Formalizing Robustness in Neural Networks: Explainability, Uncertainty, and Intervenability

Ghassan AlRegib, PhD Professor

Mohit Prabhushankar, PhD Postdoctoral Fellow

Asserbition for the AdvancementOmni Lab for Intelligent Visual Engineering and Science (OLIVES)

School of Electrical and Computer Engineering

Georgia Institute of Technology

{alregib, mohit.p}@gatech.edu

Feb 21, 2024 – Vancouver, BC, Canada

Tutorial Materials

Accessible Online

AAAI 2024 Tutorial

Presented by: Ghassan AlRegib, and Mohit Prabhushankar

Georgia Institute of Technology

www.ghassanalregib.info

Duration: Half Day (3 hours, 30 mins)

Title: Formalizing Robustness in Neural Networks: Explainability, Uncertainty, and Intervenability

https://alregib.ece.gatech.edu/aaai-2024tutorial/ {alregib, mohit.p}@gatech.edu

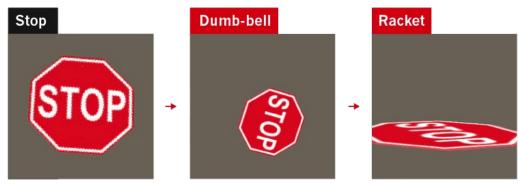
Expectation vs Reality

Expectation vs Reality of Deep Learning

Expectation vs Reality

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they are too different from the types of image used to train the network.



Even natural images can fool a DNN, because it might focus on the picture's colour, texture or background rather than picking out the salient features a human would recognize.

Pretzel

Expectation vs Reality

"The best-laid plans of sensors and networks often go awry"

- Engineers, probably

Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

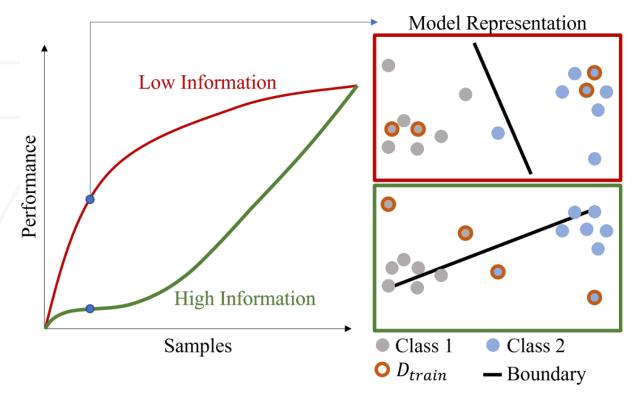
Novel data sources:

- Test distributions
- Anomalous data
- Out-Of-Distribution data
- Adversarial data
- Corrupted data
- Noisy data
- New classes
- •

Deep Learning at Training

Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should <u>not</u> be used in early training



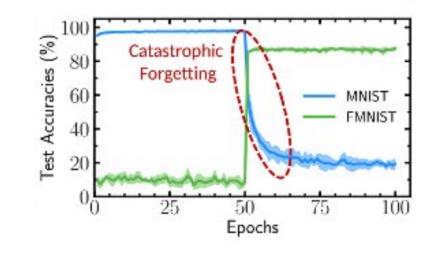
- The first instance of training must occur with less informative samples
- Ex: For autonomous vehicles, less informative means
 - Highway scenarios
 - Parking
 - No accidents
 - No aberrant events

Novel samples = Most Informative

Deep Learning at Training

Overcoming Challenges at Training: Part 2

Subsequent training must <u>not</u> focus only on novel data

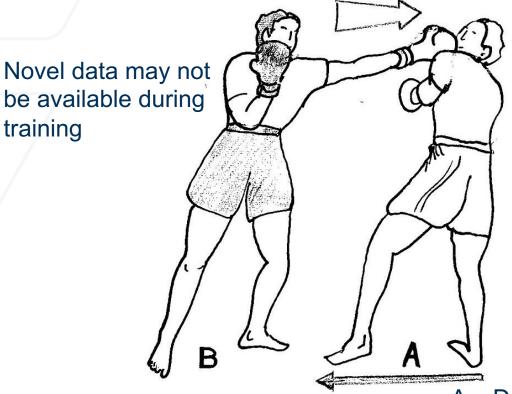


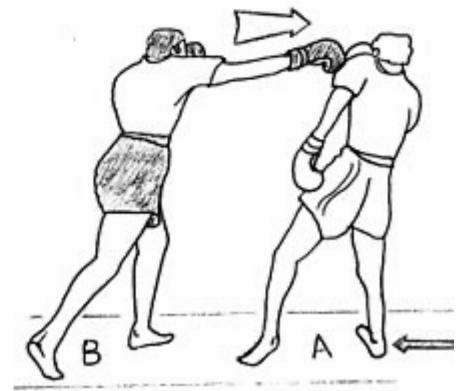
- The model performs well on the new scenarios, while forgetting the old scenarios
- A number of techniques exist to overcome this trend
- However, they affect the overall performance in large-scale settings
- It is not always clear if and when to incorporate novel scenarios in training

Deep Learning at Training

Overcoming Challenges at Training

Novel data packs a 1-2 punch!





Even if available, novel data does not easily fit into either the earlier or later stages of training

A = Deep Neural Networks

B = Novel data

Overcoming Challenges at Inference

We must handle novel data at Inference!!

Novel data sources:

- Test distributions
- Anomalous data
- Out-Of-Distribution data
- Adversarial data
- Corrupted data
- Noisy data
- New classes

• ...

Model Train

At Inference

Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

Robust Neural Networks Part I: Inference in Neural Networks

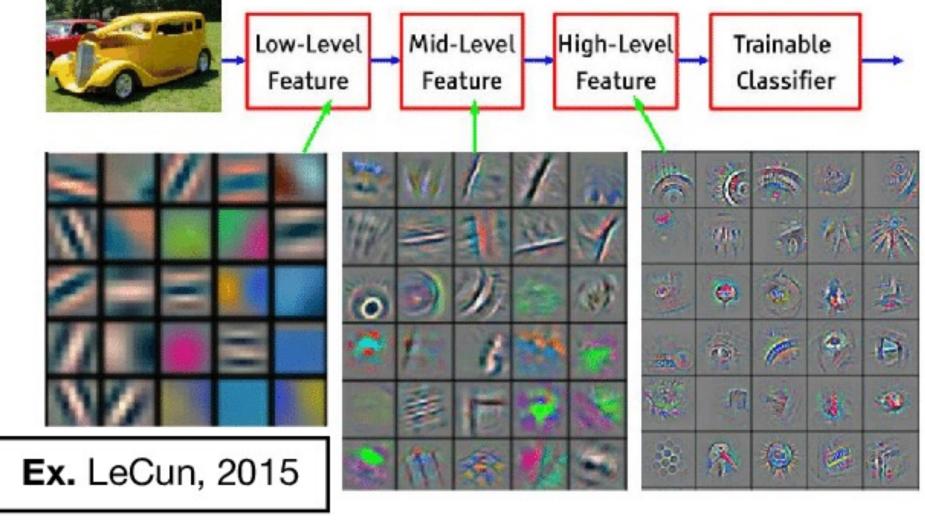
Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
 - Neural Network Basics
 - Robustness in Deep Learning
 - Information at Inference
 - Challenges at Inference
 - Gradients at Inference
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

Overview

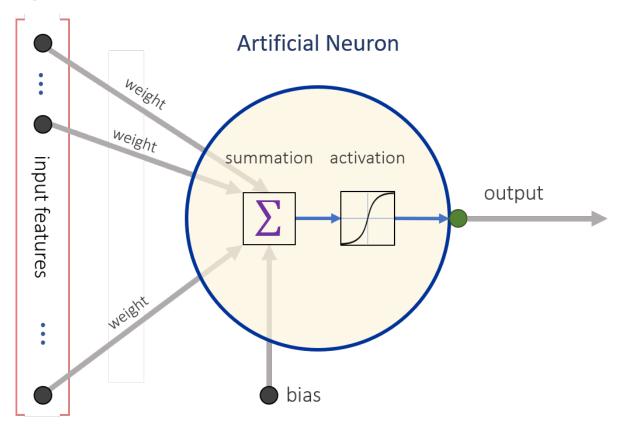


Neurons

The underlying computation unit is the Neuron

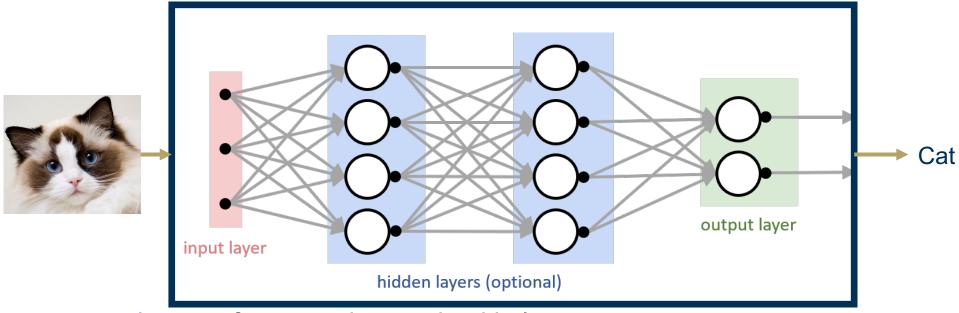
Artificial neurons consist of:

- A single output
- Multiple inputs
- Input weights
- A bias input
- An activation function



Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

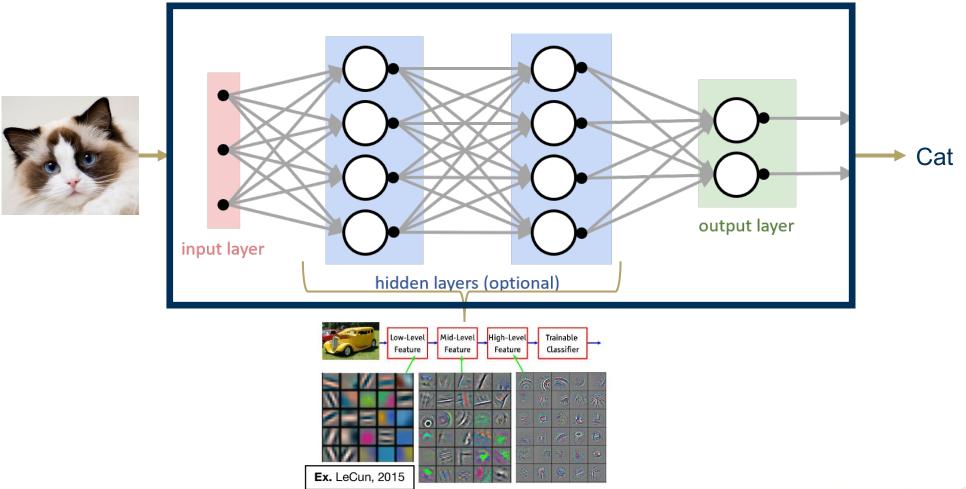


Typically, a neuron is part of a network organized in layers:

- An input layer (Layer 0)
- An output layer (Layer K)
- Zero or more hidden (middle) layers (Layers $1 \dots K 1$)

Convolutional Neural Networks

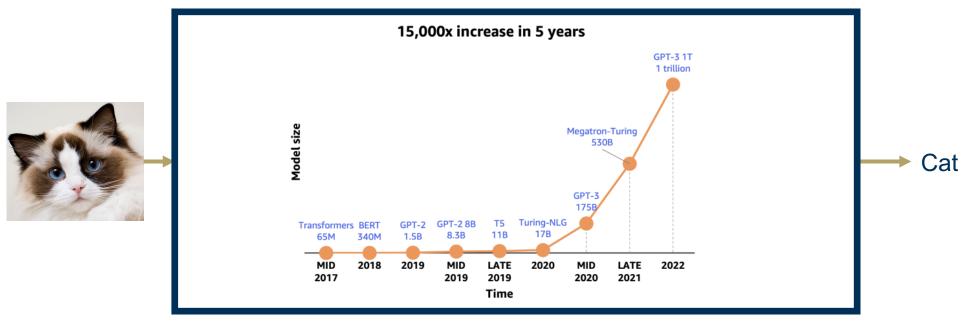
Stationary property of images allow for a small number of convolution kernels



Deep Deep Deep Deep ... Learning

Recent Advancements

Transformers, Large Language Models and Foundation Models

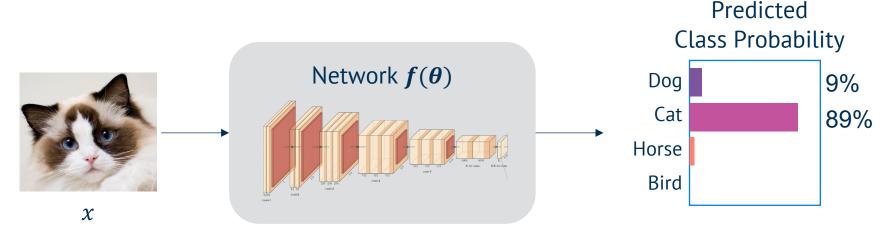


Primary reasons for advancements:

- 1. Expanded interests from the research community
- 2. Computational resources availability
- 3. Big data availability

Classification

Given: One network, One image. Required: Class Prediction

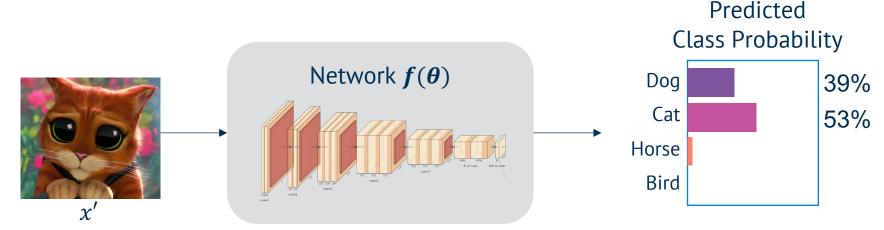


$$\hat{y} = f(x)$$
 $\hat{y} = \text{Logits}$
 $y = argmax_i \, \hat{y}$ $y = \text{Predicted Class}$
 $p(\hat{y}) = T(f(x))$ $p(\hat{y}) = \text{Probabilities}$
 $f(\cdot) = \text{Trained Network}$
 $\chi = \text{Training data}$

If $x \in \chi$, the data is **not novel**

Robust Classification in Deep Networks

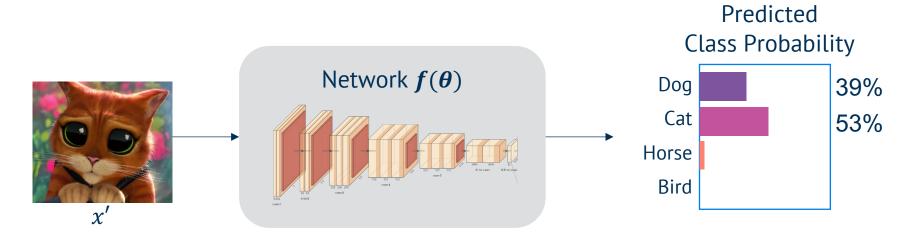
Deep learning robustness: Correctly predict class even when data is novel



$$\begin{split} \hat{y} &= f(x' + \epsilon) & \hat{y} &= \text{Logits} \\ y &= argmax_i \ \hat{y} & y &= \text{Predicted Class} \\ p(\hat{y}) &= T(f(x' + \epsilon)) & p(\hat{y}) &= \text{Probabilities} \\ f(\cdot) &= \text{Trained Network} \\ \chi &= \text{Training data} \\ \epsilon &= \text{Noise} \end{split}$$

Robust Classification in Deep Networks

Deep learning robustness: Correctly predict class even when data is novel



To achieve robustness at Inference, we need the following:

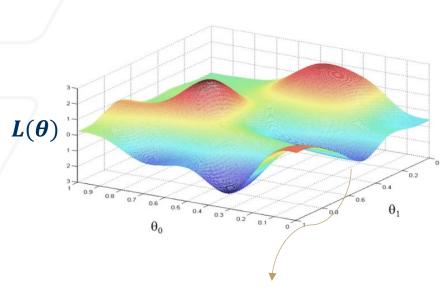
- Information provided by the novel data as a function of training distribution
- Methodology to extract information from novel data
- Techniques that utilize the information from novel data

Why is this Challenging?

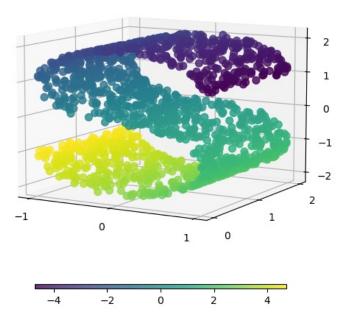
Challenges at Inference

A Quick note on Manifolds...

Manifolds are compact topological spaces that allow exact mathematical functions



Toy visualizations generated using functions (and thousands of generated data points)



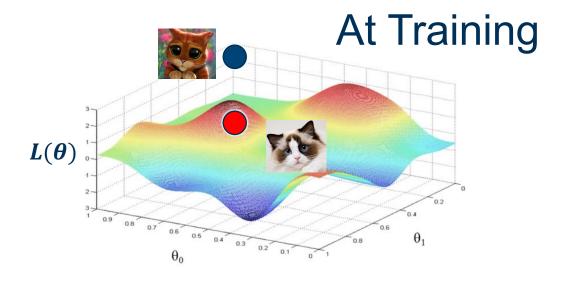
Real data visualizations generated using dimensionality reduction algorithms (Isomap)

Challenges at Inference

Inference

However, at inference only the test data point is available and the underlying structure of the manifold is unknown

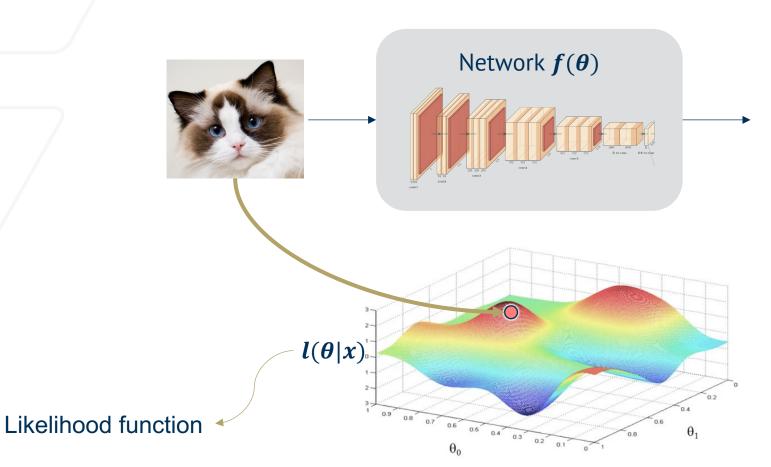




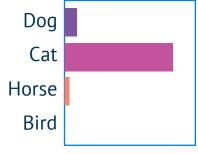
At training, we have access to all training data.

Fisher Information

Colloquially, Fisher Information is the "surprise" in a system that observes an event



Predicted Class Probability



Fisher Information

$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

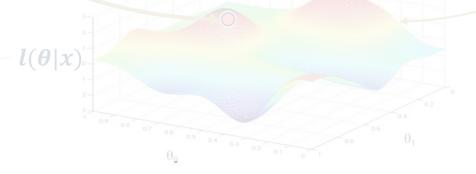
 θ = Statistic of distribution $\ell(\theta \mid x)$ = Likelihood function

25 of 172

[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Information at Inference

At inference, given a single image from a single class, we can extract information about other classes



$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

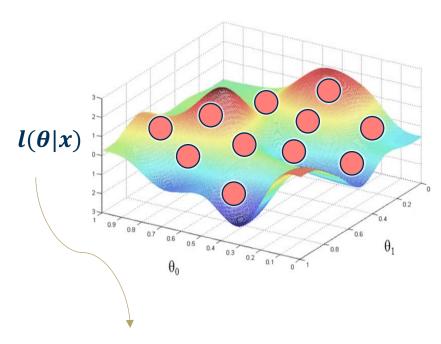
 θ = Statistic of distribution $\ell(\theta \mid x)$ = Likelihood function

Predicted

Likelihood function

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds



Likelihood function instead of loss manifold

From before,
$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

Using variance decomposition, $I(\theta)$ reduces to:

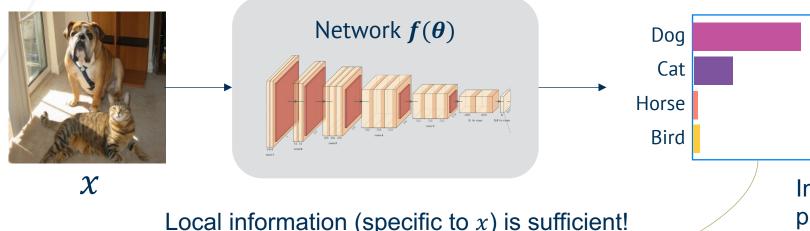
$$I(\theta) = E[U_{\theta}U_{\theta}^T]$$
 where

$$E[\cdot]$$
 = Expectation $U_{\theta} = \nabla_{\theta} l(\theta|x)$, Gradients w.r.t. the sample

Hence, gradients draw information from the underlying distribution as learned by the network weights!

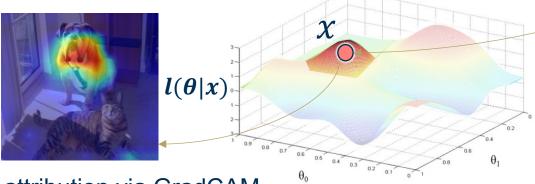
Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds



Local information (specific to *x*) is sufficient!

In this case, the image and its prediction extracts nose, mouth and jowl features.



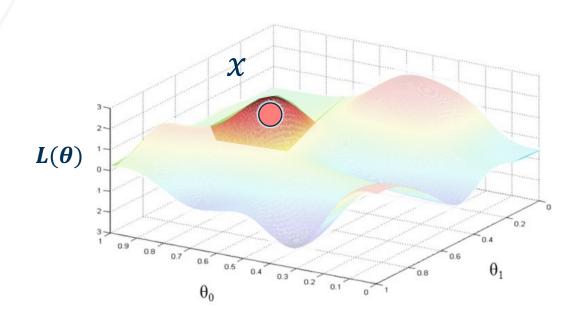
Hence, gradients draw information from the underlying distribution as learned by the network weights!

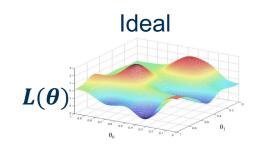
Feature attribution via GradCAM

Gradients at Inference

Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is because x projects on the learned knowledge



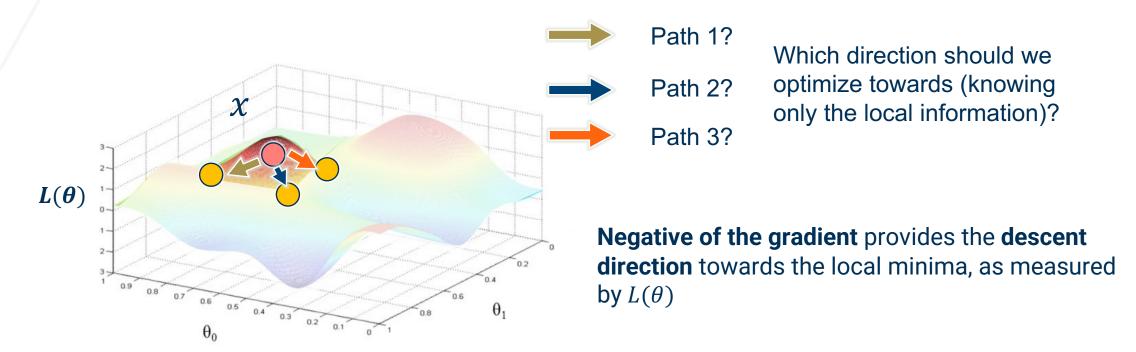


 $\alpha \nabla_{\theta} L(\theta)$ provides local information up to a small distance α away from x

Gradients at Inference

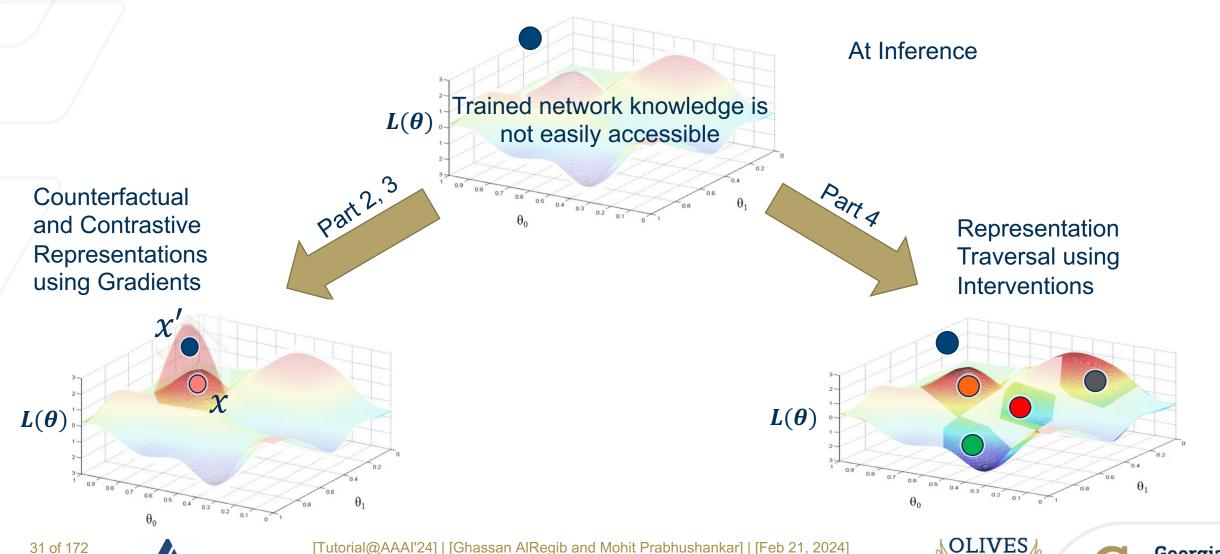
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function $L(\theta)$



Gradients at Inference

To Characterize the Novel Data at Inference



Robust Neural Networks

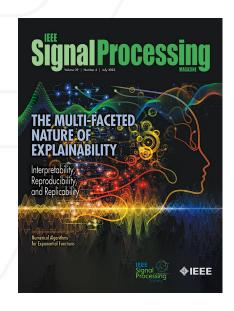
Part 2: Explainability at Inference

Objective

Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
 - Visual Explanations
 - Gradient-based Explanations
 - GradCAM
 - CounterfactualCAM
 - ContrastCAM
- Part 3: Uncertainty at Inference
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

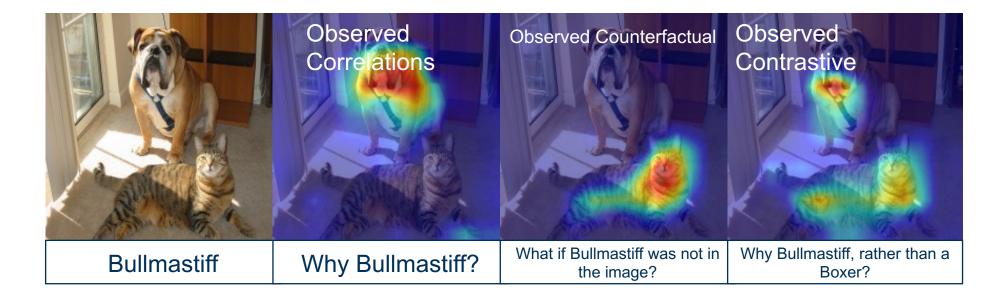


Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD Postdoc

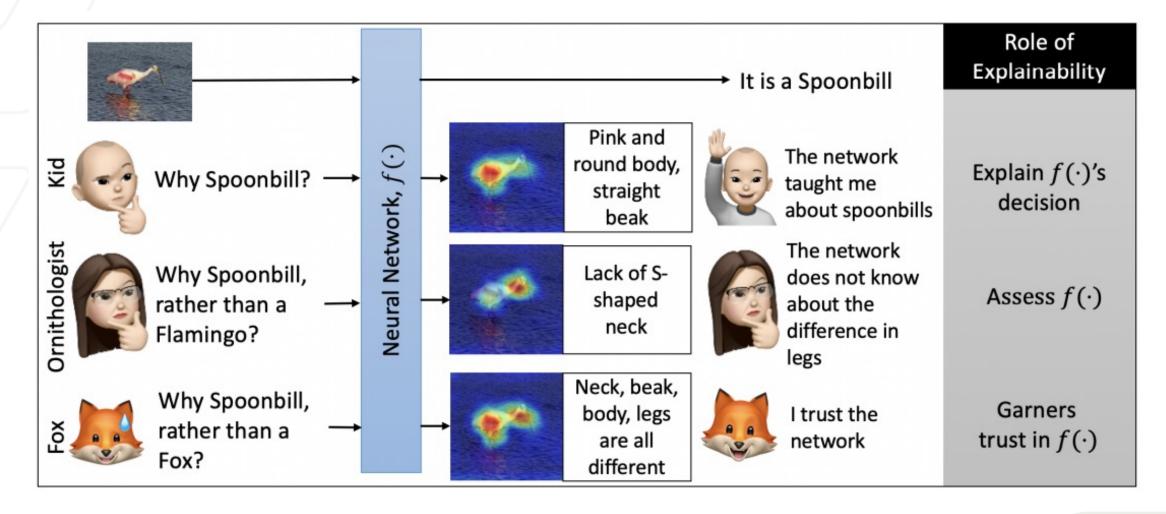
Ghassan AlRegib, PhD Professor

- Explanations are defined as a set of rationales used to understand the reasons behind a decision
- If the decision is based on visual characteristics within the data, the decision-making reasons are visual explanations



Role of Explanations – context and relevance

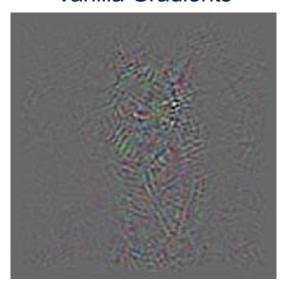
Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations



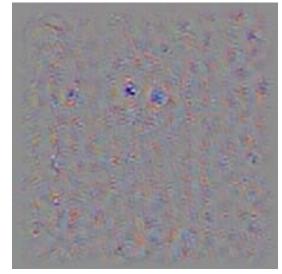
Gradients provide a one-shot means of perturbing the input that changes the output; They provide pixel-level importance scores

Input

Vanilla Gradients



Deconvolution Gradients



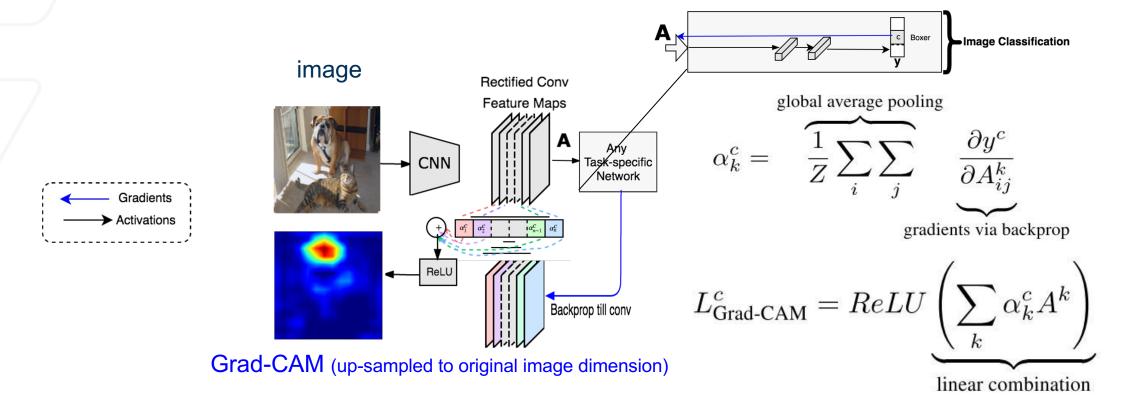
Guided Backpropagation

However, localization remains an issue

GradCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN to assign importance values to each activation for a particular decision of interest.



GradCAM

Expl Netv Con

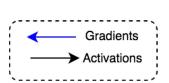
Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

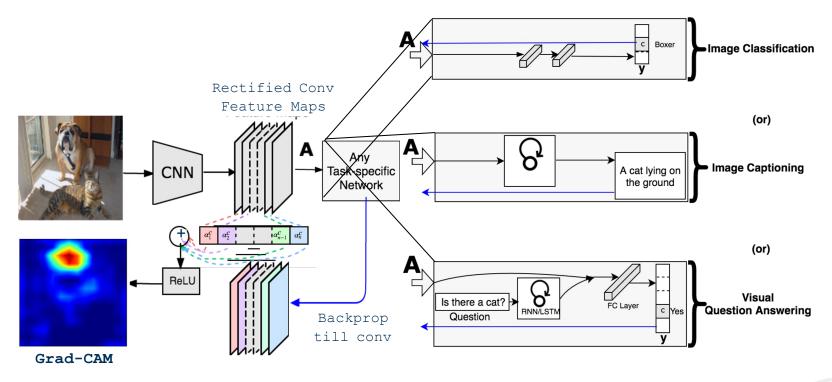
Grad-CAM generalizes to any task:

- Image classification
- Image captioning
- Visual question answering

• etc.

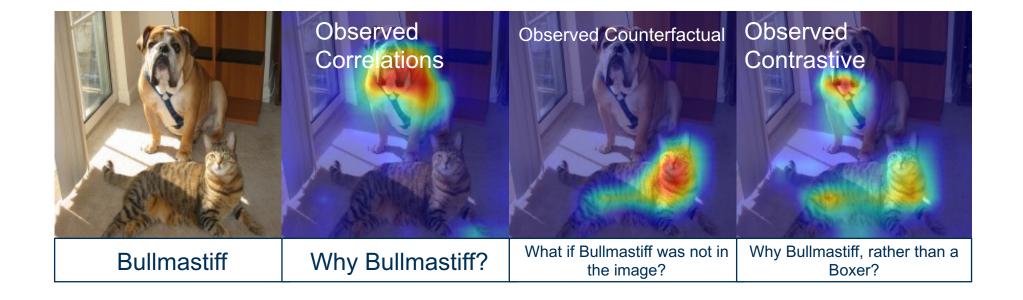
43 of 172





Explanatory Paradigms

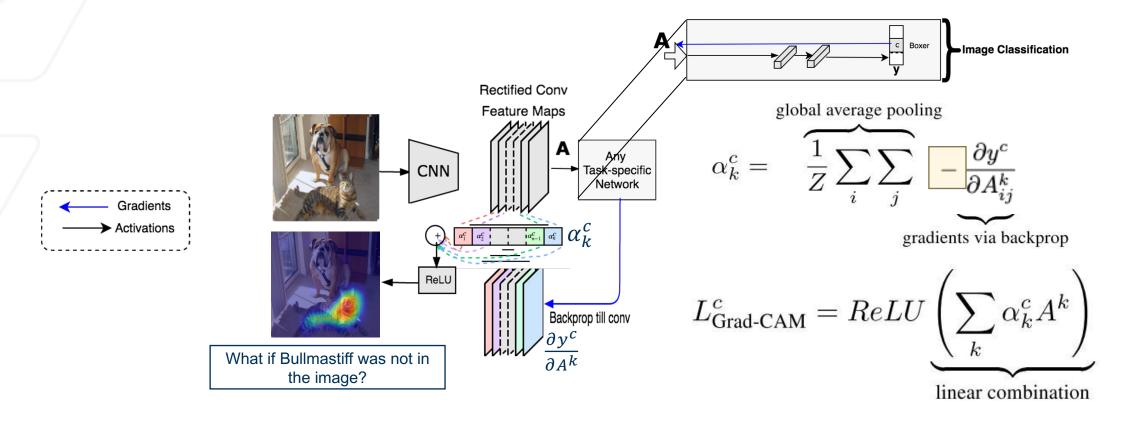
GradCAM provides answers to 'Why P?' questions. But different stakeholders require relevant and contextual explanations



CounterfactualCAM: What if this region were absent in the image?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

In GradCAM, global average pool the negative of gradients to obtain α^c for each kernel k

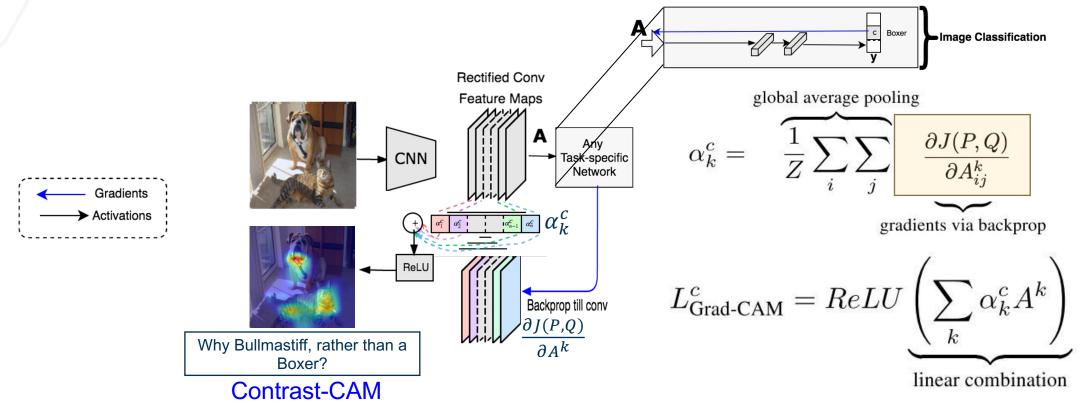


Negating the gradients effectively removes these regions from analysis

ContrastCAM: Why P, rather than Q?

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to last conv layer

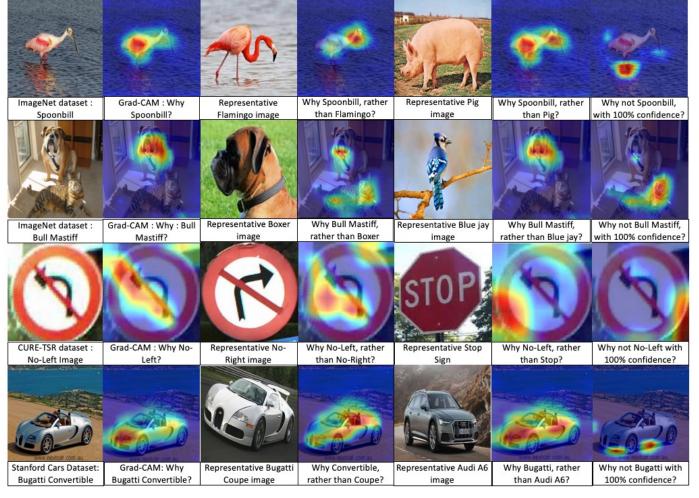


Backpropagating the loss highlights the differences between classes P and Q.

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

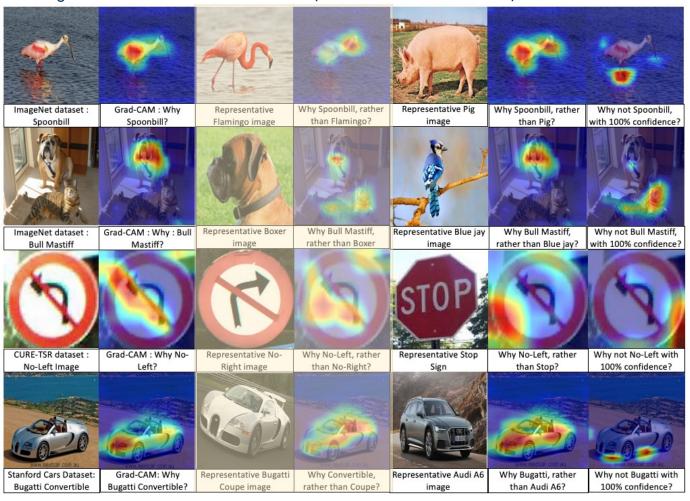
Input Contrastive Contrastive Image Grad-CAM Contrast 1 Explanation 1 Contrast 2 Explanation 2



Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Input Contrastive Contrastive Contrastive Explanation 1 Contrast 2 Explanation 2

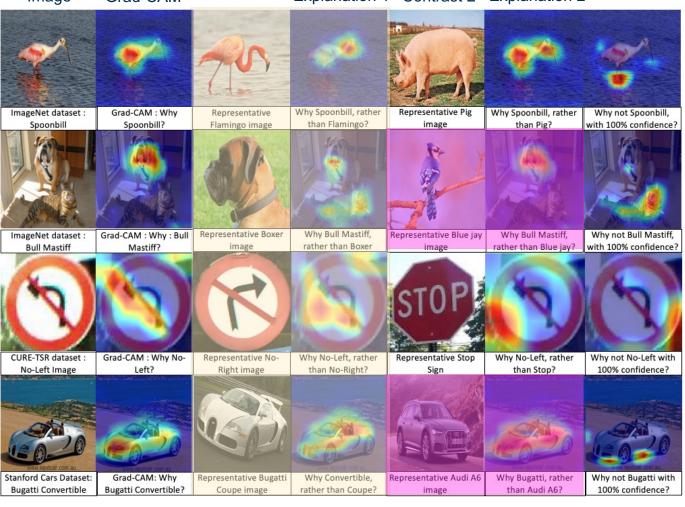


Human Interpretable

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Input Contrastive Contrastive Image Grad-CAM Contrast 1 Explanation 1 Contrast 2 Explanation 2



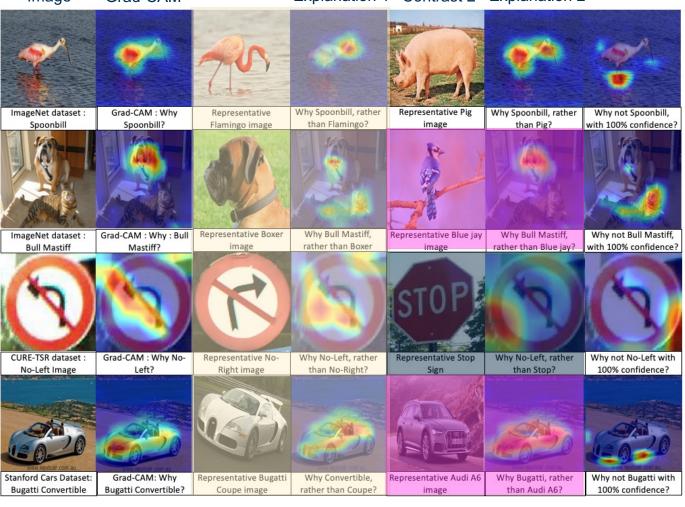
Human Interpretable

Same as Grad-CAM

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Input Contrastive Contrastive Image Grad-CAM Contrast 1 Explanation 1 Contrast 2 Explanation 2



Human Interpretable

Same as Grad-CAM

Not Human Interpretable

Results from GradCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

Contrastive Contrastive Contrast 1 Explanation 1 Contrast 2 Explanation 2 **Grad-CAM**

Human Interpretable

[Tutorial@AAAl'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Results from GradCAM, CounterfactualCAM, and ContrastCAM

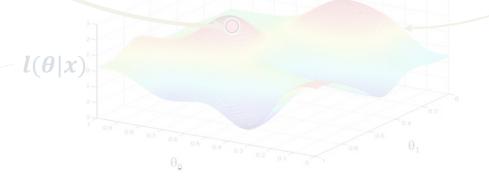
Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations

[Tutorial@AAAl'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

A Callback...

Information at Inference

At inference, given a single image from a single class, we can extract information about other classes



$$I(\theta) = Var(\frac{\partial}{\partial \theta}l(\theta|x))$$

Predicted

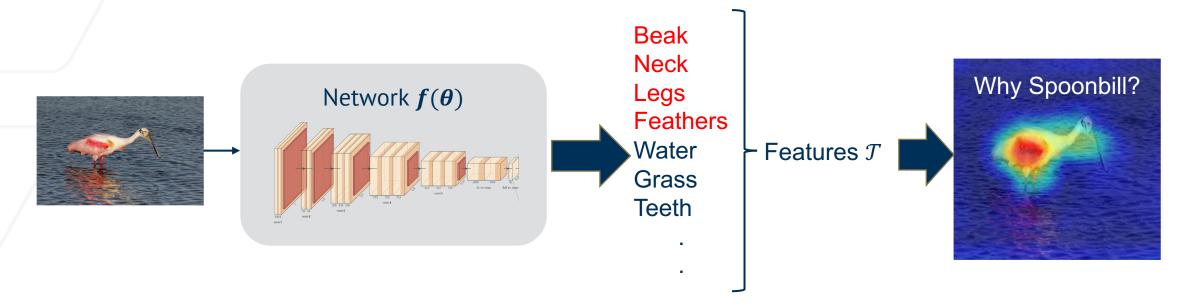
 θ = Statistic of distribution $\ell(\theta \mid x)$ = Likelihood function

Likelihood function

Information at Inference

Case Study: Explainability

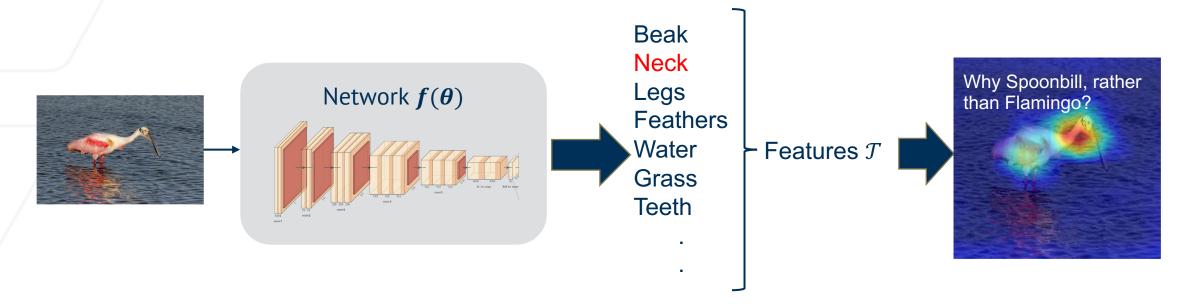
T is the set of all features learned by a trained network



Information at Inference

Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo



All the requisite Information is stored within $f(\theta)$

Goal: To extract and quantify this information at inference

Robust Neural Networks

Part 3: Uncertainty at Inference

Objective

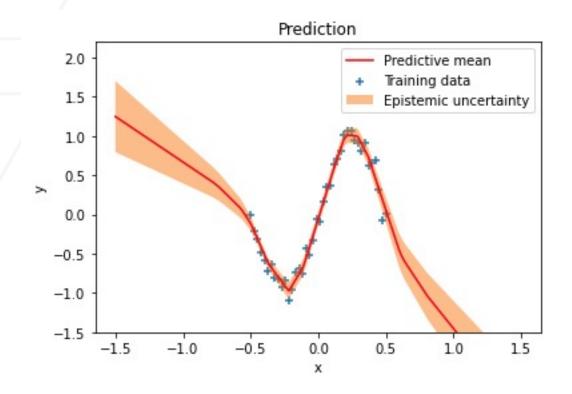
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
 - Uncertainty Definition
 - Uncertainty Quantification
 - Gradient-based Uncertainty
 - Adversarial and Corruption Detection
- Part 4: Intervenability at Inference
- Part 5: Conclusions and Future Directions

What is Uncertainty?

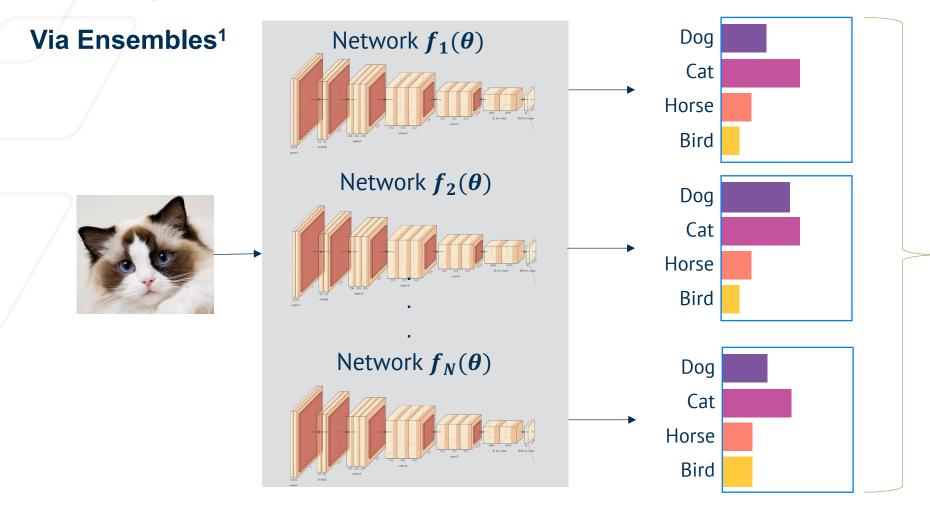
Uncertainty is a model knowing that it does not know



A simple example:

- When training data is available: Less uncertainty
- When training data is unavailable: More uncertainty

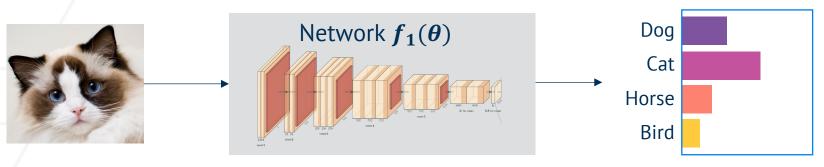
Uncertainty Quantification in Neural Networks



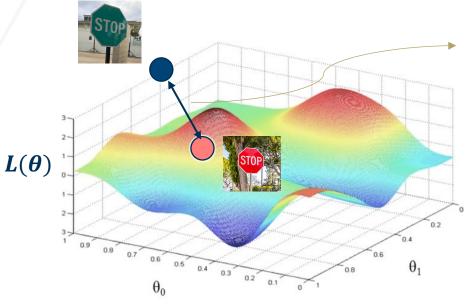
Variation within outputs Var(y) is the uncertainty. Commonly referred to as **Prediction Uncertainty.**

Uncertainty Quantification in Neural Networks

Via Single pass methods¹



Uncertainty quantification using a single network and a single pass



Calculate distance from some trained clusters

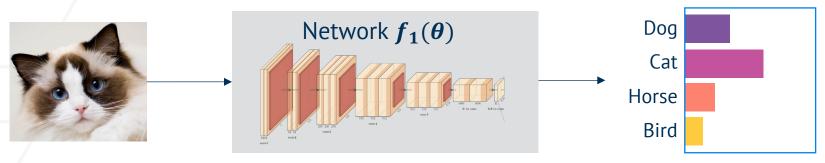
Does not require multiple networks!

60 of 172

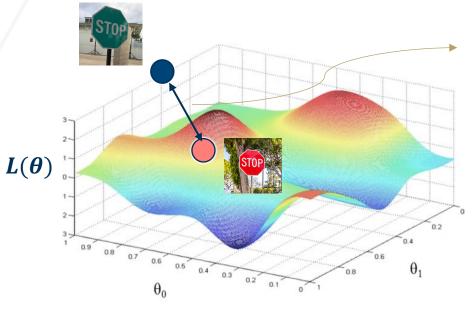
[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference



Uncertainty quantification using a single network and a single pass



Calculate distance from some trained clusters

Does not require multiple networks!

Challenge: Class and prediction cannot be trusted!

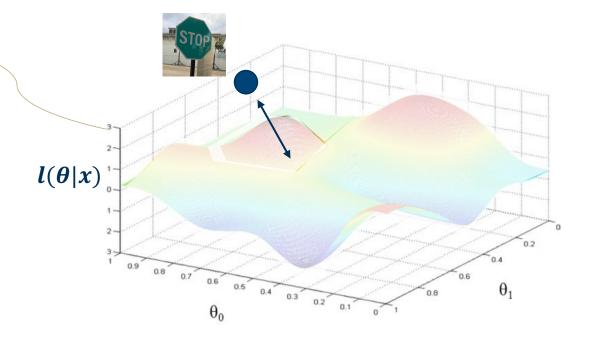
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection



Backpropagated Gradient Representations for Anomaly Detection

Gukyeong Kwon, PhD Amazon AWS

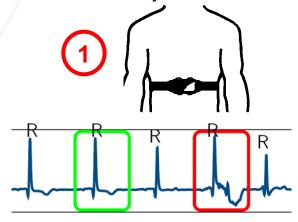
Mohit Prabhushankar, PhD Postdoc, Georgia Tech

Ghassan AlRegib, PhD Professor, Georgia Tech

Anomalies

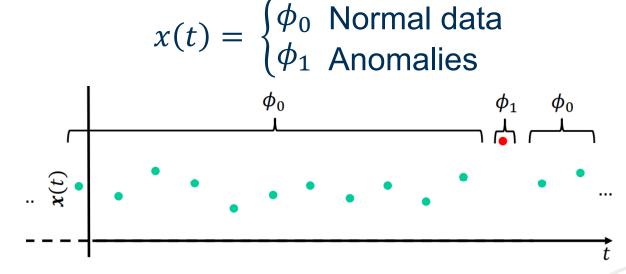
Finding Rare Events in Normal Patterns

'Anomalies are patterns in data that do not conform to a well defined notion of normal behavior' [1]



- Normal data are generated from a stationary process P_N
- Anomalies are generated from a different process $P_A \neq P_N$

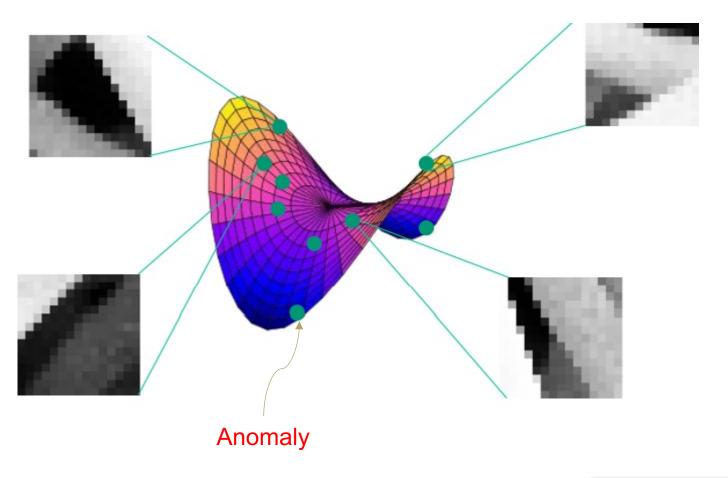
Goal: Detect ϕ_1



Steps for Anomaly Detection

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

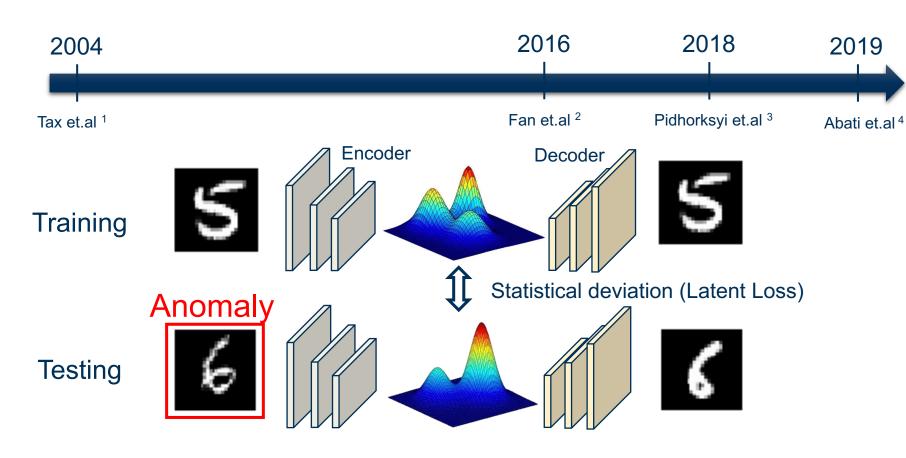
- Step 1 ensures that patches from natural images live close to a low dimensional manifold
- Step 2 designs distance functions that detect *implausibility* based on constraints



Constraining Manifolds

General Constraints

Activations are constrained using GANs, VAEs, etc.



- [1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.
- [2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2
- [3] S. Pidhorskyi, R. Almohsen, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
- [4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, "Latent space autoregression for novelty detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.

Constraining Manifolds

Gradient-based Constraints

Activation Constraints

Forward propagation Trained with '0' **Anomaly** Reconstruction Input Encoder Decoder **Backpropagation**

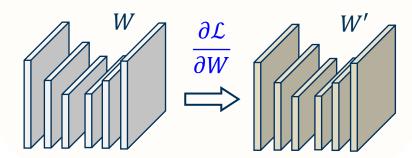
Activation-based representation (Data perspective)

e.g. Reconstruction error (\mathcal{L})

How much of the input does not correspond to the learned information?

Gradient Constraints

Gradient-based Representation (Model perspective)



How much **model update** is required by the input?

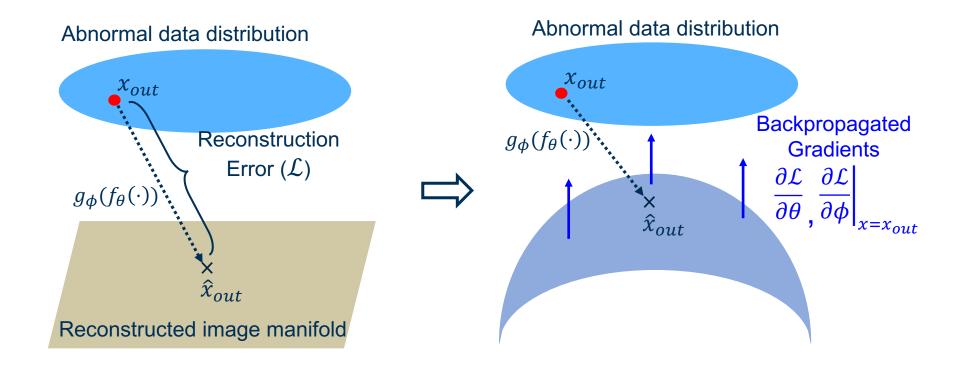
67 of 172

[Tutorial@AAAI'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Feb 21, 2024]

Constraining Manifolds

Advantages of Gradient-based Constraints

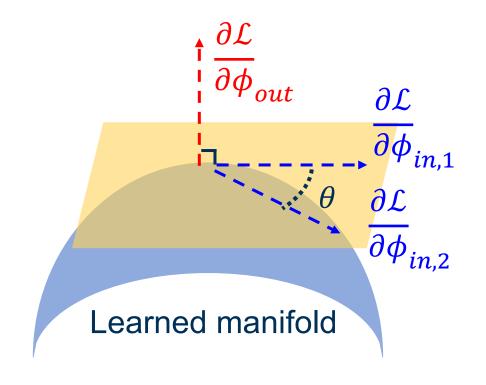
- Gradients provide directional information to characterize anomalies
- Gradients from different layers capture abnormality at different levels of data abstraction



GradCON: Gradient Constraint

Gradient-based Constraints

Constrain gradient-based representations during training to obtain clear separation between normal data and abnormal data



 ϕ : Weights \mathcal{L} : Reconstruction error

At k-th step of training,

Gradient loss

$$J = \mathcal{L} - \mathbb{E}_{i} \left[\cos \text{SIM} \left(\frac{\partial J}{\partial \phi_{i}}_{avg}^{k-1}, \frac{\partial \mathcal{L}}{\partial \phi_{i}}^{k} \right) \right]$$

Avg. training gradients until (k-1) th iter.

Gradients at k-th iter.

where
$$\frac{\partial J}{\partial \phi_i}_{avg}^{k-1} = \sum_{t=1}^{k-1} \frac{\partial J}{\partial \phi_i}^t$$

GradCON: Gradient Constraint

Activations vs Gradients

AUROC Results

Abnormal "class" detection (CIFAR-10)

e.g.

Normal Abnormal

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon			0.640								
+ Grad	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE	Recon								0.515			0.526
	Latent	0.634	0.442	0.640	0.497	0.743	0.515	0.745	0.527	0.674	0.416	0.583
VAE + Grad	Recon	0.556	0.606	0.438	0.548	0.392	0.543	0.496	0.518	0.552	0.631	0.528
	Latent	0.586	0.396	0.618		0.719		0.698	0.537	0.586	0.413	0.550
	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

- (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- (CAE vs. VAE) Performance sacrifice from the latent constraint
- (VAE vs. VAE + Grad) Complementary features from the gradient constraint

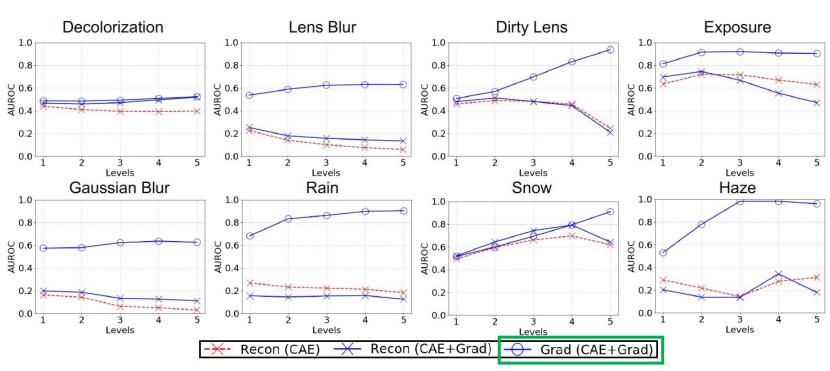
OLIVES

GradCON: Gradient Constraint

Aberrant Condition Detection

AUROC Results

Abnormal "condition" detection (CURE-TSR)



Recon: Reconstruction error, Grad: Gradient loss

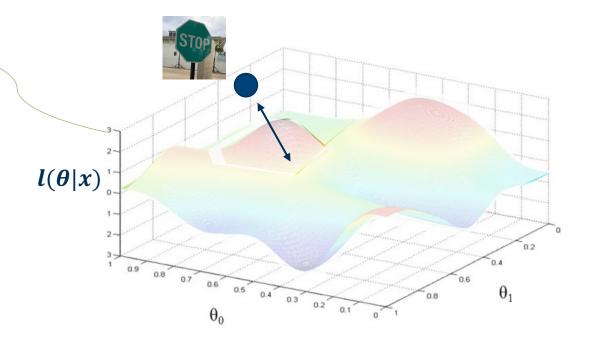
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection



Probing the Purview of Neural Networks via Gradient Analysis

Jinsol Lee, PhD Candidate

Mohit Prabhushankar, PhD Postdoc

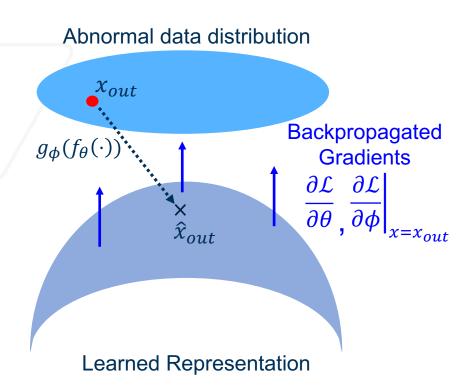
Ghassan AlRegib, PhD Professor

Uncertainty in Neural Networks

Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data



However, what is \mathcal{L} ?

- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth

Uncertainty in Neural Networks

Principle

Probing the Purview of Neural Networks via Gradient Analysis

Principle: Gradients provide a distance measure between the learned representations space and novel data

P = Predicted class

 $Q_1 = \text{Contrast class 1}$

 $Q_2 = \text{Contrast class 2}$

Backpropagated Gradients $\frac{\partial \mathcal{L}(P,Q_1)}{\partial \theta}$ Backpropagated Gradients $\frac{\partial \mathcal{L}(P,Q_2)}{\partial \theta}$ Backpropagated Gradients $\frac{\partial \mathcal{L}(P,Q_2)}{\partial \theta}$

Access 11 (2023): 32716-32732.

However, what is \mathcal{L} ?

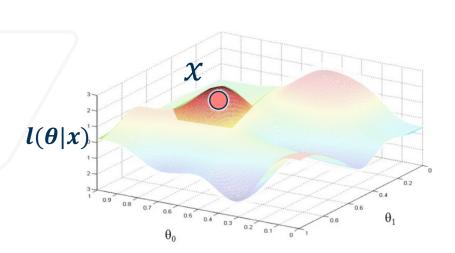
- In anomaly detection, the loss was between the input and its reconstruction
- In prediction tasks, there is neither the reconstructed input nor ground truth
- We backpropagate all contrast classes $Q_1, Q_2 \dots Q_N$ by backpropagating N one-hot vectors
- Higher the distance, higher the uncertainty score

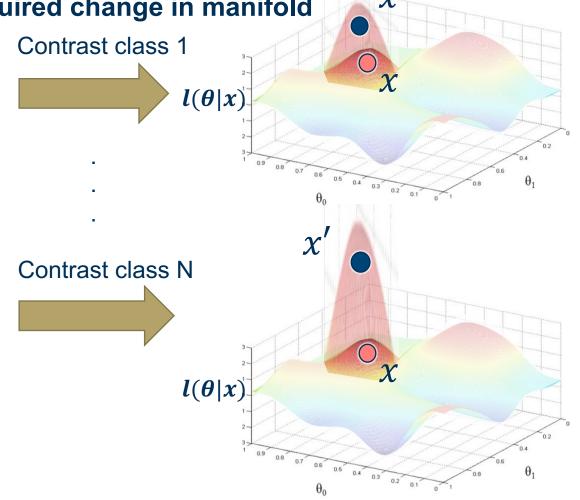
What is uncertainty?

Probing the Purview of Neural Networks via Gradient Analysis

SCAN ME

Gradients represent the local required change in manifold



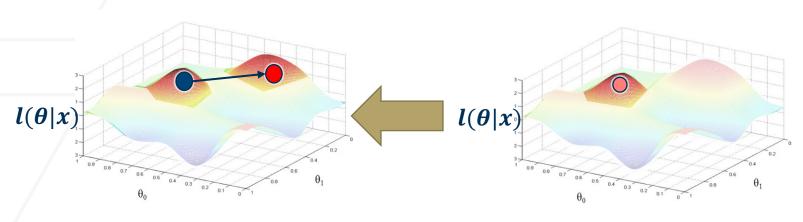


- Gradients
 provide the
 necessary
 change in
 manifold that
 would predict
 the novel data
 'correctly'.
- Correctly means contrastively (or incorrectly)!

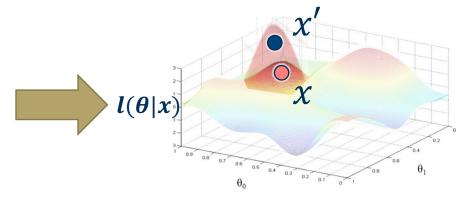
76 of 172

Probing the Purview of Neural Networks via Gradient Analysis

Part 2: Explainability

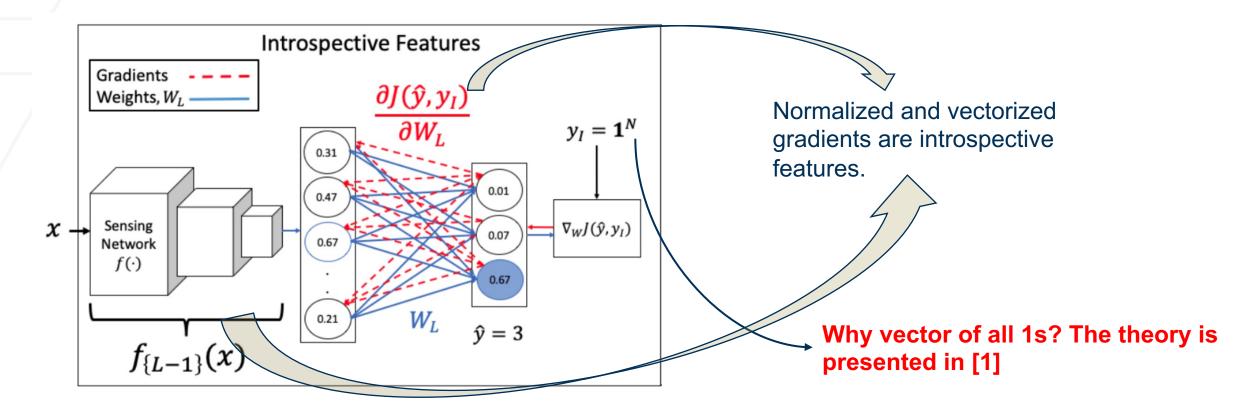


Part 3: Uncertainty

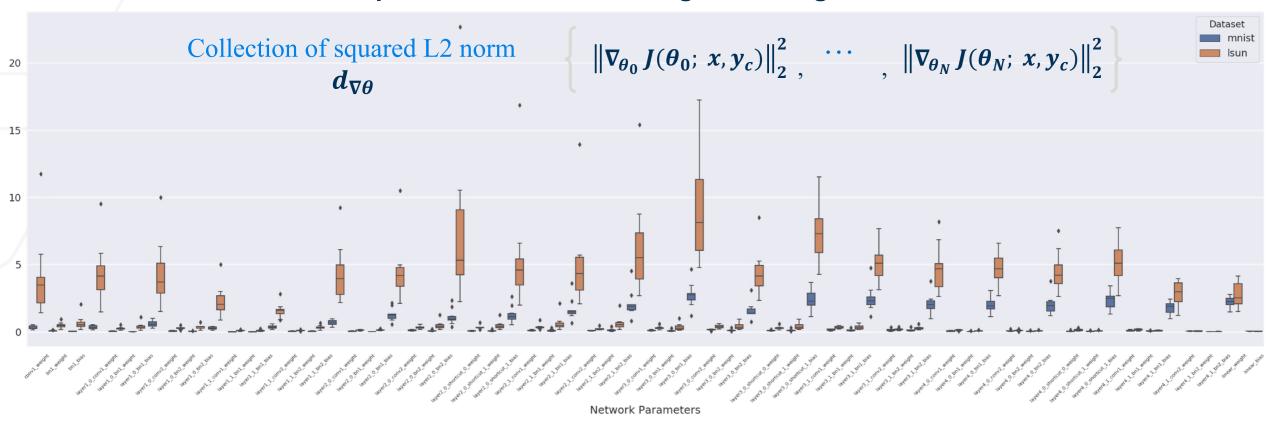


 In Part 2: Activations of learned manifold are weighted by gradients w.r.t. activations to extract information and provide explanations In Part 3: Statistics of gradients w.r.t. the weights (energy) will be directly used as features

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

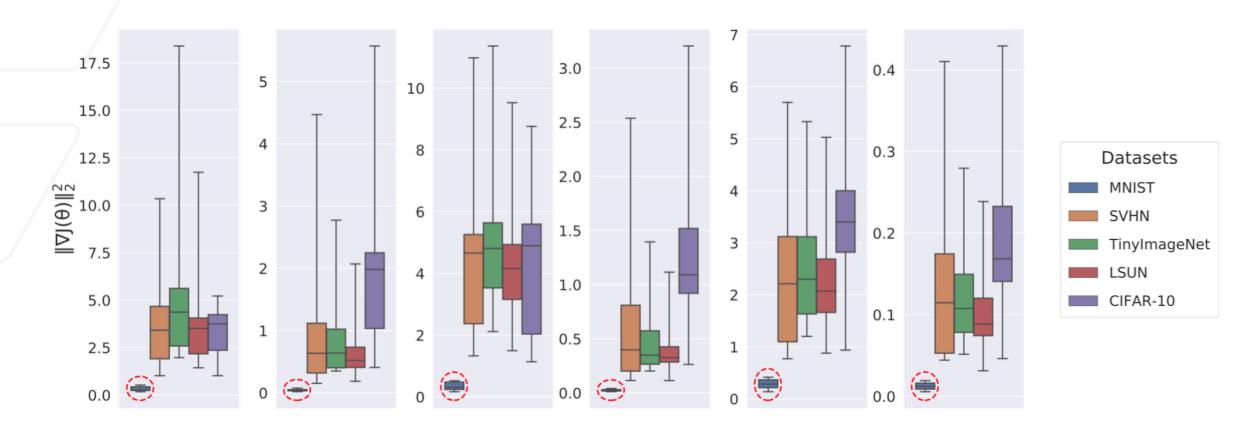


Step 2: Take L2 norm of all generated gradients



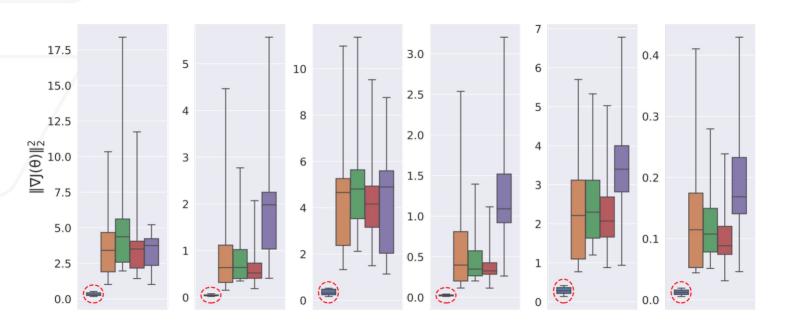
MNIST: In-distribution, SUN: Out-of-Distribution

Squared L2 distances for different parameter sets



MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect adversarial, noisy, and OOD data



Step 1: Train a deep network $f(\cdot)$ on some **training distribution**

Step 2: Introduce challenging (adversarial, noisy, OOD) data

Step 3: Derive gradient uncertainty on both trained and abellance data

both trained and challenge data

Step 4: Train a classifier $H(\cdot)$ to **detect**

challenging from trained data

Step 5: At test time, data is passed

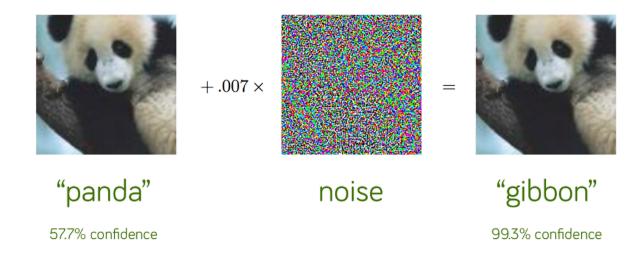
through $f(\cdot)$ and then $H(\cdot)$ to obtain a

Reliability classification

Gradient-based Uncertainty

Uncertainty in Adversarial Setting

Vulnerable DNNs in the real world



Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks via Gradient Analysis

MODEL	ATTACKS	BASELINE	LID	M(V)	M(P)	M(FE)	M(P+FE)	OURS
	FGSM	51.20	90.06	81.69	84.25	99.95	99.95	93.45
	BIM	49.94	99.21	87.09	89.20	100.0	100.0	96.19
DraNes	C&W	53.40	76.47	74.51	75.71	92.78	92.79	97.07
RESNET	PGD	50.03	67.48	56.27	57.57	65.23	75.98	95.82
	ITERLL	60.40	85.17	62.32	64.10	85.10	92.10	98.17
	SEMANTIC	52.29	86.25	64.18	65.79	83.95	84.38	90.15
	FGSM	52.76	98.23	86.88	87.24	99.98	99.97	96.83
	BIM	49.67	100.0	89.19	89.17	100.0	100.0	96.85
DENSENET	C&W	54.53	80.58	75.77	76.16	90.83	90.76	97.05
DENSENET	PGD	49.87	83.01	70.39	66.52	86.94	83.61	96.77
	ITERLL	55.43	83.16	70.17	66.61	83.20	77.84	98.53
	SEMANTIC	53.54	81.41	62.16	62.15	67.98	67.29	89.55

Same application as Anomaly Detection, except there is no need for an additional AE network!

CIFAR-10-C

CURE-TSR

Gradient-based Uncertainty

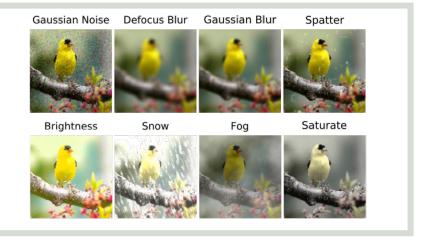
Uncertainty in Detecting Challenging Conditions

	1
SCAN ME	

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Method		Mahalanobis [12] / Ours								
Data	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5					
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99					
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0					
7)	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0					
CIFAR-10-C	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96					
IFAR	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87					
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92					
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0					
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83					
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81					
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65					
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53					
-TSF	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70					
CURE-TSR	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90					
0	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66					
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88					
		100000000000000000000000000000000000000									

48.37 / **62.36** 60.55 / **81.30** 71.73 / **89.93** 87.29 / **95.42** 89.68 / **96.91**



Decolor

Gradient-based Uncertainty

Uncertainty in Detecting Challenging Conditions

Dataset	Method		Mah	alanobis [12] /	Ours	
Data	Corruption	Level 1	Level 2	Level 3	Level 4	Level 5
	Noise	96.63 / 99.95	98.73 / 99.97	99.46 / 99.99	99.62 / 99.97	99.71 / 99.99
	LensBlur	94.22 / 99.95	97.51 / 99.99	99.26 / 100.0	99.78 / 100.0	99.89 / 100.0
D	GaussianBlur	94.19 / 99.94	99.28 / 100.0	99.76 / 100.0	99.86 / 100.0	99.80 / 100.0
۲-10-	DirtyLens	93.37 / 99.94	95.31 / 99.93	95.66 / 99.96	95.37 / 99.92	97.43 / 99.96
CIFAR-10-C	Exposure	91.39 / 99.87	91.00 / 99.85	90.71 / 99.88	90.58 / 99.85	90.68 / 99.87
0	Snow	93.64 / 99.94	96.50 / 99.94	94.44 / 99.95	94.22 / 99.95	95.25 / 99.92
	Haze	95.52 / 99.95	98.35 / 99.99	99.28 / 100.0	99.71 / 99.99	99.94 / 100.0
	Decolor	93.51 / 99.96	93.55 / 99.96	90.30 / 99.82	89.86 / 99.75	90.43 / 99.83
	Noise	25.46 / 50.20	47.54 / 63.87	47.32 / 81.20	66.19 / 91.16	83.14 / 94.81
	LensBlur	48.06 / 72.63	71.61 / 87.58	86.59 / 92.56	92.19 / 93.90	94.90 / 95.65
~	GaussianBlur	66.44 / 83.07	77.67 / 86.94	93.15 / 94.35	80.78 / 94.51	97.36 / 96.53
E-TSF	DirtyLens	29.78 / 51.21	29.28 / 59.10	46.60 / 82.10	73.36 / 91.87	98.50 / 98.70
CURE-TSR	Exposure	74.90 / 88.13	99.96 / 96.78	99.99 / 99.26	100.0 / 99.80	100.0 / 99.90
	Snow	28.11 / 61.34	61.28 / 80.52	89.89 / 91.30	99.34 / 96.13	99.98 / 97.66
	Haze	66.51 / 95.83	97.86 / 99.50	100.0 / 99.95	100.0 / 99.87	100.0 / 99.88
	Decolor	48.37 / 62.36	60.55 / 81.30	71.73 / 89.93	87.29 / 95.42	89.68 / 96.91

Probing the Purview of Neural Networks via Gradient Analysis

Gaussian Noise Defocus Blur Gaussian Blur Spatter Saturate Fog Brightness Snow

Exposure

Noise

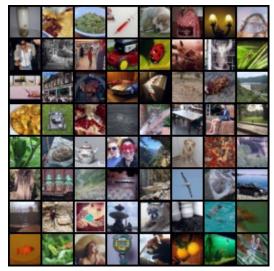
OLIVES

Probing the Purview of Neural Networks via Gradient Analysis

Train set ───

MNIST

Goal: To detect that these datasets are not part of training



SVHN

CIFAR10

TinyImageNet

LSUN

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR
In	Out	Baseline [5] / ODI	N [6] / Mahalanobis (V) [7] / Mahalano	obis (P+FE) [7] / Ours
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21

Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks via Gradient Analysis

Dataset	Distribution	Detection Accuracy	AUROC	AUPR	
In	Out	Baseline [5] / ODI	N [6] / Mahalanobis (V) [7] / Mahalano	obis (P+FE) [7] / Ours	
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98	
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66	
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87	
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11	
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93	
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21	

Numbers

89 of 172



Objects, natural scenes

CIFAR10

TinylmageNet

LSUN

Probing the Purview of Neural Networks via Gradient Analysis

Dataset Distribution		Detection Accuracy	AUROC	AUPR		
In	Out	Baseline [5] / ODI	N [6] / Mahalanobis (V) [7] / Mahalano	obis (P+FE) [7] / Ours		
	SVHN	83.36 / 88.81 / 79.39 / 91.95 / 98.04	88.30 / 94.93 / 85.03 / 97.10 / 99.84	88.26 / 95.45 / 86.15 / 96.12 / 99.98		
CIFAR-10	TinyImageNet	84.01 / 85.21 / 83.60 / 97.45 / 86.17	90.06 / 91.86 / 88.93 / 99.68 / 93.18	89.26 / 91.60 / 88.59 / 99.60 / 92.66		
	LSUN	87.34 / 88.42 / 85.02 / 98.60 / 98.37	92.79 / 94.48 / 90.11 / 99.86 / 99.86	92.30 / 94.22 / 89.80 / 99.82 / 99.87		
	CIFAR-10	79.98 / 80.12 / 74.10 / 88.84 / 97.90	81.50 / 81.49 / 79.31 / 95.05 / 99.79	81.01 / 80.95 / 80.83 / 90.25 / 98.11		
SVHN	TinyImageNet	81.70 / 81.92 / 79.35 / 96.17 / 97.74	83.69 / 83.82 / 83.85 / 99.23 / 99.77	82.54 / 82.60 / 85.50 / 98.17 / 97.93		
	LSUN	80.96 / 81.15 / 79.52 / 97.50 / 99.04	82.85 / 82.98 / 83.02 / 99.54 / 99.93	81.97 / 82.01 / 84.67 / 98.84 / 99.21		

More similar datasets (objects)



LSUN

SVHN

Case Study: Introspective Learning

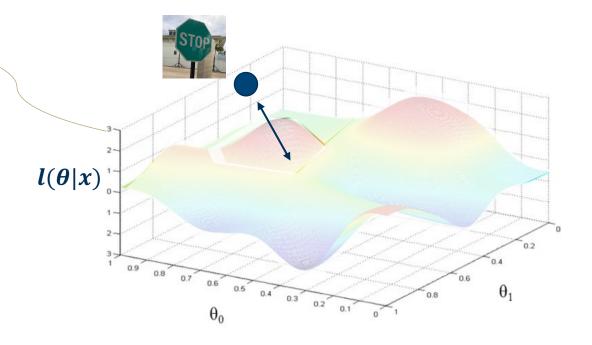
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Two techniques:

- 1. Gradient constraints during Training for Anomaly Detection
- 2. Backpropagating Confounding labels for Out-of-Distribution Detection



Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Robustness in Neural Networks

Why Robustness?

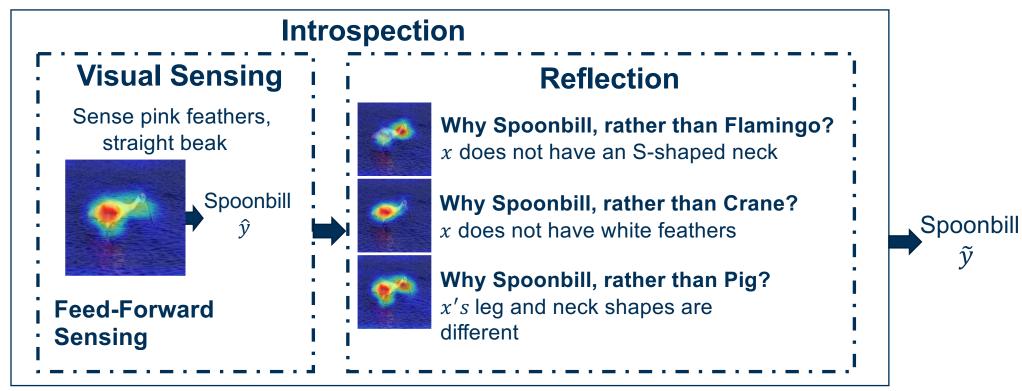
Introspective Learning: A Two-stage Approach for Inference in Neural Networks

How would humans resolve this challenge?

We Introspect!

- Why am I being shown this slide?
- Why images of muffins rather than pastries?
- What if the dog was a bullmastiff?

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



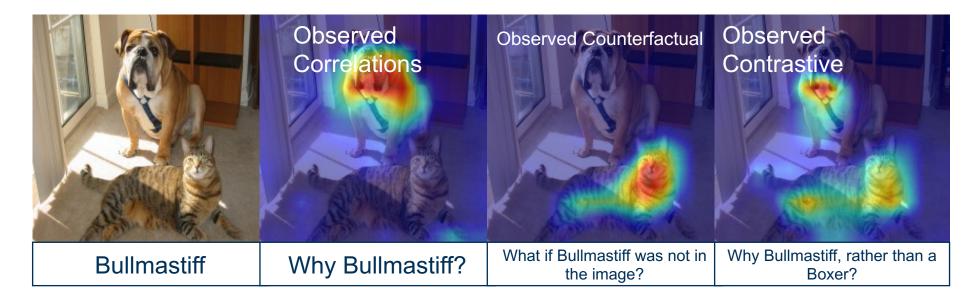
Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

Goal: To simulate Introspection in Neural Networks

Definition: We define introspections as answers to logical and targeted questions.

What are the possible targeted questions?

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection



What are the possible targeted questions?

Introspection Learning is a two-stage approach for Inference that combines visual sensing and reflection

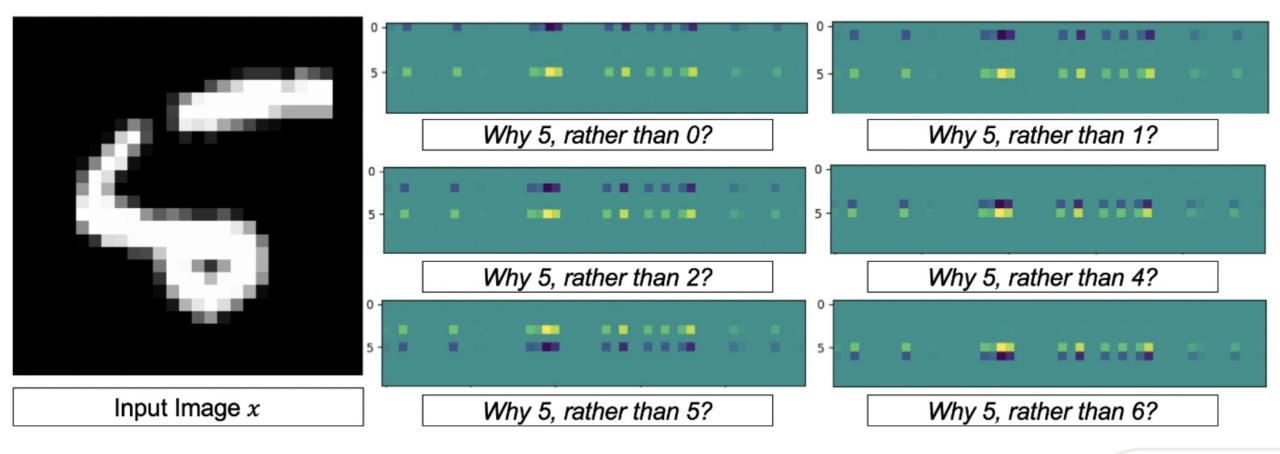
Goal: To simulate Introspection in Neural Networks

Contrastive Definition: Introspection answers questions of the form `Why P, rather than Q?' where P is a network prediction and Q is the introspective class.

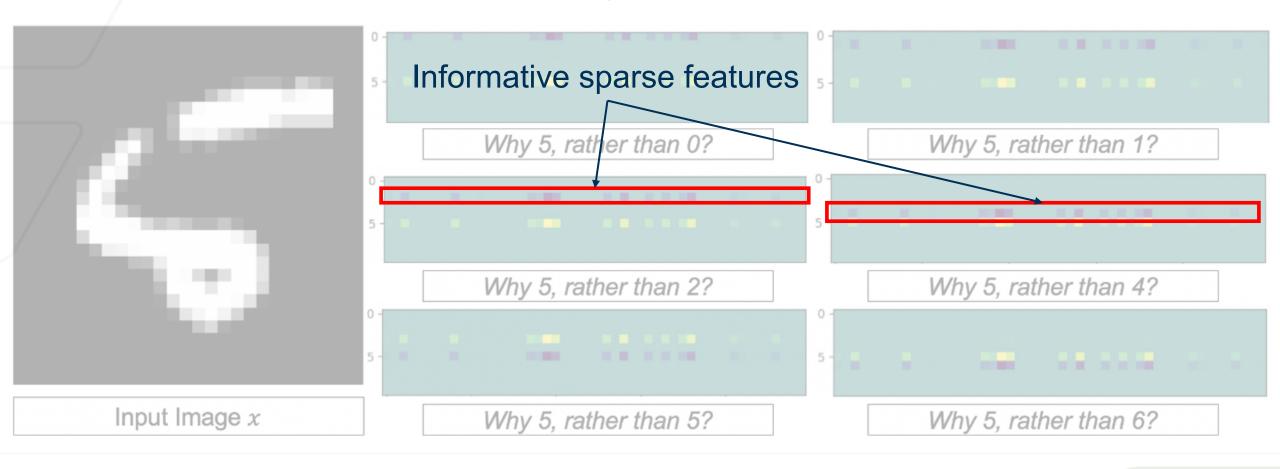
Technical Definition: Given a network f(x), a datum x, and the network's prediction $f(x) = \hat{y}$, introspection in $f(\cdot)$ is the measurement of change induced in the network parameters

when a label Q is introduced as the label for x..

For a well-trained network, the gradients are sparse and informative



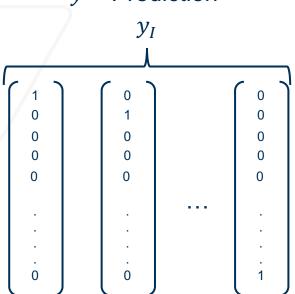
For a well-trained network, the gradients are sparse and informative

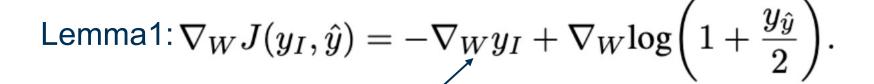


For a well-trained network, the gradients are robust

$$J = Loss function$$

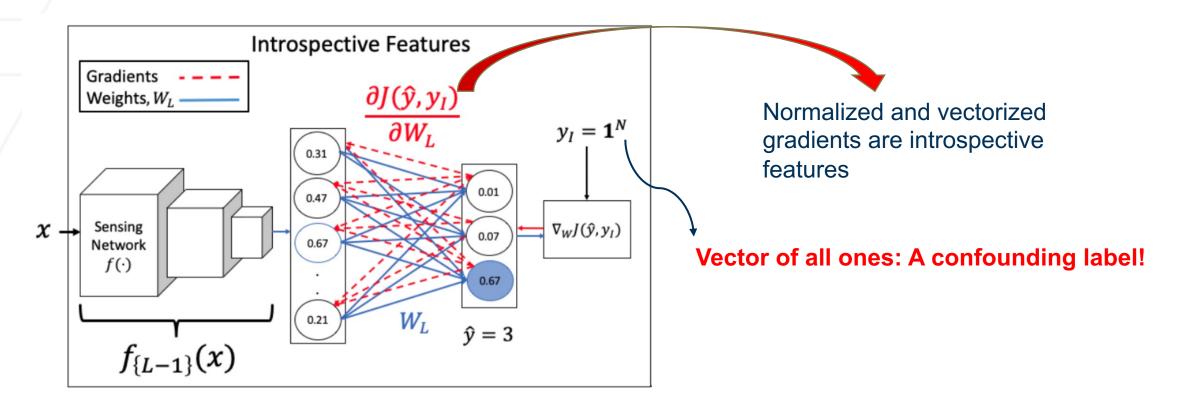
 $\hat{y} = Prediction$





Any change in class requires change in relationship between y_I and \hat{y}

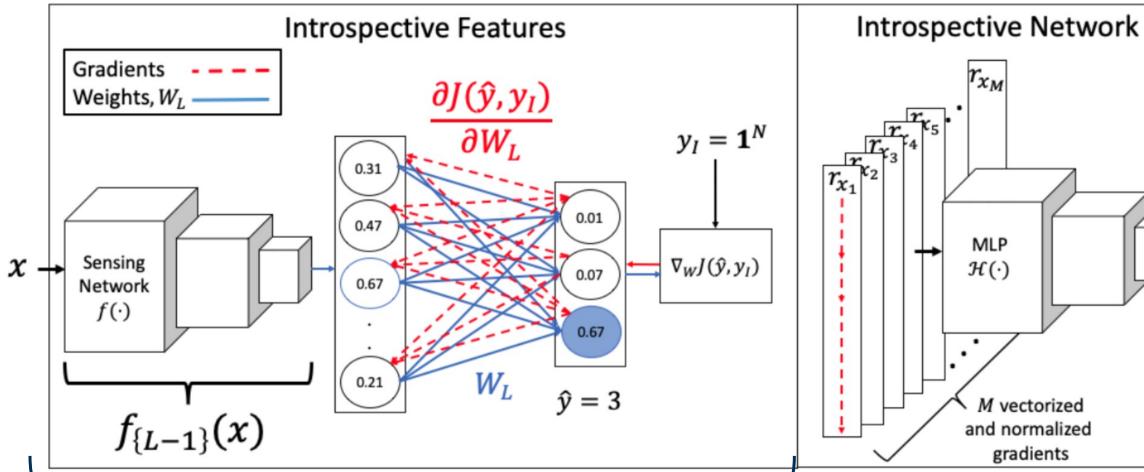
Measure the loss between the prediction P and a vector of all ones and backpropagate to obtain the introspective features

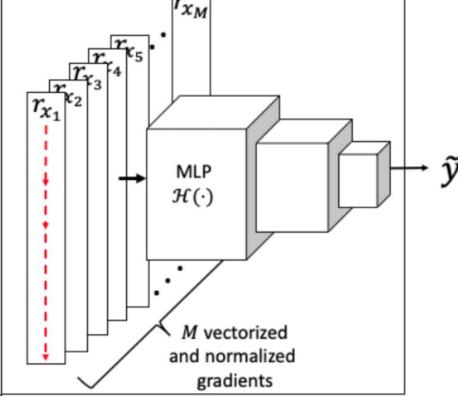


Introspection

Utilizing Gradient Features

Introspective Learning: A Two-stage Approach for Inference in Neural Networks





Introspective Features

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and calibrated to new testing data

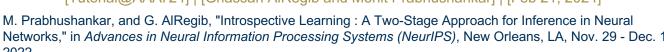
Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

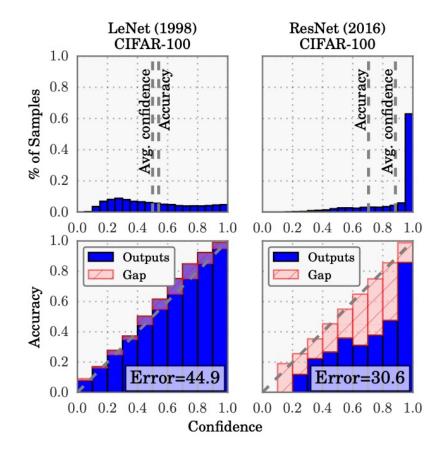
Exposure

Noise

2022.



Calibration occurs when there is mismatch between a network's confidence and its accuracy



- Larger the model, more misplaced is a network's confidence
- On ResNet, the gap between prediction accuracy and its corresponding confidence is significantly high

Introspection in Neural Networks

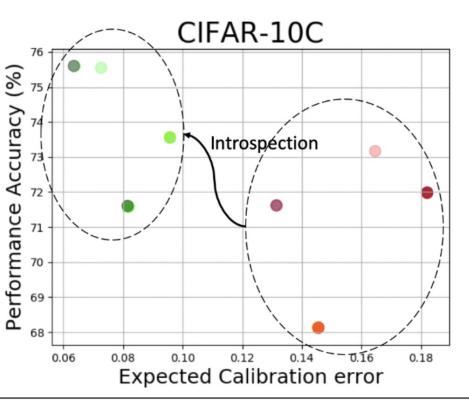
Generalization and Calibration results

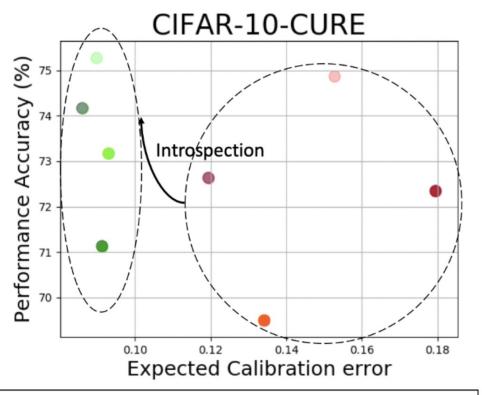
Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Ideal: Top-left corner

Y-Axis: Generalization

X-Axis: Calibration





Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing robustness techniques.

METHODS		ACCURACY
RESNET-18	FEED-FORWARD INTROSPECTIVE	67.89% 71.4 %
DENOISING	FEED-FORWARD INTROSPECTIVE	65.02% 68.86 %
Adversarial Train (27)	FEED-FORWARD INTROSPECTIVE	68.02% 70.86 %
SIMCLR (19)	FEED-FORWARD INTROSPECTIVE	70.28% 73.32 %
Augment Noise (28)	FEED-FORWARD INTROSPECTIVE	76.86% 77.98 %
Augmix (24)	FEED-FORWARD INTROSPECTIVE	89.85% 89.89 %

Introspection is a plug-in approach that works on all networks and on any downstream task!

Introspection in Neural Networks

Plug-in nature of Introspection

Introspective Learning: A Two-stage Approach for Inference in Neural Networks

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active Learning, and Image Quality Assessment!

Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image Quality Estimators. Top 2 results in each row are highlighted.

	PSNR	IW	SR	FSIMc	Per	CSV	SUM	Feed-Forward	Introspective
Database	HA	SSIM	SIM		SIM		MER	UNIQUE	UNIQUE
Outlier Ratio (OR, ↓)									
MULTI	0.013	0.013	0.000	0.016	0.004	0.000	0.000	0.000	0.000
TID13	0.615	0.701	0.632	0.728	0.655	0.687	0.620	0.640	0.620
				Root M	ean Squ	are Erro	or (RMS	E , ↓)	
MULTI	11.320	10.049	8.686	10.794	9.898	9.895	8.212	9.258	7.943
TID13	0.652	0.688	0.619	0.687	0.643	0.647	0.630	0.615	0.596
	Pearson Linear Correlation Coefficient (PLCC, ↑)								
MULTI	0.801	0.847	0.888	0.821	0.852	0.852	0.901	0.872	0.908
MULII	-1	-1	0	-1	-1	-1	-1	-1	
TID13	0.851	0.832	0.866	0.832	0.855	0.853	0.861	0.869	0.877
111013	-1	-1	0	-1	-1	-1	0	0	
			Spear	man's Ra	nk Corr	elation (Coefficie	nt (SRCC, †)	
MULTI	0.715	0.884	0.867	0.867	0.818	0.849	0.884	0.867	0.887
MULII	-1	0	0	0	-1	-1	0	0	
TID13	0.847	0.778	0.807	0.851	0.854	0.846	0.856	0.860	0.865
111/13	-1	-1	-1	-1	0	-1	0	0	
			Ken	dall's Rai	nk Corre	elation (Coefficie	nt (KRCC)	
MULTI	0.532	0.702	0.678	0.677	0.624	0.655	0.698	0.679	0.702
MULII	-1	0	0	0	-1	0	0	0	
TID13	0.666	0.598	0.641	0.667	0.678	0.654	0.667	0.667	0.677
11013	0	-1	-1	0	0	0	0	0	

Table 2: Recognition accuracy of Active Learning strategies.

Methods	Architecture	Origina	1 Testset	Gaussian Noise		
		R-18	R-34	R-18	R-34	
Entropy (34)	Feed-Forward	0.365	0.358	0.244	0.249	
	Introspective	0.365	0.359	0.258	0.255	
Least (34)	Feed-Forward	0.371	0.359	0.252	0.25	
	Introspective	0.373	0.362	0.264	0.26	
Margin (32)	Feed-Forward	0.38	0.369	0.251	0.253	
	Introspective	0.381	0.373	0.265	0.263	
BALD (34)	Feed-Forward	0.393	0.368	0.26	0.253	
	Introspective	0.396	0.375	0.273	0.263	
BADGE (33)	Feed-Forward	0.388	0.37	0.25	0.247	
	Introspective	0.39	0.37	0.265	0. 260	

Table 3: Out-of-distribution Detection of existing techniques compared between feed-forward and introspective networks.

Methods	OOD Datasets	FPR (95% at TPR)	Detection Error	AUROC
	Datasets	()3 % at 11 k) ↓	↓	1
		Feed-	Forward/Introspe	ective
	Textures	58.74/19.66	18.04/ 7.49	88.56/ 97.7 9
MSP (33)	SVHN	61.41/ 51.27	16.92/ 15.67	89.39/91.2
	Places365	58.04/ 54.43	17.01/ 15.07	89.39/91.3
	LSUN-C	27.95 /27.5	9.42 /10.29	96.07 /95.73
	Textures	52.3/ 9.31	22.17/ 6.12	84.91/ 91. 9
ODIN (35)	SVHN	66.81/ 48.52	23.51/15.86	83.52/91.07
	Places365	42.21 /51.87	16.23/15.71	91.06/90.95
	LSUN-C	6.59 /23.66	5.54/10.2	98.74/ 95.87

Robust Neural Networks

Part 4: Intervenability at Inference

Objective

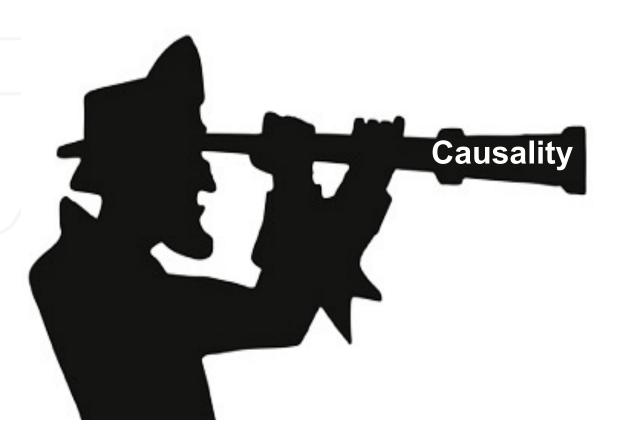
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

- Part 1: Inference in Neural Networks
- Part 2: Explainability at Inference
- Part 3: Uncertainty at Inference
- Part 4: Intervenability at Inference
 - Definitions of Intervenability
 - Causality
 - Privacy
 - Interpretability
 - Prompting
 - Benchmarking
 - Case Study: Intervenability in Interpretability
- Part 5: Conclusions and Future Directions

Through the Causal Glass

Assess: The amenability of neural network decisions to human interventions



"Interventions in data are manipulations that are designed to test for causal factors"

Through the Privacy Glass

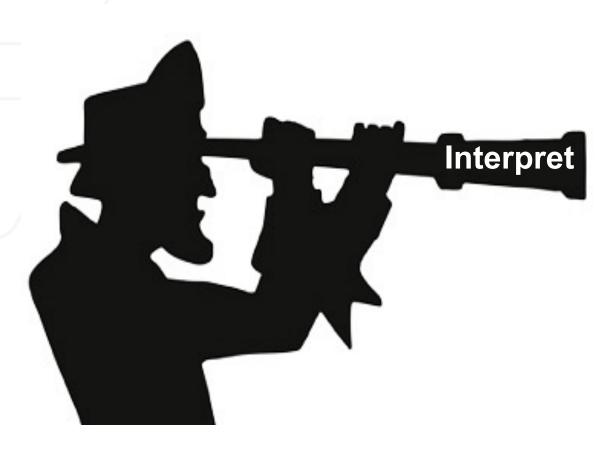
Assure: The amenability of neural network decisions to human interventions



"Intervenability aims at the possibility for parties involved in any privacy-relevant data processing to interfere with the ongoing or planned data processing"

Through the Interpretability Glass

Interpret: The amenability of neural network decisions to human interventions



"The post-hoc field of explainability, that previously only justified decisions, becomes active by being involved in the decision making process and providing limited, but relevant and contextual interventions"

Through the Benchmarking Glass

Verify: The amenability of neural network decisions to human interventions

"... new benchmarks were proposed to specifically test generalization of classification and detection methods with respect to simple algorithmically generated interventions like spatial shifts, blur, changes in brightness or contrast..."

Challenges in Intervenability

The amenability of neural network decisions to human interventions

Assess: Causality

Assure: Privacy

Interpret: Interpretability

Verify: Benchmarking

Challenges:

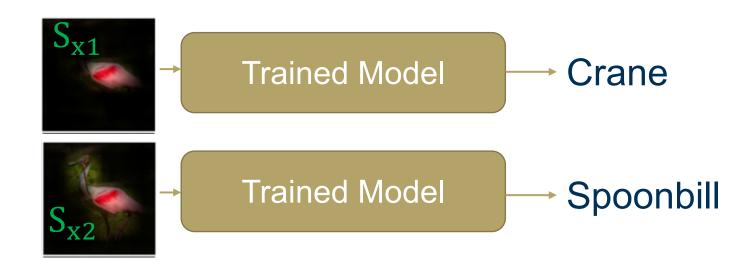
- Choosing the type of Intervention: Explanation **Evaluation**
- Residuals of Interventions: Uncertainty

Explanation Evaluation

Visual explanations are evaluated via masking the important regions in the image and passing it through the network

Three types of Masking:

- 1. Masking using explanation heatmap
- 2. Pixel-wise masking using explanation as importance
- 3. Structure-wise masking using information encoded in explanation



Masking = Intelligent Intervention

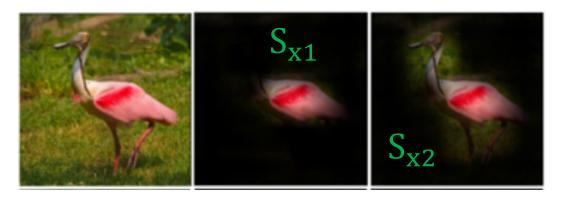
Evaluation 1: Explanation Evaluation via Masking

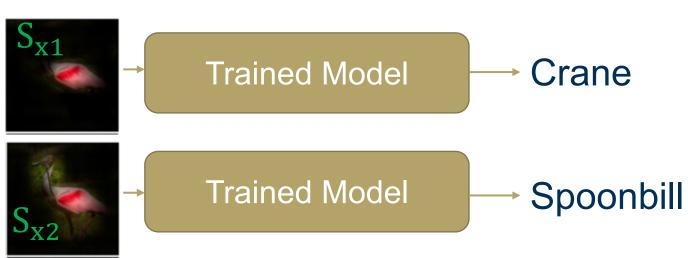
Common evaluation technique is masking the image and checking for prediction correctness

y =Prediction $S_x =$ Explanation masked data

 $E(Y|S_x)$ = Expectation of class given S_x

If across N images, $\mathbf{E}(\mathbf{Y}|\mathbf{S}_{x2}) > \mathbf{E}(\mathbf{Y}|\mathbf{S}_{x1})$, explanation technique 2 is better than explanation technique 1

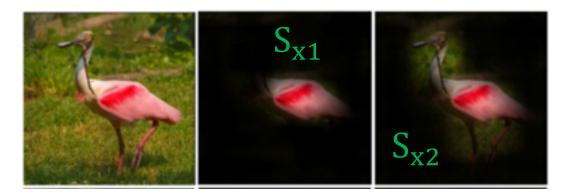




Evaluation 1: Explanation Evaluation via Masking

However, explanation masking encourages 'larger' explanations

- Larger explanations imply more features in masked images are intact (unmasked)
- This increases likelihood of a correct prediction
- 'Fine-grained' explanations are not promoted



Explanation Evaluation

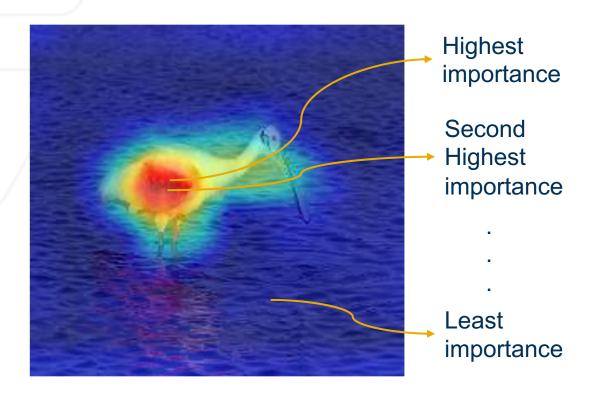
Common evaluation technique is masking the image and checking for prediction correctness

Three types of Masking:

- 1. Masking using explanation heatmap
- 2. Pixel-wise masking using explanation as importance
- 3. Structure-wise masking using information encoded in explanation

Evaluation 2: Progressive Pixel-wise Insertion and Deletion

Pixel-wise Deletion: Sequentially delete (mask) pixels in an image based on their explanation assigned importance scores



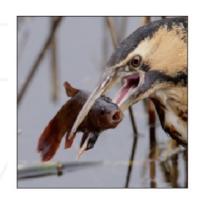
Step 1: Mask highest importance pixel and pass the image through the network. Note the probability of spoonbill.

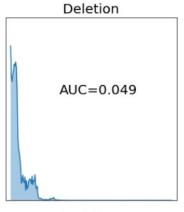
Step 2: Mask the second highest importance pixel from the image in Step 1 and pass the image through the network. Note the probability of spoonbill.

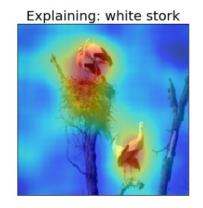
Step 3: Repeat until all pixels are deleted (masked)

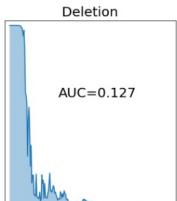
Evaluation 2: Progressive Pixel-wise Insertion and Deletion

The removal of the "cause" (important pixels) will force the base model to change its decision.





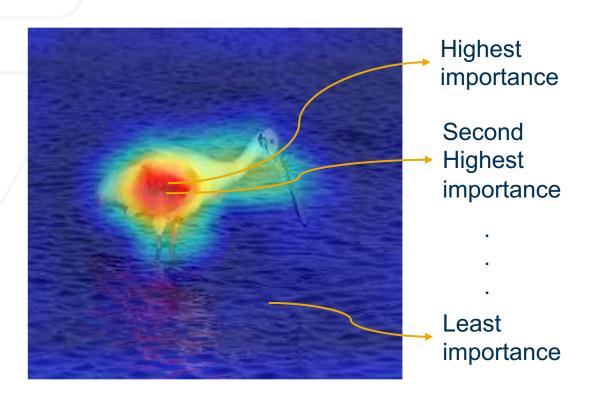




- Deletion approximates
 Necessity criterion of a "good" explanation
- AUC for a good explanation will be low
- Deletion encourages finegrained explanations by choosing those heatmaps that select the most relevant pixels

Evaluation 2: Progressive Pixel-wise Insertion and Deletion

Pixel-wise Insertion: Sequentially add pixels to a mean image based on their explanation assigned importance scores



Take a mean (grayscale) image

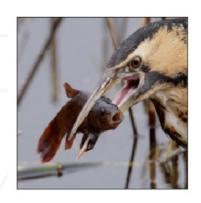
Step 1: Add the highest importance pixel to the mean image and pass it through the network. Note the probability of spoonbill.

Step 2: Add the second highest importance pixel to the image in Step 1 and pass the image through the network. Note the probability of spoonbill.

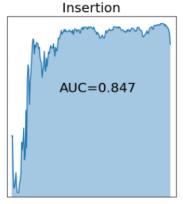
Step 3: Repeat until all pixels are inserted

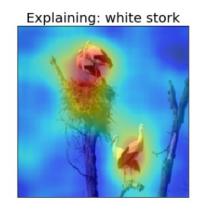
Evaluation 2: Progressive Pixel-wise Insertion and Deletion

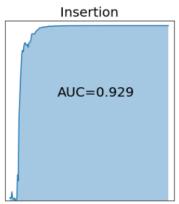
The addition of the "cause" (important pixels) will force the base model to change its decision.



Explaining: bittern







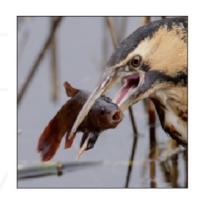
Sufficiency criterion of a "good" explanation

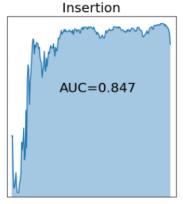
Insertion approximates

- AUC for a good explanation will be high
- Insertion encourages finegrained explanations by choosing those heatmaps that select the most relevant pixels

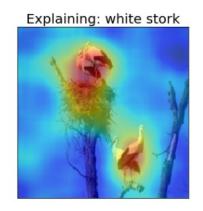
Evaluation 2: Progressive Pixel-wise Insertion and Deletion

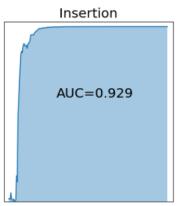
Insertion and Deletion evaluation metrics encourage pixel-wise analysis of explanations





127 of 172





- However, humans do not "see" in pixels
- Rather they view scenes in a "structure-wise" fashion
- While heatmap masking encourages large explanations, pixel-wise masking encourages unrealistic and non-human like explanations

Explanation Evaluation

Common evaluation technique is masking the image and checking for prediction correctness

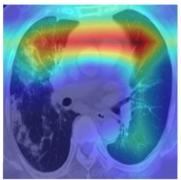
Three types of Masking:

- 1. Masking using explanation heatmap
- 2. Pixel-wise masking using explanation as importance
- 3. Structure-wise masking using information encoded in explanation

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number of bits used to represent the region







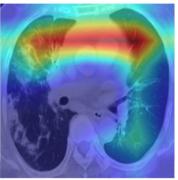
Ideal scenario: The explanation encodes the most important information in the least possible bits

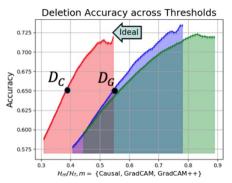
CausalCAM in Red¹
GradCAM in Purple
GradCAM++ in Green

- D_C and D_G represent 65% accuracy for CausalCAM and GradCAM respectively
- CausalCAM encodes dense structure-rich features in lesser bits, that aid accuracy

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number of bits used to represent the region



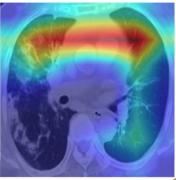


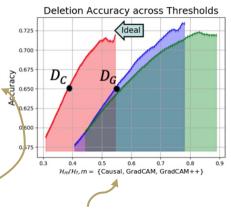
Ideal scenario: The explanation encodes the most important information in the least possible bits

Step 1: Choose a threshold in the explanation (say 0.1) and delete (mask) all the pixels in the original image below the threshold. Pass the masked image through the network and note the change in prediction (if any)

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number of bits used to represent the region





Y-axis: Performance accuracy across all ratios

X-axis: Ratio of Huffman encoded masked and original images for all explanations. Smaller the ratio, less is the number of bits encoding the masked image

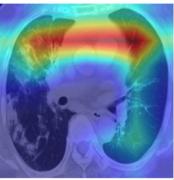
Ideal scenario: The explanation encodes the most important information in the least possible bits

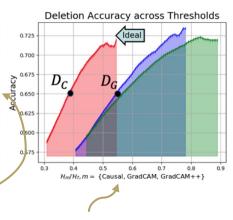
Step 1: Choose a threshold in the explanation (say 0.1) and delete (mask) all the pixels in the original image below the threshold. Pass the masked image through the network and note the change in prediction (if any)

Step 2: Calculate the Huffman code for the original and the masked image. The ratio between the codes of masked and original image is taken on the x-axis and the corresponding accuracy across all images is shown on the y-axis

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Deletion: Sequentially delete (mask) pixels in an image based on the number of bits used to represent the region





Y-axis: Performance accuracy across all ratios

X-axis: Ratio of Huffman encoded masked and original images for all explanations. Smaller the ratio, less is the number of bits encoding the masked image

Ideal scenario: The explanation encodes the most important information in the least possible bits

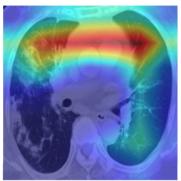
Step 1: Choose a threshold in the explanation (say 0.1) and delete (mask) all the pixels in the original image below the threshold. Pass the masked image through the network and note the change in prediction (if any)

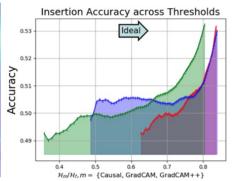
Step 2: Calculate the Huffman code for the original and the masked image. The ratio between the codes of masked and original image is taken on the x-axis and the corresponding accuracy across all images is shown on the y-axis

Step 3: Repeat across thresholds

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise Insertion: Sequentially add (insert) pixels in an image based on the number of bits used to represent the region





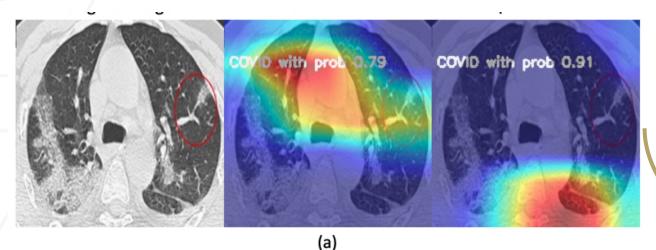
Ideal scenario: The explanation encodes the most important information in the least possible bits

CausalCAM in Red¹
GradCAM in Purple
GradCAM++ in Green

 CausalCAM encodes dense structure-rich features in at the lowest threshold, that aid accuracy

Evaluation 3: Progressive Structure-wise Insertion and Deletion

Structure-wise insertion and deletion can sometimes promote adversarial explanations



COVID with prob 0.9

- Best explanations according to structure-wise insertion and deletion.
- Corroborated by high probabilities

134 of 172

Pros and Cons

Evaluation 1: Explanation heatmap masking

- **Pro**: Structures are visible in the explanations

Evaluation 2: Pixel-wise insertion and deletion

- **Pro**: Progressively assigns importance to pixels
- Con: Encourages large non-fine grained explanations Con: Encourages unrealistic and dispersed explanations

Evaluation 3: Structure-wise insertion and deletion

- **Pro**: Encourages structures while progressively assigning importance to structures based on information bits
- **Pro**: Other human-centric measures including SSIM, saliency etc. can be used on x-axis
- **Con**: Encourages causal (and sometimes adversarial) explanations without considering context information

Challenges in Intervenability

The amenability of neural network decisions to human interventions

- Hence, there is no single-best interventional strategy
- Choosing the **right** intervention is still an art

- Choosing the type of Intervention: Explanation Evaluation
- Residuals of Interventions: Uncertainty

Challenges in Intervenability

The amenability of neural network decisions to human interventions

- Hence, there is no single-best interventional strategy
- Choosing the **right** intervention is still an art

- Choosing the type of Intervention: Explanation Evaluation
- Residuals of Interventions: Uncertainty

VOICE: Variance of Contrastive Explanations for Quantifying Uncertainty in Interpretability

Mohit Prabhushankar, PhD Postdoc

Ghassan AlRegib, PhD Professor

Predictive Uncertainty in Explanations

Explanatory techniques have predictive uncertainty

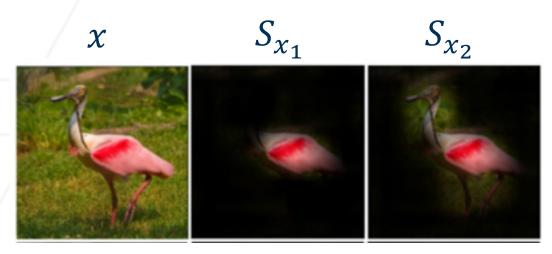
Explanation of Prediction Uncertainty of Explanation

Uncertainty in answering Why Bullmastiff?

Why Bullmastiff?

Predictive Uncertainty

Uncertainty due to variance in prediction when model is kept constant



$$V[y|S_x] = V[E(y|S_x)] + E(V[y|S_x])$$

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)

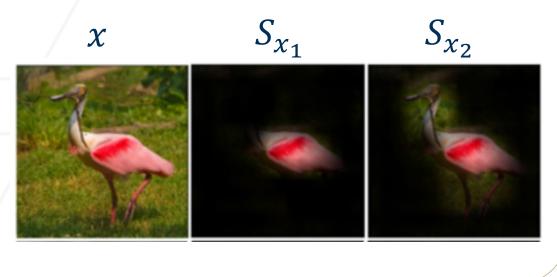
 S_x = Subset of data (Some intervention)

 $E(Y|S_x)$ = Expectation of class given a subset

 $V(Y|S_x)$ = Variance of class given all other residuals

Visual Explanations (partially) reduce Predictive Uncertainty

A 'good' explanatory technique is evaluated to have zero $V[E(y|S_x)]$



zero

Key Observation 1: Visual Explanations are evaluated to partially reduce the predictive uncertainty in a neural network

$$V[y|S_x] = V[E(y|S_x)] + E(V[y|S_x])$$

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)

 S_x = Subset of data (Some intervention)

 $E(Y|S_x)$ = Expectation of class given a subset

 $V(Y|S_x)$ = Variance of class given all other residuals

Network evaluations have nothing to do with human Explainability!

141 of 172

Predictive Uncertainty in Explanations is the Residual

All other subsets 'not' chosen by the explanatory technique contributes to uncertainty

$$x$$
 S_{x_1} S_{x_2}

$$V[y|S_x] = V[E(y|S_x)] + E(V[y|S_x])$$

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)

 S_x = Subset of data (Some intervention)

 $E(Y|S_x)$ = Expectation of class given a subset

 $V(Y|S_x)$ = Variance of class given all other residuals

Key Observation 2: Uncertainty in Explainability occurs due to all combinations of features that the explanation did not attribute to the network's decision

Predictive Uncertainty in Explanations is the Residual

All other subsets 'not' chosen by the explanatory technique contributes to uncertainty

$$X S_{x_1} S_{x_2}$$

$$V[y|S_x] = V[E(y|S_x)] + E(V[y|S_x])$$

The effect of a chosen Interventions can be measured based on all the Interventions that were not chosen

 $E(Y|S_x)$ = Expectation of class given a subset $V(Y|S_x)$ = Variance of class given all other residuals

Key Observation 2: Uncertainty in Explainability occurs due to all combinations of features that the explanation did not attribute to the network's decision

Predictive Uncertainty in Explanations is the Residual

All other subsets 'not' chosen by the explanatory technique contributes to uncertainty

Snout is not as highlighted as the jowls in explanation (not as

important for decision)

Explanation of Prediction Uncertainty of Explanation

However, snout is an important characteristic that is used to differentiate against other dogs. Hence, there is uncertainty on why this feature is not included in the attribution

Key Observation 2: Uncertainty in Explainability occurs due to all combinations of features that the explanation did not attribute to the network's decision

Predictive Uncertainty in Explanations is the Residual

All other subsets 'not' chosen by the explanatory technique contributes to uncertainty

Snout is not as highlighted as the jowls in explanation (not as

important for decision)

Explanation of Prediction Uncertainty of Explanation

However, snout is an important characteristic that is used to differentiate against other dogs. Hence, there is uncertainty on why this feature is not included in the attribution

Not chosen features are intractable!

Quantifying Interventions in Explainability

Contrastive explanations are an intelligent way of obtaining other subsets

146 of 172

Quantifying Interventions in Explainability

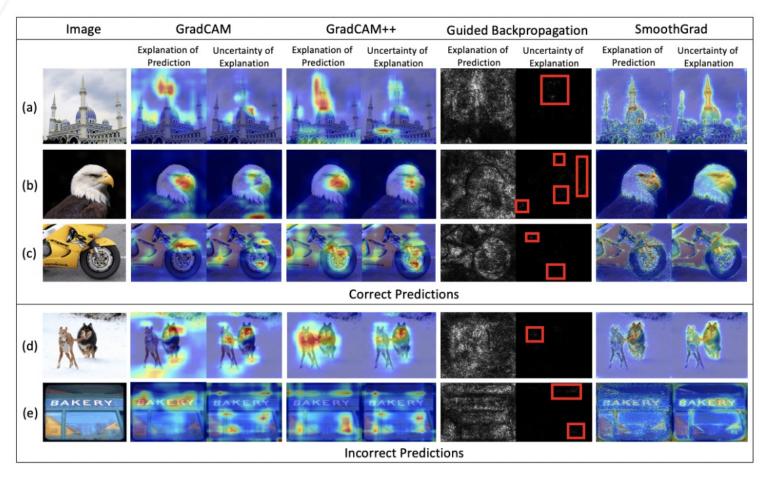
Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

- Is GradCAM better than GradCAM++?
- Is a SWIN transformer more reliable than VGG-16?

Need objective quantification of Intervention Residuals

Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

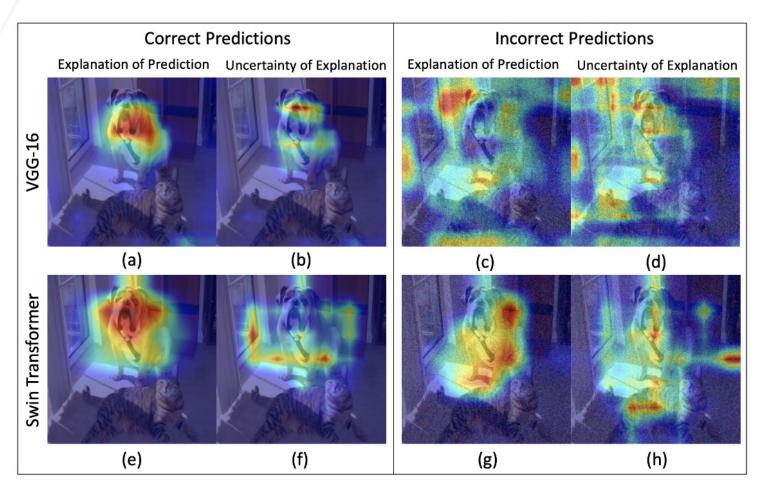


Objective Metric: Intersection over Union (IoU) between explanation and Uncertainty

Higher the IoU, higher the uncertainty in explanation (or less trustworthy is the prediction)

Quantifying Interventions in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)



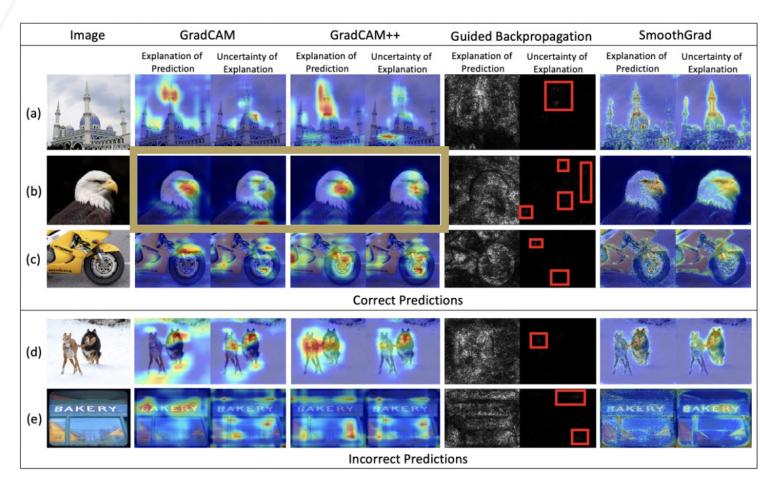
Objective Metric: Signal to Noise Ratio of the Uncertainty map

Higher the SNR of uncertainty, more is the dispersal (or less trustworthy is the prediction)

150 of 172

Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

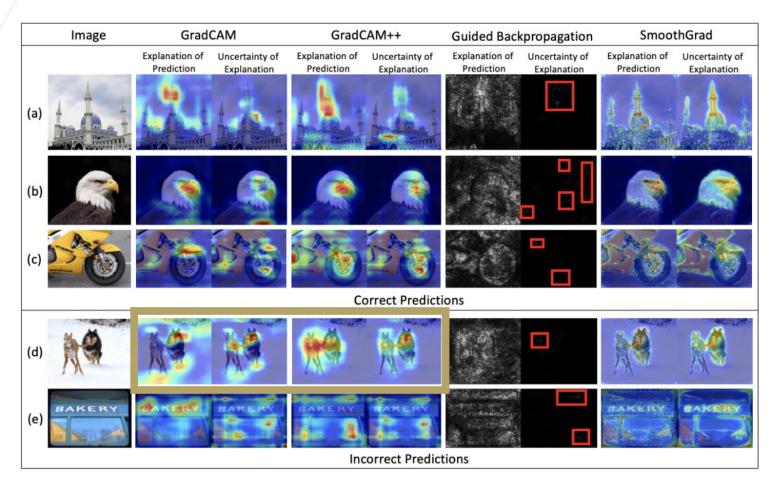


Objective Metric 1:
Intersection over
Union (IoU)
between
explanation and
Uncertainty

Higher the IoU, higher the uncertainty in explanation (or less trustworthy is the prediction)

Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

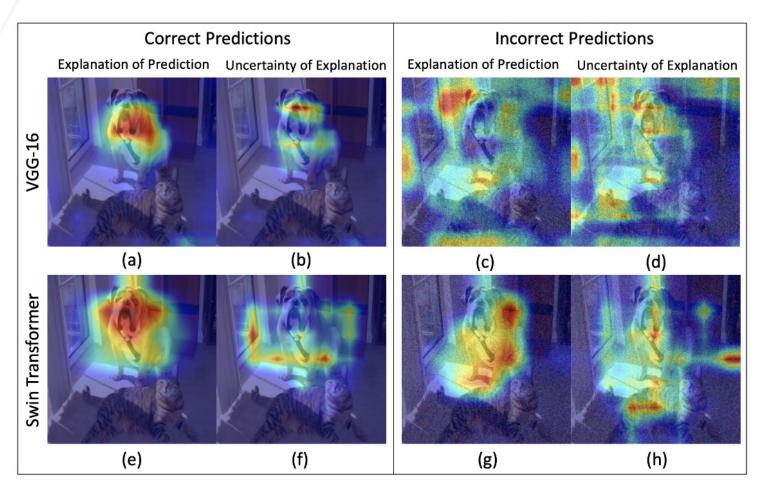


Objective Metric 1:
Intersection over
Union (IoU)
between
explanation and
Uncertainty

Higher the IoU, higher the uncertainty in explanation (or less trustworthy is the prediction)

Quantifying Interventions in Explainability: SNR

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

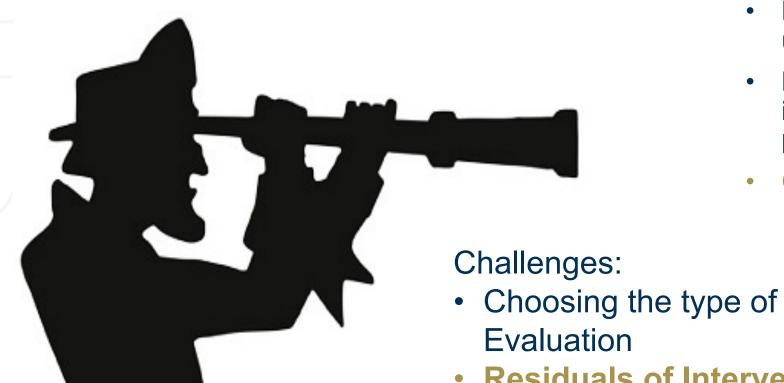


Objective Metric 2: Signal to Noise Ratio of the Uncertainty map

Higher the SNR of uncertainty, more is the dispersal (or less trustworthy is the prediction)

Challenges in Intervenability

The amenability of neural network decisions to human interventions



- Not choosing interventions causes uncertainty in the chosen interventions
- Residuals must be analyzed intelligently to 'trust or not to trust' predictions at inference
- Gradients quantify residual uncertainty

- Choosing the type of Intervention: Explanation Evaluation
- Residuals of Interventions: Uncertainty

Intervenability

Through the Human Glass

The amenability of neural network decisions to human interventions

Assess: Causality

Assure: Privacy

Interpret: Interpretability

Actuate: Prompting

Verify: Benchmarking

Detection and Localization

CURE-TSD: Challenging Unreal and Real Environments for Traffic Sign Detection

- 49 real and virtual sequences
- 300 frames in each sequence
- 12 different challenges including decolorization, codec error, lens blur etc.
- 5 progressively increasingly levels in each challenge
- Goal: Detect and localize traffic signs

Recognition

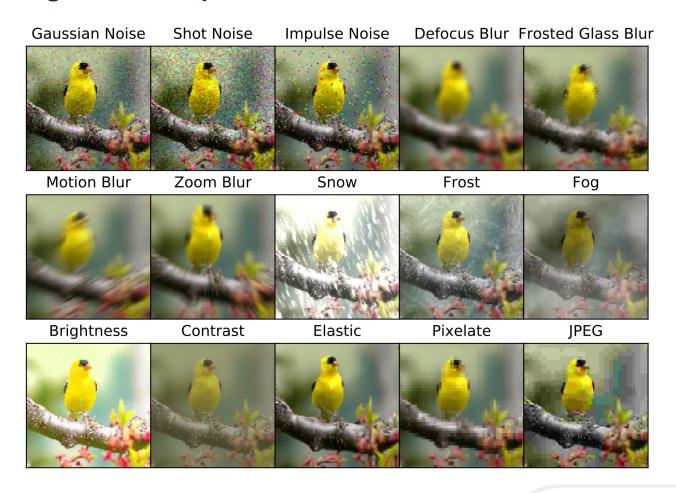
CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition

- 2 million real and virtual traffic sign images
- 14 Traffic signs including common signs like stop, no-right, no-left etc. and uncommon signs like goods-vehicles, priority lanes etc.
- 12 different challenges including decolorization, codec error, lens blur etc.
- 5 progressively increasingly levels in each challenge

Recognition

ImageNet-C: ImageNet-Corruptions

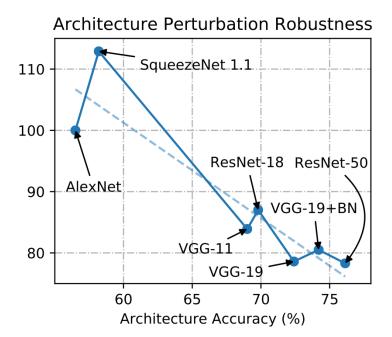
- 3.75 million images
- 15 different challenges including decolorization, codec error, lens blur etc. for testing
- 4 different challenges for validation and training
- 5 progressively increasingly levels in each challenge
- Goal: Recognize 1000 classes from ImageNet using pretrained networks



Recognition

ImageNet-P: ImageNet-Perturbations

- 5 million images
- 100 perturbations of 50000 images
- 10 frames of algorithmically generated perturbations for each image in ImageNet validation testset
- 10 common perturbations including brightness, tilt, motion etc.

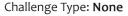


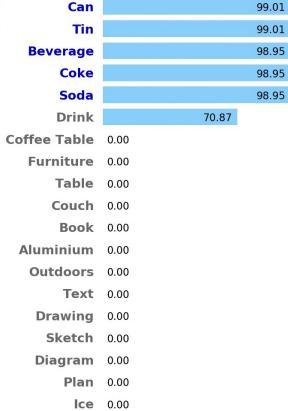
Retrieval and Recognition

CURE-OR: Challenging Unreal and Real Environments for Object Recognition

Data Characteristics:

- 1 million images
- 100 common household objects and 10000 images per object
- 5 backgrounds, 5 object orientations, 5 devices, and 78 challenging conditions
- Goal: To recognize and retrieve the same object across backgrounds, orientations, devices, and challenging conditions





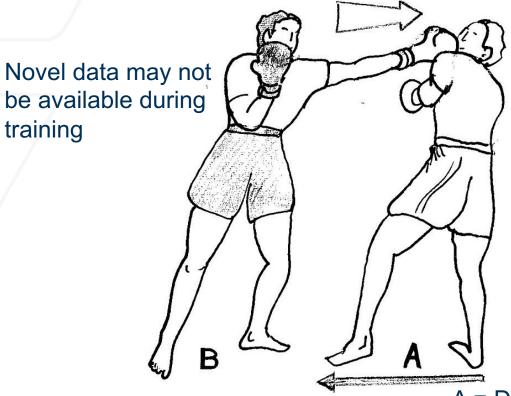
Snow 0.00

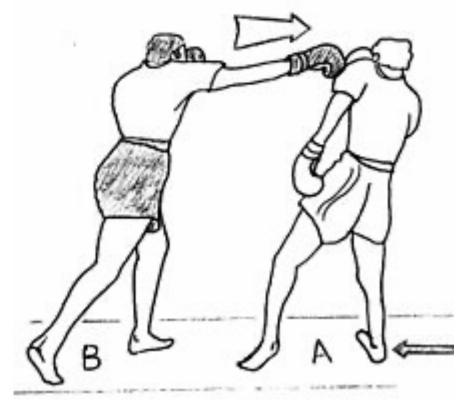
Robust Neural Networks

Part 5: Conclusions and Future Directions

Overcoming Challenges at Training

Novel data packs a 1-2 punch!



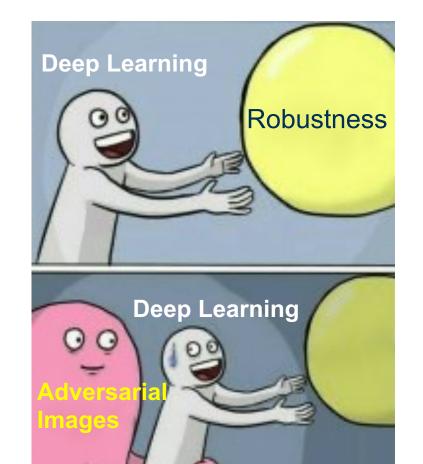


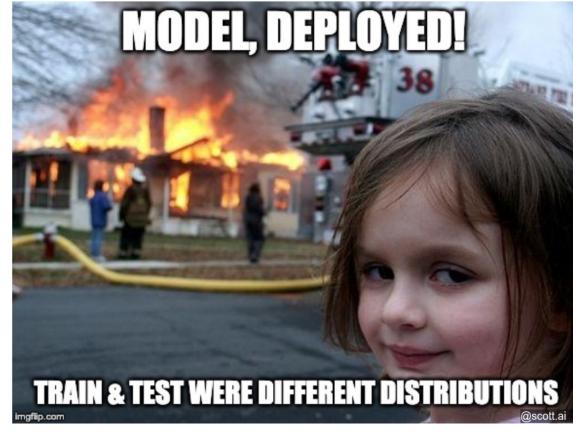
Even if available, novel data does not easily fit into either the earlier or later stages of training

A = Deep Neural Networks

B = Novel data

Robustness at Inference

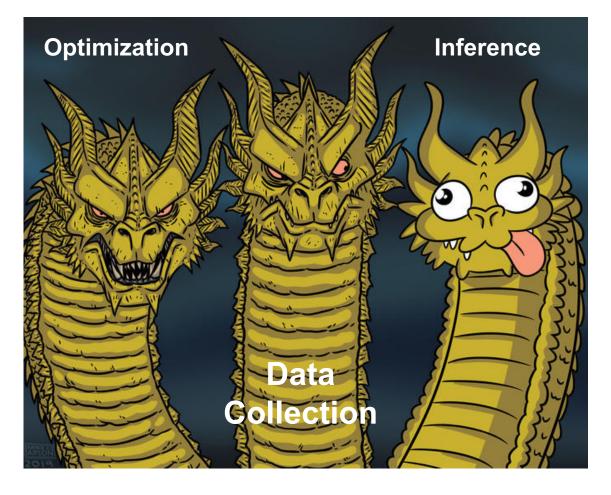




Cannot depend on training to construct robust models

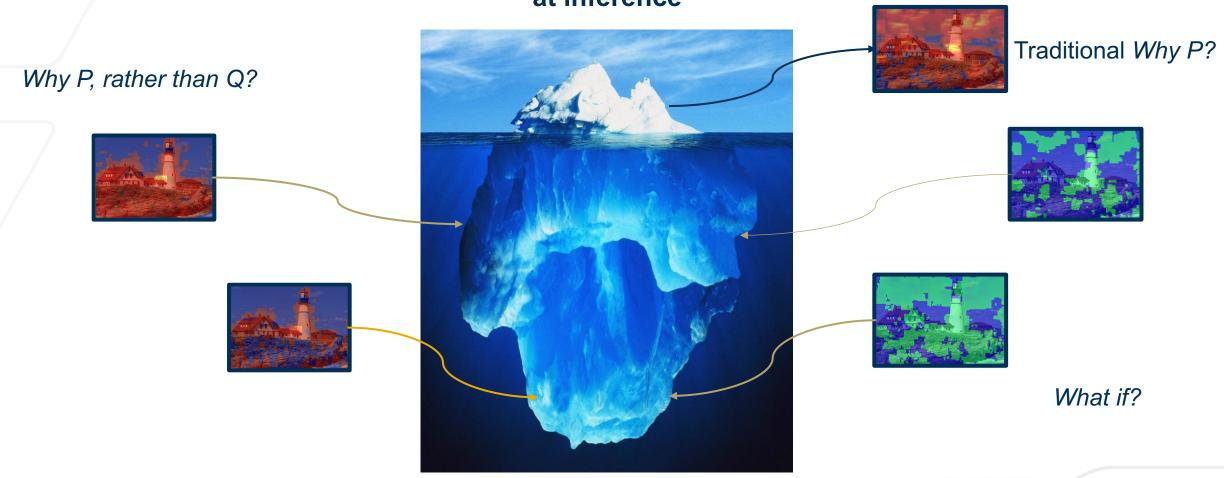
Robustness Research in the Inferential Stage of Neural Networks

Existing research on robustness focuses on data collection and optimization



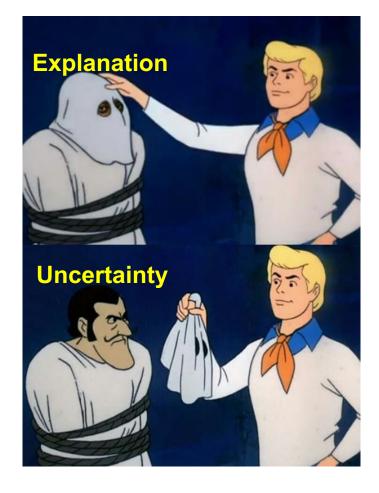
Implicit Knowledge in Neural Networks

Trained Neural Networks have a wealth of implicit stored knowledge, waiting to be extracted at inference



Explainability Research is Just Uncertainty Research

Explanatory Evaluation reduces Uncertainty



Key Takeaways

Role of Gradients

- Robustness under distributional shift in domains, environments, and adversaries are challenges for neural networks
 - Gradients at Inference provide a holistic solution to the above challenges
- Gradients can help traverse through a trained and unknown manifold
 - They approximate Fisher Information on the projection
 - They can be manipulated by providing contrast classes
 - They can be used to construct **localized contrastive** manifolds
 - They provide implicit knowledge about all classes, when only one data point is available at inference
- Gradients are useful in a number of **Image Understanding** applications
 - Highlighting features of the current prediction as well as counterfactual data and contrastive classes
 - Providing directional information in anomaly detection
 - Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
 - Providing expectancy mismatch for human vision related applications

Future Directions

Research at Inference Stage

Test Time Augmentation (TTA) Research

- Multiple augmentations of data are passed through the network at inference
- Research is in designing the best augmentations

Active Inference

- Utilize the knowledge in Neural Networks to ask it to ask us
- Neural networks ask for the best augmentation of the data point given that one data point at inference

Uncertainty in Explainability, Label Interpretation, and Trust quantification

- Uncertainty research has to expand beyond model and data uncertainty
- In some applications within medical and seismic communities, there is no agreed upon label for data.
 Uncertainty in label interpretation is its own research

Test-time Interventions for Al alignment

- Human interventions at test time to alter the decision-making process is essential trustworthy Al
- Further research in intelligently involving experts in a non end-to-end framework is required

References

Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection

- Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning: A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 Dec. 1 2022
- Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.
- Gradients for Open set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021.
- GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. In European Conference on Computer Vision (pp. 206-226). Springer, Cham.
- Gradients for adversarial, OOD, corruption detection: J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," in IEEE Access, Mar. 21 2023.
- Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.
- Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

- Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. *IEEE Signal Processing Magazine*, 39(4), 59-72.
- Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
- Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, "Extracting Causal Visual Features for Limited Label Classification," in IEEE International Conference on Image Processing (ICIP), Sept. 2021.
- Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.

References

Self Supervised Learning

- Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023.
- Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye Data," in Open Journal of Signals Processing, Apr. 28 2023.
- Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022
- Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction

- Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," *IEEE Transactions on Intelligent Transportation Systems*, submitted on Dec. 28 2022.
- Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in *IEEE International Conference on Image Processing (ICIP)*, Abu Dhabi, United Arab Emirates, Oct. 2020.
- **Human Image Quality Assessment:** D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation," in IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

- CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics," in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019
- CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017
- **CURE-OR:** D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in *IEEE International Conference on Machine Learning and Applications (ICMLA*), Orlando, FL, Dec. 2018

References

Active Learning

- Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023
- Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023
- Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-Distribution Data," in *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, Oct. 16-19 2022
- Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

- **Gradient-based Uncertainty:** J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in *IEEE International Conference on Image Processing (ICIP)*, Abu Dhabi, United Arab Emirates, Oct. 2020
- **Gradient-based Visual Uncertainty:** M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural Network Interpretability," *Journal of Selected Topics in Signal Processing*, submitted on Aug. 27, 2023.
- **Uncertainty Visualization in Seismic Images:** R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With Prediction Switches," in *International Meeting for Applied Geoscience & Energy (IMAGE)*, Houston, TX, , Aug. 28-Sept. 1 2022.
- Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurIPS 2022 Workshop on Human in the Loop Learning, Oct. 27 2022
- **Uncertainty in Saliency Estimation:** T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection," in *IEEE Transactions on Image Processing*, vol. 27, pp. 2818-2827, Jun. 2018.

Tutorial Materials

Accessible Online

AAAI 2024 Tutorial

Presented by: Ghassan AlRegib, and Mohit Prabhushankar

Georgia Institute of Technology

www.ghassanalregib.info

Duration: Half Day (3 hours, 30 mins)

Title: Formalizing Robustness in Neural Networks: Explainability, Uncertainty, and Intervenability

https://alregib.ece.gatech.edu/aaai-2024tutorial/

{alregib, mohit.p}@gatech.edu

