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Challenges in Neural Networks



Data and Neural Networks 
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Introduction
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Classifier
Trained with 

Classifier
Trained with 

Limitations of Neural Networks
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Classifier
Trained with 

Classifier
Trained with 

Limitations of Neural Networks

Don’t trust these 
predictions!
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Understanding Model Uncertainty 
Classifier
Trained with 

Classifier
Trained with 

(1) How certain / familiar are 
you with a given input?

(2) Can you detect Anomalies 
in input data? 



Introduction
CURE-OR: Challenging Unreal and Real Environment for Object 
Recognition
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Introduction
Robustness in Autonomous Vehicles
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Explanations are a set of rationales used to understand the reasons behind a decision

Name of the 
bird?

Question Answer

Spoonbill

Why Spoonbill?

Shallow-water bird with flattened
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a
white neck and a partially feathered,
yellow green head.

Language-based 
explanation

Introduction
Explanations
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Visual characteristics that are used to justify decisions are termed as visual explanations

Name of the 
bird?

Question Answer

Spoonbill

Why Spoonbill?

Shallow-water bird with flattened
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a
white neck and a partially feathered,
yellow green head.

Language-based 
explanation

Visual Explanation

Visual Explanations
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Visual characteristics that are used to justify decisions are termed as visual explanations

Name of the 
bird?

Question Answer

Spoonbill

Why Spoonbill?

Shallow-water bird with flattened
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a
white neck and a partially feathered,
yellow green head.

Causal factors based visual explanations – answers to `Why?’ Questions

Visual Explanations
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Guided Backpropagation Positive saliency Smooth Gradients Vanilla Backpropagation

Grad-CAM

`Why P?’

Visual Explanations
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Why Spoonbill?

Shallow-water bird with flattened
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a
white neck and a partially feathered,
yellow green head.

Contrastive visual explanations – answers to `Why P, rather than Q?’ Questions

Why Spoonbill, rather than Flamingo?

Spoonbills have shorter legs and
necks compared to Flamingos

Contrastive Visual Explanations
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Contrast B/w Spoonbill and Flamingo Contrast B/w Bugatti Convertible and Coupe Contrast B/w Fault and Salt Dome

Our Output Our Output Our Output

Objectives of Contrastive Visual Explanations
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Contrast B/w Spoonbill and Flamingo Contrast B/w Bugatti Convertible and Coupe Contrast B/w Fault and Salt Dome

Our Output Our Output Our Output

No Contrastive Ground Truths

Objectives of Contrastive Visual Explanations



Introduction

17

Contrast B/w Spoonbill and Flamingo Contrast B/w Bugatti Convertible and Coupe Contrast B/w Fault and Salt Dome

Our Output Our Output Our Output

No Contrastive Ground Truths
Objective:
• Provide structure to existing explanations
• Define contrast from a visual and representational sense
• Extract contrast in an unsupervised fashion

Objectives of Contrastive Visual Explanations
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OUTLINE

(1) Part I : Model Uncertainty

(2) Part II : Constrained Model Learning 

(3) Part III : Reasoning in Neural Networks

(4) Part IV : Explanations in Neural Networks

(5) Part V : Robust Machine Learning
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Part I : Model Uncertainty 
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Basic 
Operation 



Training
• Gradient-based optimization

𝜽" = 	𝜽	 − 	𝜼 ' 𝜵	𝑱 𝜽

Space of Models
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𝜃𝜃′

∝ 𝛻	𝐽 𝜃

The amount of update

= the magnitude of gradient 𝜵	𝑱 𝜽
scaled by learning rate 𝜼

= the changes in parameterization
between old and new models

= the distance between old and
new model on the space of models



Testing
• Compute gradients

𝜵	𝑱 𝜽

Space of Models
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𝜃𝜃′

∝ 𝛻	𝐽 𝜃

The magnitude of gradient

= the model update required to
represent the given input properly

= the distance between the current
model and a “better” model for the
given input on the space of models



Quantifying the uncertainty of neural networks

Model uncertainty: uncertainty in model parameters due to limited data

Small 𝜵	𝑱 𝜽 : Model is certain about the given input

Large 𝜵	𝑱 𝜽 	: Model is uncertain about the given input

Gradient as a Measure of Uncertainty
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J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks,” 2020 
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Gradient as a Measure of Uncertainty

“dog” “horse”

Classifier
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Gradient as a Measure of Uncertainty

“dog” “horse”

Classifier

Model associates learned features with the trained label

“dog”

Have I seen this?



Gradient as a Measure of Uncertainty
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“dog” “horse”

Classifier

Required change: associate learned features with the new label

“car”

“car”

Have I seen this?



Gradient as a Measure of Uncertainty
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“dog” “horse”

Classifier

Required change : learn new features and associate them with the new label

“car”

“car”

Have I seen this?



Confounding label
: A label that is different from ordinary labels on which a model is trained

Gradient as a Measure of Uncertainty
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“dog” “horse”

Classifier

“car”
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Gradient as a Measure of Uncertainty

“car”

“car”

“dog” “horse”

Classifier

“dog” “horse”

Classifier

“car”

“car”

Required amount 
of change

Probing Models with Confounding Labels
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Hypothesis

It takes less amount of change to associate confounding labels with familiar 
inputs than unfamiliar inputs



Gradient Generation Framework
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Trained model
	𝑴(𝜽)

Prediction
𝑴 𝜽; 𝒙

Confounding label
	𝒚𝒄

Input image 
𝒙

Loss
𝑱(𝜽; 𝒙, 𝒚𝒄)

Backpropagation
𝛁𝜽	𝑱(𝜽; 𝒙, 𝒚𝒄)

Layer 0 gradients
𝛁𝜽𝟎	𝑱(𝜽𝟎; 	𝒙, 𝒚𝒄)

Layer N gradients
𝛁𝜽𝑵	𝑱(𝜽𝑵; 	𝒙, 𝒚𝒄)

. . .

𝛁𝜽𝟎	𝑱(𝜽𝟎; 	𝒙, 𝒚𝒄) 𝟐
𝟐 	 𝛁𝜽𝑵	𝑱(𝜽𝑵; 	𝒙, 𝒚𝒄) 𝟐

𝟐
,             ,

Collection of squared L2 norm
𝒅𝛁𝜽

. . .

Confounding Labels



• Compare L2 norm of gradients at different layers for 
various vision datasets

• Network architecture: ResNet18

Demonstration

32

MNIST

CIFAR10 TinyImageNetSVHN LSUN



Demonstration
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𝛁𝜽𝟎	𝑱(𝜽𝟎; 	𝒙, 𝒚𝒄) 𝟐
𝟐 	 𝛁𝜽𝑵	𝑱(𝜽𝑵; 	𝒙, 𝒚𝒄) 𝟐

𝟐
,             ,

Collection of squared L2 norm
𝒅𝛁𝜽

. . .

(Averaged for each predicted class)



Squared L2 distances for different parameter sets

Demonstration

34

𝛁𝜽𝟎	𝑱(𝜽𝟎; 	𝒙, 𝒚𝒄) 𝟐
𝟐



Why Gradients over Loss?
• Higher dimension = more information
• Gradients computed for the current state 

of each parameter set

Demonstration
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Loss does not effectively differentiate the 
distributions of datasets



Out-of-Distribution Detection
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Out-of-Distribution Detection
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CIFAR10 TinyImageNetSVHN LSUN

Numbers Objects, natural scenes



Out-of-Distribution Detection

38

CIFAR10TinyImageNet SVHNLSUN

More similar 
datasets
(objects)



CIFAR-10-C

Corrupted Input Detection
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CURE-
TSR



Corrupted Input Detection
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Corrupted Input Detection

41



• We introduced an interpretation of gradients in the space of models from a 
perspective of model uncertainty

• We presented a framework for efficient gradient generation with 
confounding labels to quantify uncertainty of fully trained networks

• We validated that the gradient-based uncertainty measure outperform 
activation-based features in out-of-distribution detection and corrupted 
input detection

So far, 

42

https://github.com/olivesgatechhttps://arxiv.org/abs/2008.08030

arXiv



• J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International 
Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020. [PDF][Video]

• J. Lee, C. Lehman, and G. AlRegib, "Towards Understanding the Purview of Neural Networks via Gradient 
Analysis, " IEEE Transactions on Neural Networks and Learning Systems (TNNLS), submitted on Apr. 28 
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• J. Lee and G. AlRegib, "Open-Set Recognition with Gradient-Based Representations," in IEEE 
International Conference on Image Processing (ICIP), Anchorage, AK, Sep. 19-22 2021. 

• D. Temel*, J. Lee*, and G. AlRegib, "Object Recognition Under Multifarious Conditions: A Reliability 
Analysis and a Feature Similarity-Based Performance Estimation," in IEEE International Conference on 
Image Processing (ICIP), Taipei, Taiwan, Sep. 2019 [PDF][Code]
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Part II : Model Learning with Gradient-constrained 
Optimization



Special Case: GradCon - Gradient Constraint
Anomaly Detection

45

Anomaly: Data whose classes or attributes differ from training data

Trained with ‘0’

Pretrained network

Input

Abnormal

Trained with ‘No effect’

Input

Abnormal

Class ‘5’ Rain

Goal: Detect anomalies to ensure the robustness of machine learning algorithm
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Constrained
Representation

Encoder Decoder

Testing

Statistical deviation (Latent Loss)  

Training

Anomaly

Anomaly Detection
2004

Tax et.al 1

2019

Abati et.al 4

2018

Pidhorksyi et.al 3

2016

Fan et.al 2

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.
[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational
autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2
[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing 
Systems, 2018, pp. 6822–6833.
[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2019, pp. 481–490.

Some quantity 
is constrained 

to identify 
anomalies



Overview
Gradient-based Representation
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Trained with ‘0’

Encoder Decoder

Input

Forward propagation

Backpropagation

Gradient-based Representation
(Model perspective)

𝑊 𝑊′𝜕ℒ
𝜕𝑊

Activation-based representation
(Data perspective)

Reconstruction error (ℒ)

−

Reconstruction

e.g. 

How much of the input 

does not correspond to 

the learned information?

How much model update is 

required by the input?

Existing approaches

Proposed approach

Anomaly

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Novelty Detection Through Model-Based Characterization of Neural Networks,"  2020



Geometric Interpretation
Advantages of Gradient-based Representations

48

Reconstructed image manifold

𝑔@(𝑓B ⋅ )

Abnormal data distribution

𝑥EFGH

𝑥FGH

Reconstruction 
Error (ℒ)

Abnormal data distribution
𝑥FGH

𝜕ℒ
𝜕𝜃

𝜕ℒ
𝜕𝜙
J
KLKMNO,

Backpropagated
Gradients

𝑥EFGH

𝑔@(𝑓B ⋅ )

1) Provide directional information to characterize anomalies

2) Gradients from different layers capture abnormality at different levels 

of data abstraction



GradCon: Gradient Constraint
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Learned manifold

𝜕ℒ
𝜕𝜙PQ,R

𝜕ℒ
𝜕𝜙FGH

Constrain gradient-based representations during training to obtain clear 

separation between normal data and abnormal data

𝜃

𝜙: Weights ℒ: Reconstruction error

𝐽 = ℒ − 𝔼P cosSIM
𝜕𝐽
𝜕𝜙PZ[\

]^R

,
𝜕ℒ
𝜕𝜙P

]

	

Gradient loss

𝜕𝐽
𝜕𝜙PZ[\

]^R

= _
𝜕𝐽
𝜕𝜙P

H]^R

HLR

where

Avg. training 
gradients until (k-1) th iter.

Gradients at
k-th iter.

At k-th step of training,

𝜕ℒ
𝜕𝜙PQ,`
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Baseline Experiment
Activation vs. Gradients

Abnormal “class” 
detection (CIFAR-10)

Normal Abnormal

1) (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

2) (CAE vs. VAE) Performance sacrifice from the latent constraint

3) (VAE vs. VAE + Grad) Complementary features from the gradient constraint

e.g.

AUROC Results

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss
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Baseline Experiment
Abnormal Condition detection

Abnormal “condition”
detection (CURE-TSR)

Normal Abnormal

AUROC Results

Recon: Reconstruction error, Grad: Gradient loss
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State-of-The-Art Algorithms
CIFAR-10, MNIST, Fashion MNIST

AUROC results in CIFAR-10

Fashion-MNIST

AUROC results in MNIST
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Computational Efficiency
Inference Time, Model Parameters 

GradCon

Covolutional autoencoder

Does not require

Adversarial training

Autoregressive models

Model parameters

Computations

Average inference time per image for GradCon

(3.08ms) is 1.9 times faster than GPND[1] (5.72ms)

à Model parameters are 

at least 27 time fewer



So far, 
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• GradCon, achieves state-of-

the-art performance with 

significantly fewer number of 

model parameters 

Code

https://github.com/olivesgatech/gradcon-anomaly



• G. Kwon et al., "Backpropagated Gradient Representations for Anomaly Detection," in Proceedings of the European 
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• G. Kwon et al., "Novelty Detection Through Model-Based Characterization of Neural Networks," in IEEE International 
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• D. Temel et al., "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on 
Machine Learning and Applications (ICMLA), Orlando, FL, Dec. 2018 [PDF][Code]
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So far, 
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Robustness Visual Explanations

Gradients
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Part III : Reasoning in Neural Networks



From now,
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Robustness Visual Explanations

Concept : Reasoning

Method : Gradients
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Challenges in Neural Networks
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Challenges in Neural Networks

Neural networks decide ‘reflexively’. Gradients add reasoning.
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Reasoning
Types of Reasoning

What species of bird is this?

Classwork – Learned differences between Flamingo and Spoonbill. 
Exams– To identify unknown bird
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Classwork – Learned differences between Flamingo and Spoonbill. 
Exams – To identify unknown bird
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Detect pink and round body,
Straight neck

Spoonbill

Exams

Classwork – Learned differences between Flamingo and Spoonbill. 
Exams – To identify unknown bird
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Detect pink and round body,
Straight neck

Spoonbill

Exams

Classwork – Learned differences between Flamingo and Spoonbill. 
Tests – To identify unknown bird

Inductive Reasoning
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Detect pink and round body,
Straight neck

Spoonbill

Exams

Inductive Reasoning

`A feed-forward reasoning approach that is aimed at detecting 
generalizations, rules, or regularities 1’

[1] Klauer, Karl Josef, and Gary D. Phye. "Inductive reasoning: A training approach." Review of Educational Research 78.1 (2008): 85-123.

Detecting Rules

Inferring based 
on rules
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Detect that this 
image is in 
training set

Spoonbill

Exams

Inductive Reasoning

`Reasoning that relies on factual knowledge or formal rules 1 ’

[1] Johnson-Laird, Philip N. "Deductive reasoning." Annual review of psychology 50.1 (1999): 109-135.

Deductive Reasoning
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Detect that this 
image is in 
training set

Spoonbill

Exams

Inductive ReasoningDeductive Reasoning

`Reasoning that relies on factual knowledge or formal rules 1 ’

[1] Johnson-Laird, Philip N. "Deductive reasoning." Annual review of psychology 50.1 (1999): 109-135.
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Detect that this 
image is in 
training set

Spoonbill

Exams

Inductive ReasoningDeductive Reasoning

`Reasoning that relies on factual knowledge or formal rules 1 ’

[1] Johnson-Laird, Philip N. "Deductive reasoning." Annual review of psychology 50.1 (1999): 109-135.
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Hypotheses Spoonbill

Exams

Inductive Reasoning

An abductive reasoning approach creates hypothesis and tests 
its validity 

Abductive Reasoning
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Exams

An abductive reasoning approach creates hypothesis and tests 
its validity 

Abductive Reasoning

It is a Flamingo

No S-Shaped neck

Inductive Reasoning
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Exams

An abductive reasoning approach creates hypothesis and tests 
its validity 

Abductive Reasoning

Why Spoonbill, rather than 
Flamingo?

Inductive Reasoning

Answer is implicit in the 
learned knowledge –
Difference is in the S-

shaped neck
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Exams

An abductive reasoning approach creates hypothesis and tests 
its validity 

Abductive Reasoning

Answer is implicit in the 
learned knowledge –
Difference is in the S-

shaped neck

The bird does not have an 
S-shaped neck

Spoonbill

Inductive Reasoning
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Reasoning
Types of Reasoning

Spoonbill

Flamingo

Learning

Spoonbill : 
Pink and round 

body, Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck 

Exams

An abductive reasoning approach creates hypothesis and tests 
its validity 

Abductive Reasoning

Answer is implicit in the 
learned knowledge –
Difference is in the S-

shaped neck

Not detect S-shaped neck 
in the given image

SpoonbillAbductive Reasoning

Inductive Reasoning
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Reasoning
Types of Reasoning

Inductive Reasoning Abductive Reasoning

Spoonbill

Flamingo

Training 

Detect
Pink and round body,

Straight neck

Not Detect 
S-shaped neck 

Feed-Forward

Reasoning

Contrastive

Knowledge 
Base

Spoonbill : 
Pink and round body, 

Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck Test Image

Inference

Spoonbill

Spoonbill

Testing 

Know
ledge Base

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.
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Reasoning
Types of Reasoning

Inductive/Feed-forward 
Reasoning

Abductive/Contrastive 
Reasoning

Spoonbill

Flamingo

Training 

Detect
Pink and round body,

Straight neck

Not Detect 
S-shaped neck 

Feed-Forward

Reasoning

Contrastive

Knowledge 
Base

Spoonbill : 
Pink and round body, 

Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck Test Image

Inference

Spoonbill

Spoonbill

Testing 

Know
ledge Base

Inductive Reasoning in Neural Networks Abductive Reasoning in Neural Networks

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.
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Reasoning
Types of Reasoning

Inductive Reasoning Abductive Reasoning

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.
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Reasoning
Types of Reasoning

Feed-Forward Reasoning Contrastive Reasoning

• Abductive Reasoning allows humans to better generalize to 
unfamiliar situations1,2. We define unfamiliar situations as during :

• Domain shifted data – different acquisition devices, 
backgrounds, poses

• Challenging data – errors in acquisition, challenging 
environmental conditions like rain, snow, haze, and noise

[1] Peirce, Charles Sanders. Collected papers of charles sanders peirce. Vol. 2. Harvard University Press, 1974.
[2] Paul, Gabriele. "Approaches to abductive reasoning: an overview." Artificial intelligence review 7.2 (1993): 109-152.
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Reasoning
Definition of Reasoning

Reasoning is a mental process which can only be surmised based on how it manifests1

[1] Goguen, Joseph A., J. L. Weiner, and Charlotte Linde. "Reasoning and natural explanation." International Journal of Man-Machine Studies 19.6 (1983): 521-559.

Spoonbill

Flamingo

Training 

Detect
Pink and round body,

Straight neck

Not Detect 
S-shaped neck 

Feed-Forward

Explanations

Contrastive

Knowledge 
Base

Spoonbill : 
Pink and round body, 

Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck Test Image

Inference

Spoonbill

Spoonbill

Testing 

Know
ledge Base
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Reasoning
Definition of Reasoning

Reasoning is a mental process which can only be surmised based on how it manifests1

[1] Goguen, Joseph A., J. L. Weiner, and Charlotte Linde. "Reasoning and natural explanation." International Journal of Man-Machine Studies 19.6 (1983): 521-559.
[2] M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Spoonbill

Flamingo

Training 

Detect
Pink and round body,

Straight neck

Not Detect 
S-shaped neck 

Feed-Forward

Explanations

Contrastive

Knowledge 
Base

Spoonbill : 
Pink and round body, 

Straight neck

Flamingo : 
Pink and round body, 

S-shaped neck Test Image

Inference

Spoonbill

Spoonbill

Testing 

Know
ledge Base

Reasoning manifests in 2 forms : Explanations and Inference 2
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Part III : Reasoning in Neural Networks

ML-based 
Abductive 
Reasoning

Logic-based 
Abductive 
Reasoning

Datasets for 
Reasoning

Methods for 
Reasoning
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Abductive Reasoning

1999

Kakas et.al

2019

Dai et.al

2002

Campos et.al

2014

Fortier et.al

2005

Raina et.al

ML-based 
Abductive 
Reasoning

Logic-based 
Abductive 
Reasoning

Datasets for 
Reasoning

Methods for 
Reasoning
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q Physical Definition
q Structure of Contrast
q Technical Definition

Contrastive Reasoning
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In visual space, contrast is the perceived difference between two 
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q Structure of Contrast
q Technical Definition

In visual space, contrast is the perceived difference between two 
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Contrastive Reasoning
Contrast definition



101

q Physical Definition
q Structure of Contrast
q Technical Definition

`Why P, rather than Q?’
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q Physical Definition
q Structure of Contrast
q Technical Definition

`Why P, rather than Q?’

P Prediction
Q Contrast class

Spoonbill

Pig

`Why spoonbill, rather than pig?’

Contrastive Reasoning
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q Physical Definition
q Structure of Contrast
q Technical Definition

`Why P, rather than all classes?’

P Prediction
Q Contrast class

Spoonbill

Flamingo/Pig/…

`Why spoonbill, rather than pig?’

For N learned classes, there can be N possible contrastive reasons

Contrastive Reasoning
Contrast definition
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q Technical Definition

`Why P, rather than P?’

P Prediction
Q Contrast class

Spoonbill

Spoonbill

`Why spoonbill, rather than spoonbill?’

Contrastive Reasoning
Contrast definition
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q Physical Definition
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q Technical Definition

`Why P, rather than P?’

P Prediction
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Spoonbill

Spoonbill

`Why not spoonbill, with 100% confidence?’
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q Physical Definition
q Structure of Contrast
q Technical Definition

`Why P, rather than P?’

P Prediction
Q Contrast class

Spoonbill

Spoonbill

`Why not spoonbill, with 100% confidence?’

Contrastive Reasoning
Contrast definition

For 1 predicted class, there is 1 reason why it was not predicted 
with 100% confidence
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In representation space, contrast is the distance between manifolds where an input 𝑥 is predicted as 𝑃 vs the 
same input 𝑥 is predicted as 𝑄

Contrastive Reasoning
Contrast definition
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𝑊R𝑊`

Learned Manifold : spoonbill predicted 
as a spoonbill

P
𝑥

Introduce

Contrast

In representation space, contrast is the distance between manifolds where an input 𝑥 is predicted as 𝑃 vs the 
same input 𝑥 is predicted as 𝑄

Contrastive Reasoning
Contrast definition
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𝑊R𝑊`
Learned Manifold : spoonbill labeled a 
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Contrastive Manifold : spoonbill labeled a 
flamingo
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P

Q

𝑥

𝑥

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Contrastive Reasoning
Contrast definition
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Contrastive Reasoning
Contrast definition Gradients provide inherent contrast between 

classes
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`Why P, rather than P?’

Parts I, II, III
Contrast definition

`Why P, rather than Q?’`Why P, rather than all classes?’

𝑦e are all possible 𝑄
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`Why P, rather than P?’

Parts I, II, III
Contrast definition

`Why P, rather than Q?’`Why P, rather than all classes?’

First 𝑃 is original image

Second 𝑃 is the reconstructed image
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`Why P, rather than P?’

Parts I, II, III
Contrast definition

`Why P, rather than Q?’`Why P, rather than all classes?’
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`Why P, rather than P?’

Parts I, II, III
Contrast definition

`Why P, rather than Q?’`Why P, rather than all classes?’

More about explanations in Part IV
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2017

Li et.al2

2017

Santoro et.al3

• Manual allocation of 
disentangled 
knowledge features 
defeats the purpose 
of learning from 
data

• Not scalable

• Having a domain 
knowledge base 
creates 
explainability for 
learning

• Absence of 
disentangled 
features in current 
neural networks

• Not scalable

• Decisions are 
interpretable 
(explainable)

[1] [4]

• Dependent on 
knowledge of 
neural network

• Does not require 
domain 
knowledge

• Multiple 
explanatory 
questions

[5]

• Images + Natural 
language

• Reasoning 
dataset

• Images + Natural 
language

[2]

• Treats reasoning 
as a supervised 
task 

• Provides relational 
reasoning and 
validation using 
numbers

[3]
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• We introduced an interpretation of gradients in the space of models from a perspective 
of model uncertainty

• We proposed a framework for efficient gradient generation with confounding labels to 
quantify uncertainty of fully trained networks

• We validated that the gradient-based uncertainty measure outperform activation-based 
features in out-of-distribution detection and corrupted input detection

• We interpreted gradients as a reasoning mechanism within neural networks

So far, 
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Part IV : Explanations in Neural Networks

Abductive Reasoning

Causal Questions

‘Why?’

Counterfactual Questions

‘What if?’

Contrastive Questions

‘Why P, rather than Q?’
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All techniques are a 
function of activations and 

gradients of logit of 
predicted class

Explanations in Neural Networks
Observed Causal Explanations
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Explanations in Neural Networks
Observed Causal Explanations – Grad-CAM

Grad-CAM

• Pass an image through a network
• Obtain the logits after the final layer
• Backpropagate the required logit, 𝑦f, to the final 

convolutional layer
• Sum all the gradients per channel to obtain 𝑘

importance scores
• Multiply the importance scores with the activations 

per channel and average them across channels 
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[2] Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019. 

Explanations in Neural Networks
Counterfactual Explanations – Gradient based

2017

Selvaraju et.al 1

2019

Goyal et.al 2

Obtained by 
backpropagating the 

negative gradient of the 
logit 𝑦f in Grad-CAM 

framework
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‘What if the query image 
were like the distractor  

image?’

[1] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” 
inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618–626.
[2] Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019. 

Explanations in Neural Networks
Counterfactual Explanations – Non-Gradient based

2017

Selvaraju et.al 1

2019

Goyal et.al 2



130[1] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman,“Deep inside convolutional networks:Visualising imageclassification models and saliency maps,”arXiv preprintarXiv:1312.6034, 2013.
[2] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All Convolutional Net. arXiv, 2014
[3] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” 
inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618–626.
[4] Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 
2018.

`Why Spoonbill?’

2013

Simoyan et.al 1

2017

Selvaraju et.al 3

2018

Aditya et.al 4

2014

Springenberg et.al 2

GradCAM [3]

`Why Spoonbill, 
rather than Flamingo?’

Proposed Contrastive Explanation

Convert

Convert

Explanations in Neural Networks
Contrastive Explanations

‘Why spoonbill, rather than a 
Flamingo?’



131

`Why Spoonbill?’

GradCAM

`Why Spoonbill, 
rather than Flamingo?’

Proposed Contrastive Explanation

Convert

Convert

• `Why P?’ framework provided 
by existing methods (In this 
dissertation proposal, we use 
Grad-CAM)

• `Why P, rather than Q?’ 
provided by gradients between 
P and Q manifolds

Explanations in Neural Networks
Contrastive Explanations
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Implementation : Within Grad-CAM framework

Grad-CAM Contrastive Explanation

Explanations in Neural Networks
Contrastive Explanations
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o Cars dataset
o VGG-16 Architecture
o Last convolutional layer

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Explanations in Neural Networks
Contrastive Explanations - Examples



134

Highlights the open top

o Cars dataset
o VGG-16 Architecture
o Last convolutional layer

Highlights the hatchback

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Explanations in Neural Networks
Contrastive Explanations - Examples
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Not always human interpretable

o CURE-TSR dataset
o ResNet-18 Architecture
o Last convolutional layer

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Explanations in Neural Networks
Why Contrastive Explanations?
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o CURE-TSR dataset
o CNN with 2 convolutional layers
o Last convolutional layer

CURE-TSR traffic signs

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Explanations in Neural Networks
Why Contrastive Explanations?
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o CURE-TSR dataset
o CNN with 2 convolutional layers
o Last convolutional layer

CURE-TSR traffic signs

Only traffic sign with a straight
bottom-left edge – enough to 

say `Not STOP Sign’

Contrastive Explanations provide more context

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Explanations in Neural Networks
Why Contrastive Explanations?
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IQA Algorithm1 Score : 0.58

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

[1] Bosse S, Maniry D, Müller K R, et al. Deep neural networks for no-reference and full-reference image quality assessment. 
IEEE Transactions on Image Processing, 2018, 27(1): 206-219.

Distorted image

Image Quality Assessment (IQA)

Explanations in Neural Networks
Why Contrastive Explanations? - IQA
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Why 0.58? 

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

Distorted image

Grad-CAM Highlights 
all parts of the image

M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive Explanations in Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020.

Explanations in Neural Networks
Why Contrastive Explanations? - IQA

Causal Explanations in IQA
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Why 0.58, rather 
than 1? 

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

Distorted image

Highlights 
Foreground

M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive Explanations in Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020.

Explanations in Neural Networks
Why Contrastive Explanations? - IQA
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Why 0.58, rather 
than 0.25? 

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

Distorted image

Highlights 
sky

M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive Explanations in Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020.

Explanations in Neural Networks
Why Contrastive Explanations? - IQA
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Why 0.58?
- Network parsed the entire image to come up with the score

Why 0.58, rather than x?
- Background is less essential than foreground for higher quality
- Lighthouse is more important than cliff for higher quality
- Presence of sky provides a higher quality to the image

M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive Explanations in Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020.

Explanations in Neural Networks
Why Contrastive Explanations? - IQA
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Why 0.58?
- Network parsed the entire image to come up with the score

Why 0.58, rather than x?
- Background is less essential than foreground for higher quality
- Lighthouse is more important than cliff for higher quality
- Presence of sky provides a higher quality to the image

Contrastive explanations provide fine-grained details that add context and 
relevance to existing explanations

Explanations in Neural Networks
Why Contrastive Explanations? - IQA



• We introduced an interpretation of gradients in the space of models from a perspective of model 
uncertainty

• We proposed a framework for efficient gradient generation with confounding labels to quantify 
uncertainty of fully trained networks

• We validated that the gradient-based uncertainty measure outperform activation-based features in 
out-of-distribution detection and corrupted input detection

• We interpreted gradients as a reasoning mechanism within neural networks
• We showed that gradients can be used to answer three explanatory paradigms. They possess fine-

grained details that add context to explanations

So far, 

144
https://arxiv.org/abs/2103.12329

arXiv

https://arxiv.org/abs/2008.00178

arXiv

[1] M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 
9 2021.
[2] Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive Explanations In Neural Networks. In 2020 IEEE International Conference on 
Image Processing (ICIP) (pp. 3289-3293). IEEE.
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Part V : Robust Machine Learning
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Part V : Robust Machine Learning
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Robust Machine Learning

147

Part I : Out-of-distribution detection

Goal : Identify images that are from 
distributions other than the training 

distributions. Images can belong to the 
same class.

Ex : Training distribution – CIFAR-10
Testing distribution – CIFAR-10-C

Part II : Anomaly/Novelty detection

Goal : Identify images that belong to an 
unseen class, given a trained network

Ex : Training classes – Cars
Testing classes – Dogs

CIFAR-10-C

Normal Abnormal
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Robust Machine Learning

148

Part I : Out-of-distribution detection

Goal : Identify images that are from 
distributions other than the training 

distributions. Images can belong in the 
same class

Ex : Training distribution – CIFAR-10
Testing distribution – CIFAR-10-C

Part II : Anomaly/Novelty detection

Goal : Identify images that belong to an 
unseen class, given a trained network

Ex : Training classes – Cars
Testing classes – Dogs

CIFAR-10-C

Normal Abnormal

Part V : Recognize classes under distortion/domain shift/abnormality
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[1] Vasiljevic, I., Chakrabarti, A., and Shakhnarovich, G. Examining the impact of blur on recognition by convolutional networks.arXiv preprint arXiv:1611.05760, 2016.
[2] Dodge, S. and Karam, L. A study and comparison of human and deep learning recognition performance under visual distortions. In2017 26th international conference on computer communication and networks 
(ICCCN), pp. 1–7. IEEE, 2017.
[3] Temel, D., Kwon, G., Prabhuhankar, M., and AlRegib, G.CURE-TSR: Challenging unreal and real environments for traffic sign recognition. Advances in Neural Information Processing Systems (NIPS) Machine 
Learning for Intelligent Transportations Systems Workshop, 2017.

2016

Vasiljevic et.al 1

2017

Dodge et.al 2

Advocated for training on noisy images

2017

Temel et.al 3

Advocated for training on simulated images

Robust Machine Learning
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2016

Vasiljevic et.al

2017

Dodge et.al

2017

Temel et.al

2018

Geirhos et.al 1

Train and test 
noise are same

Train and test 
noise are different 

[1] Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Sch ̈utt,Matthias Bethge, and Felix A Wichmann. Generalisation in humans and deep neural networks. In Advances in Neural Information Processing 
Systems, pages 7538–7550, 2018.

Robust Machine Learning
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2016

Vasiljevic et.al

2017

Dodge et.al

2017

Temel et.al

2018

Geirhos et.al

[1] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations.arXiv preprint arXiv:1903.12261, 2019.
[2] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

2019 2020

Hinton et.al 2Hendrycks et.al 1

Advocated for training on adversarial images

Sim-CLR : Simple Contrastive Learning Framework

Self-supervised training with augmentations

Robust Machine Learning
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Robust Machine Learning
Recognition

𝑥
𝑓(𝑥)
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Consider a ResNet-18 trained to differentiate between 10 classes
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𝑥
𝑓(𝑥)
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Robust Machine Learning
Recognition



154

𝑥
𝑓(𝑥)
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0.0001
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0.0000
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𝑓 𝑥 = 𝑦, 𝑦 ∈ 𝑅 R	×	Rk
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𝜕𝐽 5,1
𝜕𝑊R
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Robust Machine Learning
Recognition
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Robust Machine Learning
Recognition
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Robust Machine Learning
Recognition



157

𝑥
𝑓(𝑥)
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Concatenated contrastive feature for image 𝑥
rK = 	𝑅 opk	×	R

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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Concatenated contrastive feature for image 𝑥
rK = 	𝑅 opk	×	R

Contrastive inference based prediction is 
made on 𝒓𝒙

Robust Machine Learning
Recognition
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𝑓(𝑥) rK = 	𝑅 opk	×	tkkkkCIFAR-10 
Trainset

𝐻(𝑓, 𝑟K)
MLP 𝑌e

𝑌e= Contrastive Prediction

Robust Machine Learning
Recognition
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𝑓(𝑋) 𝐻(𝑓, 𝑟K)𝑋 𝑌e

Feed-Forward Inference

𝑓(𝑋)𝑋 𝑃 = 	𝑌�

Contrastive Inference

Robust Machine Learning
Recognition
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𝑓(𝑋) 𝐻(𝑓, 𝑟K)𝑋 𝑌e

Feed-Forward Inference

𝑓(𝑋)𝑋 𝑌�

Associate patterns

Reflex actions

Abduce

Reasoning

Contrastive Inference

Robust Machine Learning
Recognition
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Inductive Reasoning Abductive Reasoning

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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Robust Machine Learning
Recognition
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• ResNet-18
• ResNet-34
• ResNet-50
• ResNet-101

CIFAR-10
50,000 images

Train

CIFAR-10-C1

• 19 challenges
• 5 Levels in each 

challenge
• Total 950,000 

testing images

TestNetworks

[1] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations.arXiv preprint arXiv:1903.12261, 2019.

Recognition accuracy 
of Feed-forward vs 

Contrastive Inference

Evaluation

Robust Machine Learning
Recognition
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o Blue : Feed-forward accuracy in 
individual challenge category

o Red : Contrastive gain over Feed-
Forward

o Classification accuracy on all 950,000 
test images : 67.89%

o Classification accuracy on all 950,000 
test images : 71.58%

o With knowledge of noise mean and 
standard deviation, results increase to 
75%

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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o Blue : Feed-forward accuracy in 
individual challenge category

o Red : Contrastive gain over Feed-
Forward

o Classification accuracy on all 950,000 
test images : 67.89%

o Classification accuracy on all 950,000 
test images : 71.58%

35,055 more images are classified correctly under the 
contrastive inference framework compared to feed-

forward framework

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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o Blue : Feed-forward accuracy in 
individual challenge category

o Red : Contrastive gain over Feed-
Forward

o Classification accuracy on all 950,000 
test images : 71.77%

o Classification accuracy on all 950,000 
test images : 73.21%

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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o Blue : Feed-forward accuracy in 
individual challenge category

o Red : Contrastive gain over Feed-
Forward

o Classification accuracy on all 950,000 
test images : 71.4%

o Classification accuracy on all 950,000 
test images : 74.02%

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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o Blue : Feed-forward accuracy in 
individual challenge category

o Red : Contrastive gain over Feed-
Forward

o Classification accuracy on all 950,000 
test images : 72.54%

o Classification accuracy on all 950,000 
test images : 74.31%

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

Robust Machine Learning
Recognition
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• ResNet-18
• ResNet-34
• ResNet-50
• ResNet-101

CIFAR-10, Office 
Dataset

Train

STL, Office Dataset

TestNetworks

[1] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations.arXiv preprint arXiv:1903.12261, 2019.

Recognition accuracy 
of Feed-forward vs 

Contrastive Inference

Evaluation

Robust Machine Learning
Recognition – Domain Adaptation
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Robust Machine Learning
Recognition – Domain Adaptation



• We introduced an interpretation of gradients in the space of models from a perspective of model 
uncertainty

• We proposed a framework for efficient gradient generation with confounding labels to quantify uncertainty 
of fully trained networks

• We validated that the gradient-based uncertainty measure outperform activation-based features in out-of-
distribution detection and corrupted input detection

• We interpreted gradients as a reasoning mechanism within neural networks
• We showed that gradients can be used to answer three explanatory paradigms
• Gradients as features can be used to create robust neural networks as a plug-in on top of existing neural 

networks

So Far, 

168

https://arxiv.org/abs/2103.12329

arXiv

https://arxiv.org/abs/2008.00178

arXiv
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Robust Machine Learning
Image Quality Assessment

Image Quality Assessment

Detect noise characteristics to obtain 
subjective IQA

Image Quality Assessment

Given the pristine image on the left, humans are asked to subjectively 
quantify the quality of the noisy image on the right

Goal : To objectively assess the subjective quality 
of an image

G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , ”Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th IEEE 
International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019. (*: equal contribution)
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Robust Machine Learning
Image Quality Assessment

[1] D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1414-
1418, Oct. 2016.
[2] G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , ”Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th 
IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019. (*: equal contribution)

Plug-in contrastive gradients in an existing 
IQA framework – UNIQUE 1
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Robust Machine Learning
Image Quality Assessment

G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , ”Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th IEEE 
International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019. (*: equal contribution)

Feed-Forward

Contrastive
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Robust Machine Learning
Image Quality Assessment

G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , ”Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th IEEE 
International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019. (*: equal contribution)

Feed-Forward

Contrastive

Contrastive features can be used as plug-in into existing IQA detectors
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Robust Machine Learning
Human Visual Saliency

Correlation of 
contrastive 

explanations to eye 
tracking data

Correlation of 
Grad-CAM 

explanations to eye 
tracking data

Hypothesis : Contrastive regions draw human 
gaze

Human-Visual Saliency

Goal : Given an image, predict likely human eye fixation
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Robust Machine Learning
Human Visual Saliency

Correlation of 
contrastive 

explanations to eye 
tracking data

Correlation of 
Grad-CAM 

explanations to eye 
tracking data

To show : Human eye fixation data on MIT 1003 
dataset is more correlated with contrastive 

explanations than Grad-CAM

Human-Visual Saliency

Goal : Given an image, predict likely human eye fixation
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Robust Machine Learning
Human Visual Saliency

Y. Sun, M. Prabhushankar, and G. AlRegib, ”Implicit Saliency in Deep Neural Networks,” in IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 
United Arab Emirates, Oct. 2020.

Implicit Saliency in 
recognition neural 
networks! No 
training on eye 
tracking data
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Robust Machine Learning
Human Visual Saliency

Y. Sun, M. Prabhushankar, and G. AlRegib, ”Implicit Saliency in Deep Neural Networks,” in IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 
United Arab Emirates, Oct. 2020.

Implicit saliency
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Robust Machine Learning
Human Visual Saliency

Y. Sun, M. Prabhushankar, and G. AlRegib, ”Implicit Saliency in Deep Neural Networks,” in IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 
United Arab Emirates, Oct. 2020.

is the performance decrease when an input image is corrupted by gaussian noise  of kernel size r
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Robust Machine Learning
Human Visual Saliency

Y. Sun, M. Prabhushankar, and G. AlRegib, ”Implicit Saliency in Deep Neural Networks,” in IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 
United Arab Emirates, Oct. 2020.

Contrastive feature-based detector correlates better with human gaze than Observed causal Grad-CAM

is the performance decrease when an input image is corrupted by gaussian noise  of kernel size r

Contrastive feature-based detector outperforms some of the supervised methods that train on human 
saliency datasets. It also is more robust.



• Robust Recognition : M. Prabhushankar and G. AlRegib, "Contrastive Reasoning 
in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine 
Intelligence, submitted on Jan. 9 2021. [PDF]

• Saliency : Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep 
Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020. [PDF][Code][Video]

• IQA Contrastive : G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, 
"Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, 
Taiwan, Sep. 2019. [PDF][Code]

• IQA UNIQUE : D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: 
Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 
23, no. 10, pp. 1414-1418, Oct. 2016.
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• We introduced an interpretation of gradients in the space of models from a perspective of model uncertainty
• We proposed a framework for efficient gradient generation with confounding labels to quantify uncertainty of fully 

trained networks

• We validated that the gradient-based uncertainty measure outperform activation-based features in out-of-distribution 
detection and corrupted input detection

• We interpreted gradients as a reasoning mechanism within neural networks

• We showed that gradients can be used to answer three explanatory paradigms
• Gradients as features can be used to create robust neural networks as a plug-in on top of existing neural networks
• We showed that there is a higher correlation between gradient-based contrastive features and applications relating to 

human visual systems than between feed-forward features and the same applications

To Conclude, 
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arXiv
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