixels to a mean image based on their explanation
assigned importance scores

Highest Take a mean (grayscale) image

Importance
Step 1: Add the highest importance pixel to the

Second mean image and pass it through the network. Note

Highest the probability of spoonbill.

Importance Step 2: Add the second highest importance pixel to
the image in Step 1 and pass the image through
the network. Note the probability of spoonbill.

Step 3: Repeat until all pixels are inserted
Least
importance
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Case Study: Intervenability in Interpretability

Evaluation 2: Progressive Pixel-wise Insertion and Deletion

The addition of the "cause” (important pixels) will force the base model to change its

decision.
Insertion
AUC—0.847 * Insertion approximates
' Sufficiency criterion of a “good”
explanation
« AUC for a good explanation will
Insertion be h|gh

(f

* Insertion encourages fine-
AUC=0.929 grained explanations by
choosing those heatmaps that
select the most relevant pixels

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Case Study: Intervenability in Interpretability

Evaluation 2: Progressive Pixel-wise Insertion and Deletion

Insertion and Deletion evaluation metrics encourage pixel-wise analysis of explanations

Insertion

Explaining: bittern

« However, humans do not “see”
in pixels

« Rather they view scenes in a
“structure-wise” fashion

Insertion

Explaining: white stork

* While heatmap masking
encourages large explanations,
pixel-wise masking encourages
unrealistic and non-human like
explanations

Gr Georgia
Tech.
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Case Study: Intervenability in Interpretability

Explanation Evaluation

Common evaluation technique is masking the image and checking for prediction correctness

Three types of Masking: _
Trained Model Crane
. Masking using explanation heatmap

2. Pixel-wise masking using explanation as

importance :
3. Structure-wise masking using Trained Model Spoonbill
information encoded in explanation

—
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Case Study: Intervenability in Interpretability

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number
of bits used to represent the region

Ideal scenario: The explanation encodes the
most important information in the least

possible bits

Deletion Accuracy across Thresholds

CausalCAM in Red
| GradCAM in Purple
e, ™ GradCAM++ in Green

* D, and D, represent 65% accuracy for
CausalCAM and GradCAM respectively

« CausalCAM encodes dense structure-rich
features in lesser bits, that aid accuracy

Gr Georgia
Tech.
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Case Study: Intervenability in Interpretability

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number
of bits used to represent the region

Ideal scenario: The explanation encodes the
most important information in the least
possible bits

Deletion Accuracy across Thresholds

Step 1: Choose a threshold in the explanation (say
0.1) and delete (mask) all the pixels in the original
" = (G, G Groocan ) image below the threshold. Pass the masked
image through the network and note the change in
prediction (if any)

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Case Study: Intervenability in Interpretability

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number
of bits used to represent the region

Ideal scenario: The explanation encodes the
most important information in the least

possible bits

Deletion Accuracy across Thresholds

Step 1: Choose a threshold in the explanation (say
0.1) and delete (mask) all the pixels in the original
image below the threshold. Pass the masked
image through the network and note the change in

V-axis: Performance X-axis: Ratio of Huffman prediction (if any) N

accurécy Across al echdeq masked and Step 2: Calculatg the Huffman c;ode for the original

atios original Images for all and the masked image. The ra}tlo betyveen the
explanations. Smaller codes of masked and original image is taken on
the ratio, less is the the x-axis and the corresponding accuracy across
number of bits encoding all images is shown on the y-axis

the masked image

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Case Study: Intervenability in Interpretability

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number
of bits used to represent the region

Ideal scenario: The explanation encodes the
most important information in the least

possible bits

Deletion Accuracy across Thresholds

Step 1: Choose a threshold in the explanation (say
0.1) and delete (mask) all the pixels in the original
image below the threshold. Pass the masked
image through the network and note the change in

V.axis: Performance X-axis: Ratio of Huffman prediction (if any) N
accurécy Across al echdeq masked and Step 2: Calculatg the Huffman c;ode for the original
ratios original images for all and the masked image. The ra}tlo betyveen the
explanations. Smaller codes of masked and original image is taken on
the ratio, less is the the x-axis and the corresponding accuracy across
number of bits encoding all images is shown on the y-axis
the masked image Step 3: Repeat across thresholds

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]
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Case Study: Intervenability in Interpretability

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Insertion: Sequentially add (insert) pixels in an image based on the number of
bits used to represent the region

eertion Accuracy across Thresholds Ideal scenario: The explanation encodes the
most important information in the least

possible bits

Accuracy

CausalCAM in Red
GradCAM in Purple
GradCAM++ in Green

04 05 0.6 07 08
Mp/MHr,m = {Causal, GradCAM, GradCAM + + }

« CausalCAM encodes dense structure-rich
features in at the lowest threshold, that aid

accuracy
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Case Study: Intervenability in Interpretability

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise insertion and deletion can sometimes promote adversarial explanations

« Best explanations according to
structure-wise insertion and deletion.

« Corroborated by high probabilities

Gr Georgia
Tech.
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Evaluation 1: Explanation heatmap masking Evaluation 2: Pixel-wise insertion and deletion

« Pro: Structures are visible in the explanations * Pro: Progressively assigns importance to pixels

« Con: Encourages large non-fine grained explanations ¢ Con: Encourages unrealistic and dispersed explanations

Evaluation 3: Structure-wise insertion and deletion

* Pro: Encourages structures while progressively assigning importance to structures based on information bits
* Pro: Other human-centric measures including SSIM, saliency etc. can be used on x-axis

« Con: Encourages causal (and sometimes adversarial) explanations without considering context information

[Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024] NOLIVES/ Gl" Georgia
X J2 Tech.
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The amenability of neural network decisions to human interventions

 Hence, there is no single-best
interventional strategy

« Choosing the right intervention is still an
art

Challenges:

* Residuals of Interventions: Uncertainty

OLIVES Georgia

I



The amenability of neural network decisions to human interventions

 Hence, there is no single-best
interventional strategy

« Choosing the right intervention is still an
art

Challenges:
« Choosing the type of Intervention: Explanation

Evaluation

OLIVES Georgia

I
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Case Study: Intervenability in Interpretability

Predictive Uncertainty in Explanations

Explanatory techniques have predictive uncertainty

Explanation of Prediction Uncertainty of Explanation

Uncertainty in answering
Why Bullmastiff?

Why Bullmastiff?
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Uncertainty due to variance in prediction when model is kept constant

le sz
- . ViyISxl = VIEWIS:)] + EWV[yISx])
y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

R

('
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A ‘good’ explanatory technique is evaluated to have zero V[E(y|S,)]

Sx

1 SxZ
.\"A. . VIy|Sxl = VIEWIS)] + E(V[y[Sx])
y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

Zero E(Y|Ss) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 1: Visual Explanations are

_ o Network evaluations have nothing to do with human
evaluated to partially reduce the predictive

ok Explainability!
uncertainty in a neural network
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

X S,

1 SxZ
.\"A. . VIy|Sxl = VIEWIS)] + E(V[y[Sx])
y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision

142 of 172 [Tutorial @AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024] OLIVES 7= __ Georgia
M. Prabhushankar, and G. AlIRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify \ - | B Tech
Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted
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Case Study: Intervenability in Interpretability

Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

The effect of a chosen Interventions can be measured
based on all the Interventions that were not chosen
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Case Study: Intervenability in Interpretability

Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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144 of 172
M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify
Uncertainty in Neural Network Interpretability,” Journal of Selected Topics in Signal Processing, submitted -

on Aug. 27, 2023.

Gr Georgia
Tech.




Case Study: Intervenability in Interpretability

Predictive Uncertainty in Explanations is the Residual

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Not chosen features are intractable!
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Case Study: Intervenability in Interpretability

Quantifying Interventions in Explainability

Contrastive explanations are an intelligent way of obtaining other subsets

VIy|Sxl = VIEIS,)] + EV[y|Sx])

J—
Make it finite by only considering the subsets that

changey Y, (S
Y2 |Sx2
Y3 |SX3
Y4 | Sx4
Y5 |Sx5

— \ariance

YN | SXN
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Case Study: Intervenability in Interpretability

Quantifying Interventions in Explainability

Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

e |s GradCAM better than GradCAM++?
e |Is a SWIN transformer more reliable than VGG-167

Need objective quantification of Intervention Residuals
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Case Study: Intervenability in Interpretability

Quantifying Interventions in Explainability: mlOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image GradCAM GradCAM++ Guided Backpropagation SmoothGrad

Pradicton Damatia . Predition: Gt prediction . Bapimati . Pracion . etanatter ObjeCtive Metric:
Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
i, less trustworthy is the

R o~ prediction)

Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions Incorrect Predictions

Explanation of Prediction Uncertainty of Explanation

Objective Metric:
Signal to Noise
Ratio of the

Uncertainty map

VGG-16

(a) (b

Higher the SNR of
uncertainty, more is the
dispersal (or less trustworthy
is the prediction)

Swin Transformer

(e) (f) (8) (h)

Gr Georgia
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Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted
on Aug. 27, 2023.
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Case Study: Intervenability in Interpretability

Quantifying Interventions in Explainability: mlOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image GradCAM GradCAM++ Guided Backpropagation SmoothGrad O b . t- M t . 1 .
Explanation of  Uncertainty of  Explanation of  Uncertainty of  Explanation of  Uncertainty of  Explanation of  Uncertainty of J e C Ive e rl C .

Prediction Explanation Prediction Explanation Prediction Explanation Prediction Explanation

Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
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PR 4 prediction)
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Case Study: Intervenability in Interpretability

Quantifying Interventions in Explainability: mlOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

e ons s o s oo e samma weems | Objective Metric 1:
o i
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
Bcion, g less trustworthy is the

PR 4 prediction)

Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions

VGG-16

Swin Transformer

(e)

Explanation of Prediction Uncertainty of Explanation

(b)

(f)

Incorrect Predictions

(8) (h)
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Objective Metric 2:
Signal to Noise
Ratio of the
Uncertainty map

Higher the SNR of
uncertainty, more is the
dispersal (or less trustworthy
is the prediction)
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The amenability of neural network decisions to human interventions

 Not choosing interventions causes
uncertainty in the chosen interventions

 Residuals must be analyzed
intelligently to ‘trust or not to trust’
predictions at inference

Challenges:
« Choosing the type of Intervention: Explanation
Evaluation

OLIVES

Georgia
A Tech



The amenability of neural network decisions to human interventions

: Causality
: Privacy
: Interpretability
: Prompting
: Benchmarking

OLIVES Georgia

Schalkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



Intervenability in Benchmarking
Detection and Localization

CURE-TSD: Challenging Unreal and Real Environments for Traffic Sign Detection

Data Characteristics:
» 49 real and virtual sequences
« 300 frames in each sequence

« 12 different challenges including
decolorization, codec error, lens
blur etc.

« 5 progressively increasingly
levels in each challenge

e Goal: Detect and localize traffic
signs

P IR ‘_ '\.u A .'\ 2. Al '3
At L RN R Y T :
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Intervenability in Benchmarking
Recognition

CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition

Data Characteristics:

« 2 million real and virtual traffic
sign images

» 14 Traffic signs including common
signs like stop, no-right, no-left
etc. and uncommon signs like
goods-vehicles, priority lanes etc.

« 12 different challenges including
decolorization, codec error, lens
blur etc.

« 5 progressively increasingly
levels in each challenge
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Intervenability in Benchmarking
Recognition

ImageNet-C: ImageNet-Corruptions

Gaussian Noise

T ~':

Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Data Characteristics:
« 3.75 million images

» 15 different challenges including ol i v
decolorization, codec error, lens Zoom Blur
blur etc. for testing | '

« 4 different challenges for
validation and training

« 5 progressively increasingly » SR\ <
levels in each challenge Brightness Contrast Elastic Pixeate JPEG

» Goal: Recognize 1000 classes
from ImageNet using pretrained
networks
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Intervenability in Benchmarking

Recognition

Data Characteristics:
* 5 million images
« 100 perturbations of 50000

images

* 10 frames of algorithmically
generated perturbations for each
image in ImageNet validation

testset

* 10 common perturbations
including brightness, tilt, motion

etc.

B

ImageNet-P:

ImageNet-Perturbations
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Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and

perturbations." arXiv preprint arXiv:1903.12261 (2019).

Architecture Perturbation Robustness

110 A

100 A

90 A

80 A

SqueezeNet 1.1

ResNet-18 ResNet-50

AlexNet
. VGG-19+4BN

VGG-11
VGG-19

60 65 70 75
Architecture Accuracy (%)
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Intervenability in Benchmarking
Retrieval and Recognition

CURE-OR: Challenging Unreal and Real Environments for Object Recognition

Data Characteristics:
* 1 million images

* 100 common household objects
and 10000 images per object

« 5 backgrounds, 5 object
orientations, 5 devices, and 78
challenging conditions

» Goal: To recognize and retrieve
the same object across
backgrounds, orientations,
devices, and challenging

conditions
Challenge Type: None
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Robust Neural Networks
Part 5: Conclusions and Future Directions

Gr Georgia
Tech.
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Novel data packs a 1-2 punch!

Even if
available,
novel data
does not
easily fit into
either the
earlier or
later stages
of training

Novel data may not
be available during
training

éj~ v ———
s IR T

A = Deep Neural Networks
B = Novel data
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Memes to Wrap it Up
Robustness at Inference

-

MODEL DEPLOYED!!
) A 38

Robustness

Deep Learning

TRAIN & TEST WERE DIFFERENT DISTRIBUTIONS

imgflip.com 4 @scott.ai

Cannot depend on training to construct
robust models
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Existing research on robustness focuses on data collection and optimization

Optimization Inference

-
-
L3
>
ot
)
L)
“
-
¥
o
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Memes to Wrap it Up
Implicit Knowledge in Neural Networks

Trained Neural Networks have a wealth of implicit stored knowledge, waiting to be extracted
at inference

s g = -
2 X i D
R o @

= Traditional Why P?

Why P, rather than Q?

What if?

Gr Georgia
Tech.
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Explanatory Evaluation reduces Uncertainty
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* Robustness under distributional shift in domains, environments, and adversaries are challenges for neural
networks

« Gradients at Inference provide a holistic solution to the above challenges

« Gradients can help traverse through a trained and unknown manifold
» They approximate Fisher Information on the projection
* They can be manipulated by providing contrast classes
« They can be used to construct localized contrastive manifolds
« They provide implicit knowledge about all classes, when only one data point is available at inference

» Gradients are useful in a number of Image Understanding applications
» Highlighting features of the current prediction as well as counterfactual data and contrastive classes
* Providing directional information in anomaly detection
* Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
* Providing expectancy mismatch for human vision related applications
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Test Time Augmentation (TTA) Research
« Multiple augmentations of data are passed through the network at inference
* Research is in designing the best augmentations

Active Inference
» Utilize the knowledge in Neural Networks to ask it to ask us
» Neural networks ask for the best augmentation of the data point given that one data point at inference

Uncertainty in Explainability, Label Interpretation, and Trust quantification
« Uncertainty research has to expand beyond model and data uncertainty

* In some applications within medical and seismic communities, there is no agreed upon label for data.
Uncertainty in label interpretation is its own research

Test-time Interventions for Al alignment
* Human interventions at test time to alter the decision-making process is essential trustworthy Al
» Further research in intelligently involving experts in a non end-to-end framework is required
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Gradient representations for Robustness, 00D, Anomaly, Novelty, and Adversarial Detection

+ Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "IntrosPective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in
Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov.29 - Dec. 1 2022

+ Gradients for aflvers rial, 00D, corr
in International Conference on Mac

tion detection: J. Lee, M, Prabhushank d G. AlRegib, "Gradjent-Based Ad ial and Qut-of-Djstribution Detection,"
l"ﬁnle LearningI; ’CMLTe\'VOI'](S':gp cl;r? I\cllgwalr:;'c?r?ﬁers in Ag\gt-lzrsarigflv{grc]Lindes?.earni\rll%r,sgzﬁin?gre, AXD? JUI.S EOEZK.m etection

* Gradients for 0,99“ set reco1gnition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 20217 IEEE International Conference on Image
Processing (ICIP). IEEE, 202T.

« GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection.
In European Confererice on Computer Vision (pp. 206-226). Springer, Cham.

+ Gradients for adversarial, 00D, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis,"
in IEEE Access, Mar. 21 2023.

» Gradients for NoveItE Detection: Kwon, G., Prabhushankar, M., Temel, D., & AIRegib G. (|2020 October). Novelty detection through model-based characterization of neural
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.
e

* Gradient-based Ima?e Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Ijrocessmg (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

. Explanatoryl\/?aradjgms: AIR%%ib G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal
Processing Magazine, 39(4), 59-72.

« Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International
Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

+ Explainabilty in Limited Label Setti%%s: M. Prabhushankar, and G. AlRegib, "Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference
on Image Processing (ICIP), Sept. 2021.

« Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks,"
in Frontiers In Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Self Supervised Learning

. Weakl¥ supervised Contrastive Learning; K. Kokille_Persaud S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023.

+ Contrastive Learning for Fisheye Images: K. Kokileé)ersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye
Data," in Open Journal of Signals Procéessing, Apr. 28 2023.

+ Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AIReg6ib S. Trei'o Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in
OCT," in IEEE International Conference on Image Processing HCIP), Bordeaux, France, Oct. 16-19 202

+ Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation,"
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX,, Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction

+ Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on
Intelligent Transportation Systems, submitted on Dec. 28 2022.

* Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu'Dhabi, United Arab Emirates, Oct. 2020.

* Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no.
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

* CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics,"
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

*  CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

* CURE-OR: D, Temel*, J. Lee* and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning
and Applications (ICMLA), Orlando, FL, Dec. 2018
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Active Learning

« Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A
Second Order Approach to Active Learning," in IEEE Transactions on Atrtificial Intelligence (TAl), Feb. 05 2023

« Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A.
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

« Active Learning on 00D data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

« Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification,"
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

+ Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

« Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

+ Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

« Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurlPS
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

« Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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