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Challenges in Neural Networks

Rotating objects in iImage confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop Dumb-bell

Even natural images Manhole cover
can fool a DNN, '
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
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Data and Neural Networks
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Introduction
Limitations of Neural Networks

Classifier

Trained with

FINEEIVIE
8/1[3#]s

0/11313]9]s

Classifier

Trained with
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Introduction
Limitations of Neural Networks

Classifier

Trained with

FINEEIVIE
8/1[3#]s

0/11313]9]s

Classifier

Trained with

*

Don’t trust these
predictions!

< 7
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Introduction
Understanding Model Uncertainty

Classifier

Trained with

FINEEILIE:

0/11313]9]s

Classifier

Trained with

(1) How certain / familiar are
you with a given input?
(2) Can you detect Anomalies
in input data?
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Introduction

CURE-OR: Challenging Unreal and Real Environment for Object
Recognition

Georgia Jh School of Electrical and
Tech || Computer Engineering

College of Engineering

CURE-OR: Challenging Unreal and Real Environment for Object Recognition

Robustness of Recognition Applications AWS Rekognition with CURE-OR

Beverage | 9895

auzson Coke |10 agss.
=z Soda (110 s
P Drink 087
L
)A'pOIY Coffee Table 0.00
Furniture 0.00
] Table 0.00
amazon CamFind Couch 0.00
N m Book 0.00
> =>4 Aluminium 0.00
-
i Outdoors 0.00
bt Text 0.00
@ Drawing 0.00
Sketch 0.00
m Diagram 0.00
OLIVES 7
Ice 0.00 Georgia 'l
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ey Snow 0.00 Tech!/

Challenge Type: None

CREATING THE NEXT
D. Temel*, J. Lee*, and G. AlRegib, “CURE-OR: Challenging unreal and real environments for object recognition,” ICMLA 2018



Introduction

Robustness in Autonomous Vehicles

Robust Autonomous Driving Under Challenging Conditions
D. Temel, M. Chen, T. Alshawi, and G. AIRegib, “CURE-TSD: Challenging Unreal and Real Environments for Traffic Sign Detection”

Real Video

Dataset Generation

Video with Challenging Conditions

8
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10 Datasets (@Zenodo

OLIVES@GeorgiaTech

Recentuploads

Search OLIVES@GeorgiaTech Q
Community
View

CURE-OR-Sampled: Challenging Unreal and Real Environments for Object Recognition
Dogancan Temel, Jinsol Lee; Ghassan AlRegib;

File descriptions train.zip - the training set test.zip - the test set train.csv - the ground truth for the training images with the
following information: imagelD, class, background, perspective, challengeType, challengeLevel sample_submission.csv - a
sample submissio

Uploaded on November 12, 2020

iy 8,2020 (1) [ Dataset | 0pan Aceess | View
CoMMons

OLIVES@GeorgiaTech

This community contains codes and datasets

nradiinad hu tha Nmni | ah far Intallimant \ienal

AlRegib, Ghassan; Hu, Yuting; Long, Zhiling; Sunderasan, A.; Alfarraj, Motaz,

Recognizing textures and materials in real-world images has played an important role in object recognition and scene

9
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Introduction
Explanations

[ Explanations are a set of rationales used to understand the reasons behind a decision }

Question Answer
Name of the :
) Spoonbill
?
ot Language-based
Why Spoonbill? explanatlon

/Shallow-water bird with flattened\

beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a

white neck and a partially feathered,
Q/ellow green head. /




Introduction
Visual Explanations

[ Visual characteristics that are used to justify decisions are termed as visual explanations }

Question Answer
Name of the :
bird? Spoonbill

Why Spoonbill?

/Shallow-water bird with flattened\
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a
white neck and a partially feathered,

Q/ellow green head. j

OLIVES Language-based Visual Explanation
explanation




Introduction
Visual Explanations

[ Visual characteristics that are used to justify decisions are termed as visual explanations }

Question Answer
Name of the :
bird? Spoonbill

Why Spoonbill?

/Shallow-water bird with flattened
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump.
white neck and a parti

\ yelloo -een head.

OLIVES

Causal factors based visual explanations — answers to "Why?’ Questions



Introduction
Visual Explanations

‘Why P?’

Grad-CAM

Positive saliency Smooth Gradients Vanilla Backpropagation
13
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Introduction

Contrastive Visual Explanations
Why Spoonbill?

/Shallow-water bird with flattened\
beak and football shaped body. They
are pale pink birds with pink
shoulders and rump. They have a
white neck and a partially feathered,

Q/ellow green head. /

Why Spoonbill, rather than Flamingo?

- N

Spoonbills have shorter legs and
necks compared to Flamingos

" /

14
Contrastive visual explanations — answers to "Why P, rather than Q?’ Questions oo




Introduction
Objectives of Contrastive Visual Explanations

It and Salt Dome

Contrast B/w Spoonbill and Flamingo  Contrast B/w Bugatti Convertible and Coupe

Cntrast B/w Fa

- W N

15
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Introduction
Objectives of Contrastive Visual Explanations

Cntrast B/w FaIt and Salt Dome

Contrast B/w Spoonbill and Flamingo
o T RN —h Y N ~——Y

Contrast B/w Bugatti Convertible and Coupe

No Contrastive Ground Truths i
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Introduction
Objectives of Contrastive Visual Explanations

Contrast B/w Spoonbill and Flamingo  Contrast B/w Bugatti Convertible and Coupe

No Contrastive Ground Truths
Obijective:
» Provide structure to existing explanations

« Extract contrast in an unsupervised fashion

Cntrast B/w auIt and Salt Dome

:T. , \.::;. \dv ‘\"“‘.\

- -—

17

 Define contrast from a visual and representational sense Georgia
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(1) Part | : Model Uncertainty
(2) Part Il : Constrained Model Learning
(3) Part lll : Reasoning in Neural Networks

(4) Part IV : Explanations in Neural Networks

(5) Part V : Robust Machine Learning

OLIVES



Part 1 : Model Uncertainty

19
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Neural Network — Backpropagation

Input Layer

Hidden Layer

Output Layer

OLIVES

© machinelearningknowledge.ai



Space of Models

Training

 Gradient-based optimization

0'=6—n-VJjo)

G J
Y

The amount of update

= the magnitude of gradient |V J(9)] p> TN
scaled by learning rate n .
%

"

= the changes in parameterization
between old and new models

oc [V J(6)

= the distance between old and °
new model on the space of models 21
\ OLG‘IYES / Georgia |
A& 722 Tech ||
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Space of Models

Testing

* Compute gradients
v Jj(6)

The magnitude of gradient

= the model update required to
represent the given input properly

= the distance between the current
model and a “better” model for the
given input on the space of models

22
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Gradient as a Measure of Uncertainty

Quantifying the uncertainty of neural networks

Model uncertainty: uncertainty in model parameters due to limited data
Small |V J(0)]| : Model is certain about the given input

Large |V J(0)| : Model is uncertain about the given input

23
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J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks,” 2020



Gradient as a Measure of Uncertainty

Classifier

“dog” E “horse”

24

Georgia |
Tech)/
CREATING THE NEXT




Gradient as a Measure of Uncertainty

Have I seen this?

Classifier
v @ '
h . &)
{ : “dog” —> \ Q
-:*(\Q'LLD | o Y e
“dog”

Model associates learned features with the trained label
25
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Gradient as a Measure of Uncertainty

Have I seen this?

Classifier
vV 8§ x "
{ ; “car” - :-\ﬁ\w
— Lﬁés‘.;'“ #9;2 I

“car”

Required change: associate learned features with the new label
26
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Gradient as a Measure of Uncertainty

Have I seen this?

Classifier

27
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Gradient as a Measure of Uncertainty

Confounding label

: A label that 1s different from ordinary labels on which a model 1s trained

Classifier
‘a} |
‘.' i
h -:\\ E ‘
« h“‘ - i &k
“dog” i “horse” “car”

28
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Gradient as a Measure of Uncertainty
Probing Models with Confounding Labels

Required amount
of change

{ “car” }

29
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Hypothesis

It takes less amount of change to associate confounding labels with familiar
inputs than unfamiliar inputs

30
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Gradient Generation Framework

Confounding Labels
| @
Input image y
X 4 .
—t

Collection of squared L2 norm
dyg

. Trained model ~ Prediction
] M(6) M(6; x)
*
‘ Loss |
: J&:x,y.) |
Backpropagation i
Vo J(O; x,
oJ¢ Ye) Confounding label
Jl Ve
Layer 0 gradients Layer N gradients

VBO ](00’ x’ yC)

\ZNCHESD]

VBN ](BN' X, yC)

IVoy JOn: %30 §
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Demonstration

° Compare L, norm of gradients at different layers fog
various vision datasets

e Network architecture: ResNetl

~ 1 ’ vd
)

CIFAR10 TinyImageNet

32



Demonstration

Collection of Cslquared L2 norm Ve, 7(80; x, }'c)”; ||V, J (BN x, yc)||§
Ve ’ |

(Averaged for each predicted class) Dataset
20 B mnist
N Isun

0 ® & -!' i. _t ei .+...E. ——_a = _,,__-!-? e at Em .v...'!! vl ® _agm’ .*‘; v"-&‘. “4‘ -.j ““ D

LS AL LTSS LS LLS PSPPI LS I LS LS PSPPI LS LSS LS PP LSS LS

S 32 4_ & \.‘ e“ <f‘ -,ﬂ ._\9‘ @J 10 J‘; .,° f '\\ J aY ? Lf oF \" § \d‘ ,\\ f‘ Le" & 2 2 & ._f\ \‘f\ > 'F(, \‘fq, R ;‘"

o & & t > & pr & “‘ & P a7 & NS # pr L » & IS S of W & & > &

: ‘- & f f > f ~ (,.. & & & of a% & f f & T f of (\ ¢‘ of A% @& ',f _,f f (p & S (‘ of ) ( oF & & F & KA ¥ i K

a° N s N st s # 4 & ¢ . > > & &
- < - o f ’ £ & & & £ c £ T & & & & &0 & F & ,ﬂ ,° & & &9 33
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Demonstration

. . 2
Squared L2 distances for different parameter sets Ve, 7(60; x, ¥,
7
17.5 T 3.0 0.4
5 10 6
15.0
2.5
5
12.5 N 8 0.3 Datasets
e 2.0 4 BN MNIST
o 100 3 6 s SVHN
= 1.5
> = 3 B TinylmageNet
4 E LSUN
1.0
5.0 4 EEE CIFAR-10
2.5 g 03 1
0.0 = - o - 0.0 = o 00 =
34
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Demonstration

Why Gradients over Loss?

* Higher dimension = more information 2.6 _
 Gradients computed for the current state ~ **
of each parameter set 2.2
2.0 Datasets
518 MNIST
- SVHN
16 _
' TinylmageNet
14 o LSUN
Loss does not effectively differentiate the 1.2 CIFAR-10

distributions of datasets

35
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Out-of-Distribution Detection

In

Out
SVHN

CIFAR-10  TinyImageNet

SVHN

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 / 93.18

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59/99.60 / 92.66

LSUN
CIFAR-10

87.34/88.42/85.02/98.60 / 98.37
79.98 /80.12/74.10/ 88.84 / 97.90

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 / 99.87
81.01/80.95/80.83/90.25/98.11

TinyImageNet
LSUN

81.70/81.92/79.35/96.17/97.74
80.96 /81.15/79.52/97.50/99.04

83.69 /83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

82.54/82.60/85.50/98.17/97.93
81.97/82.01/84.67/98.84/99.21

Georgia |

36
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Out-of-Distribution Detection

Dataset Distribution

In Out

SVHN
CIFAR-10  TinyImageNet

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04

84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 / 93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 7/ 99.60 / 92.66

LSUN
CIFAR-10

87.34 / 88.42/85.02/98.60 / 98.37
79.98/80.12/74.10/ 88.84 / 97.90

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 / 99.87
81.01/80.95/80.83/90.25/98.11

SVHN

TinyImageNet
LSUN

81.70/81.92/79.35/96.17/97.74
80.96/81.15/79.52/97.50 / 99.04

83.69 /83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

CIFAR10

LSUN

TinylmageNet

82.54/82.60/85.50/98.17/97.93
81.97/82.01/84.67/98.84/99.21

Objects, natural scenes

Georgia

37
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Out-of-Distribution Detection

Dataset Distribution

In Out
SVHN

CIFAR-10  TinyImageNet

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 /93.18

88.26/95.45/86.15/96.12/99.98
89.26 /91.60 / 88.59 7/ 99.60 / 92.66

LSUN 87.34 /88.42/85.02/98.60 / 98.37

CIFAR-10 7998 /80.12/74.10/ 88.84 / 97.90

SVHN TinyImageNet - 81.70/81.92/79.35/96.17/97.74
LSUN

More similar
datasets
(objects)

80.96/81.15/79.52/97.50 / 99.04

92.79/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79
83.69 /83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

TinylmageNet CIFAR10

92.30/94.22/89.80/99.82 / 99.87
81.01/80.95/80.83/90.25/98.11
82.54/82.60/85.50/98.17/97.93
81.97/82.01/84.67/98.84/99.21




Corrupted Input Detection

CIFAR-10-C CURE-
TSR

L
1
AR - No Decolor-
il Challenge  ization
% <

- . : »
Brightness Snow Saturate
» A
N ¥
e oy b | #- - o
4 ’ A 4 “’
2 - T~ )

39
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Corrupted Input Detection

Dataset

CIFAR-10-C

CURE-TSR

Method

Corruption

Noise
LensBlur
GaussianBlur
DirtyLens
Exposure
Snow
Haze
Decolor
Noise
LensBlur
GaussianBlur
DirtyLens
Exposure
Snow
Haze

Decolor

Level 1

96.63 /99.95
94.22/99.95
94.19799.94
93.37799.94
91.39/99.87
93.64 /99.94
95.52799.95
93.51799.96
25.46 /50.20
48.06 /72.63
66.44 / 83.07
29.78 1 51.21
74.90 / 88.13
28.11/61.34
66.51/95.83
48.37 /1 62.36

Mahalanobis [12] / Ours

Level 2

98.73799.97
97.51799.99
99.28 /100.0
95.31/99.93
91.00/99.85
96.50/99.94
98.35799.99
93.55799.96
47.54/63.87
71.61/87.58
77.67 1 86.94
29.28/59.10
99.96 /96.78
61.28 /80.52
97.86/99.50

60.55 /7 81.30

Level 3

99.46/99.99
99.26/100.0
99.76 / 100.0
95.66/99.96
90.71/99.88
94.44 /1 99.95
99.28 /100.0
90.30/99.82
47.32/81.20
86.59/92.56
93.15/94.35
46.60/ 82.10
99.99/99.26
89.89/91.30
100.0/99.95
71.73/89.93

Level 4

99.62/99.97
99.78 / 100.0
99.86/100.0
95.37/99.92
90.58 /99.85
94.22/99.95
99.71/99.99
89.86/99.75
66.19/91.16
92.19/93.90
80.78 / 94.51
73.36/91.87
100.0/99.80
99.34/96.13
100.0/99.87

87.29/95.42

Level 5

99.71/99.99
99.89/100.0
99.80/100.0
97.43799.96
90.68 /99.87
95.25799.92
99.94 /100.0
90.43/99.83
83.14/94.81
94.90/ 95.65
97.36/ 96.53
98.50/98.70
100.0/ 99.90
99.98 /97.66
100.0/99.88

89.68/96.91

No
Challenge

Decolor-
ization

Defocus Blur

Lens
Blur

Gaussian Blur

Spatter

Saturate

Georgia |
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Corrupted Input Detection

g Method Mahalanobis [12] / Ours
| Comuption | Levell  Level2  Leveld  Leveld  Levels
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
O GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
9«: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
g Exposure 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur 48.06 /72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
é. DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
g Exposure 74.90 / 88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
U Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91

No
Challenge

Decolor-
ization

Defocus Blur

Lens
Blur

Gaussian Blur

Spatter

Saturate

Georgia |
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* We introduced an interpretation of gradients in the space of models from a
perspective of model uncertainty

* We presented a framework for efficient gradient generation with
confounding labels to quantify uncertainty of fully trained networks

* We validated that the gradient-based uncertainty measure outperform
activation-based features in out-of-distribution detection and corrupted

input detection
[m] ¥ [m]

[=]

https://arxiv.org/abs/2008.08030 https://github.com/olivesgatech
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J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in /EEE International
Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020. [PDF][Video]

J. Lee, C. Lehman, and G. AlRegib, "Towards Understanding the Purview of Neural Networks via Gradient
Analysis, " IEEE Transactions on Neural Networks and Learning Systems (I'NNLS), submitted on Apr. 28
2021.

J. Lee and G. AlRegib, "Open-Set Recognition with Gradient-Based Representations," in IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, Sep. 19-22 2021.

D. Temel*, J. Lee*, and G. AlRegib, "Object Recognition Under Multifarious Conditions: A Reliability
Analysis and a Feature Similarity-Based Performance Estimation," in IEEE International Conference on
Image Processing (ICIP), Taipei, Taiwan, Sep. 2019 [PDF][Code]
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Part 11 : Model Learning with Gradient-constrained
Optimization

44
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Special Case: GradCon - Gradient Constraint

Anomaly Detection

Anomaly: Data whose classes or attributes differ from training data

Trained with ‘0’ Trained with ‘No effect’
Input Input
Abnormal Abnormal

Pretrained network

OLIVES Goal: Detect anomalies to ensure the robustness of machine learning algorithm / 45



2004 2016 2018 2019

Tax et.al Fan et.al 2 Pidhorksyi et.al 3 Abati et.al4

Encoder Decoder
N /I; !
11 ///I/'O‘O“\ (A
Training I
Some quantity /

is constrained Statistical deviation (Latent Loss)
to identify

anomalies

Testing

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational
OLIVES . autoencoder. arXiv preprint arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. Aimohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing

Systems, 2018, pp. 6822-6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019, pp. 481-490.



Existing approaches

Activation-based representation

Forward propagation (Data perspective) How much of the input
does not correspond to
IR\ e.g. Reconstruction error (L) Y
. .\
Anomaly m/ - - the learned information?
; » Proposed approach
Input | | | / Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)

Backpropagation w AL w' How much model update is

ow required by the input?

—>

OLIVES

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Novelty Detection Through Model-Based Characterization of Neural Networks," 2020
G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



Geometric Interpretation

Advantages of Gradient-based Representations

Abnormal data distribution Abnormal data distribution
Xout .{Cout

.
*
.

Backpropagated
F6710) Gradients

' oL
— % 5

Reconstruction
Error (L)

1) Provide directional information to characterize anomalies

2) Gradients from different layers capture abnormality at different levels

Georgia |

of data abstraction Tech |/
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GradCon: Gradient Constraint

Constrain gradient-based representations during training to obtain clear

separation between normal data and abnormal data

: % At k-th step of training, Gradient loss
: out oL / L .
' 09, 9] 1 ark
n‘:"?"’ i J=L—-E; [COSSIM( / , )]
SN0 0L 0bigypy 9
aqbin,z Avg. training Gradients at

gradients until (k-1) th iter. k-th iter.
Learned manifold

where
OLIVES lavg
¢: Weights L: Reconstruction error

t=



AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average

detection (CIFAR-10 CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 0.711 0.390 0.564
( ) CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554
+ Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661

VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583

+Vé£1d Latent 0.586 0.396 0.618 0.476 0.719 0.474 0.698 0.537 0.586 0.413 0.550

Grad 0.736 0.625 0.501 0.596 0.707 0.570 0.740 0.543 0.738 0.620 0.647
Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

Normal Abnormal

1) (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

2) (CAE vs. VAE) Performance sacrifice from the latent constraint

OLIVESB) (VAE vs. VAE + Grad) Complementary features from the gradient constraint



Baseline Experiment
Abnormal Condition detection

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure
1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
V0.6 Y 0.6 _o——9—9| voe V0.6
“ e ” e 2 1 2
Abnormal “condition :
detection (CURE-TSR)
0.0 i > 3 P 5 0.0 0.0
Levels Levels
Gaussian Blur Rain
1.0 1.0 1.0 1.0
0.8 0.8 @/9"”6/’6_—@ 0.8 0.8
§ 0.6 gy O OO § 0.6 § o6l § 0.6
204 204 204 204
Normal Abnormal | I o e S ) [
0043 2 3 a 5 0073 2 3 3 5 %01 2 3 4 5
Levels Levels Levels Levels

[->¢- Recon (CAE) —<— Recon (CAE+Grad) |—e— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss
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AUROC results in CIFAR-10

Fashion-MNIST

% of outlier 10 20 30 40 50

GPND 0.968 0.945 0.917 0.891 0.864

F1 Grad 0.964 0.939 0.917 0.899 0.870

GradCon 0.967 0.945 0.924 0.905 0.871

GPND 0.928 0.932 0.933 0.933 0.933

AUC Grad 0.931 0.925 0.926 0.928 0.926

GradCon 0.938 0.933 0.935 0.936 0.934

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
OCSVM [34] 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.586
KDE [4 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.610
DAE | 0,411 0.478 0616 0862 0.728 N.513 0638 0497 G487 0.378 0536
VAE [12] 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
Pixel CNN [20] 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.551
LSA [1] 0.735 0.580 0.690 0.542 0.761 0.546 0.751 0.535 0.717 0.548 0.641
AnoGAN [33] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.618
DSVDD [27] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.648
OCGAN [22] 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.657
GradCon 0.760 0.598 0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678 0.664
AUROC results in MNIST
0 1 2 3 4 5 6 i 8 9  Average
OCSVM [34] 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.951
KDE [4] 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.814
DAE [9] 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.877
VAE [12] 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.970
PixelCNN [20] 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.618
LSA | 0.993 0.999 0.959 0.966 0.956 0.964 0.994 0.980 0.953 0.981 0.975
AnoGAN [33] 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.913
DSVDD [27] 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.948
OCGAN [22] 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.975
GradCon 0.995 0.999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973 0.973
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4

GradCon

/]

7/

Covolutional autoencoder

OLIVES

¥ Adversarial training

/ X Autoregressive models

Does not require

Model parameters

Computations

Average inference time per image for GradCon
(3.08ms) is 1.9 times faster than GPND!! (5.72ms)

Method # of parameters
AnoGAN 6,338,176
GPND 6,766,243
LSA 13,690,160

| GradCon 230,721 |

- Model parameters are

at least 27 time fewer
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OLIVES

GradCon, achieves state-of- Code

the-art performance with r::'['_l.':l:; ]
" Ly
i '::n..

[] 3™

https://github.com/olivesgatech/gradcon-anomaly

significantly fewer number of

model parameters
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G. Kwon et al., "Backpropagated Gradient Representations for Anomaly Detection," in Proceedings of the European
Conference on Computer Vision (ECCV), SEC, Glasgow, Aug. 23-28 2020. [PDF][Code][Short Video]

* G. Kwon et al., "Novelty Detection Through Model-Based Characterization of Neural Networks," in IEEFE International
Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020. [PDF][Code][Video]

* G. Kwon et al., "Distorted Representation Space Characterization Through Backpropagated Gradients," in IEEE International
Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019. [PDF][Code]

* G. Kwon and G. AlRegib, "A Gating Model for Bias Calibration in Generalized Zero-Shot Learning, " /IEEE Transactions on Image Processing
(

* D. Temel et al.,, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral
Characteristics," in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019. [PDF][Code]TIP), submitted on Feb. 4 2021.

* D. Temel and G. AlRegib, "Perceptual Image Quality Assessment Through Spectral Analysis of Error Representations," in Signal Processing:
Image Communication, vol. 70, pp. 37-46, 2019. [PDF][Code]

* D. Temel and G. AlIRegib, "Traffic Signs in the Wild: Highlights From the IEEE Video and Image Processing Cup 2017 Student Competition
[SP Competitions]," in IEEE Signal Processing Magazine, vol. 35, no. 2, pp. 154-161, Mar. 2018. [PDF]

* D. Temel et al., "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in /IEEE International Conference on
Machine Learning and Applications (ICMLA), Orlando, FL, Dec. 2018 [PDF][Code]
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Robustness

Gradients

Visual Explanations
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Part 111 : Reasoning in Neural Networks
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From now,

OLIVES

Robustness

Concept : Reasoning

Visual Explanations

Method : Gradients
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Challenges in Neural Networks

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Dumb-bell

Even natural images Manhole cover
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would

Georgia |
Tech |
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Challenges in Neural Networks

Neural networks decide ‘reflexively’. Gradients add reasoning.



Reasoning
Types of Reasoning

Classwork — Learned differences between Flamingo and Spoonbill.
Exams— To identify unknown bird

What species of bird is this?

61
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Reasoning
Types of Reasoning

Classwork — Learned differences between Flamingo and Spoonbill.
Exams — To identify unknown bird

fl_earning )
Spoonbill

Spoonbill :
Pink and round
body, Straight neck

_ Flamingo :
Flamlng_o Pink and round body,
~ S-shaped neck

62
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Reasoning
Types of Reasoning

OLIVES

Classwork — Learned differences between Flamingo and Spoonbill.

Exams — To identify unknown bird

(Learning

Spoonbill

Spoonbill :
Pink and round
body, Straight neck

_ Flamingo :
Flamlng__o Pink and round body,
s S-shaped neck

" Exams

Detect pink and round body,

J

Straight neck

NG




Reasoning
Types of Reasoning

Classwork — Learned differences between Flamingo and Spoonbill.
Tests — To identify unknown bird

64

Georgia |
Tech|/

CREATING THE NEXT




Reasoning
Types of Reasoning

Inductive Reasoning

'A feed-forward reasoning approach that is aimed at detecting
generalizations, rules, or regularities ’

/Learning N\ ( Exams A
Detecting Rules

Spoonbill

Spoonbill :
*\ Pink and round
v body, Straight neck
'Z: > Spoonbill
i Flamingo : .
Flamingo Pinkiad roundioagy Inferring based
- S-shaped neck on rules
Detect pink and round body,
) X Straight neck y 65
Georgia

Tech !

[1] Klauer, Karl Josef, and Gary D. Phye. "Inductive reasoning: A training approach." Review of Educational Research 78.1 (2008): 85-123.



Reasoning
Types of Reasoning

Deductive Reasoning

‘Reasoning that relies on factual knowledge or formal rules '’

/Learning N\ ( Exams A
Spoonbill

Spoonbill :
Pink and round
body, Straight neck

Detect that this .
, |::> image is in |::> Spoonbill

Flamingo :

Flamin%o Pink and round body, training set
= o S-shaped neck
AN YA
Georgia
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Reasoning
Types of Reasoning

Deductive Reasoning

‘Reasoning that relies on factual knowledge or formal rules '’

/Learning [ Exams A

Spoonbill

Detect that this _
, |::> image is in |::> Spoonbill

Flamingo :

Jf Pink and round body, training set
e S-shaped neck
67
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Reasoning
Types of Reasoning

Deduc- =~ -asoning

‘Reasoning that relies on factual knowledge or formal rules '’

/Learning [ Exams A

Spoonbill

Detect that this .
, |::> image is in |::> Spoonbill

Flamingo :

J Pink and round body, training set
e e S-shaped neck
68
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Reasoning
Types of Reasoning

Abductive Reasoning

An abductive reasoning approach creates hypothesis and tests

S-shaped neck

J

its validity
(Learning N\ ( Exams
Spoonbill
Spoonbill :
oay, ostraight nec - .
. Flamingo : :> ) = 4 ::> Hypotheses ::> SpOOﬂbI”
Flamlng_o Pink and round body, \ S

/69
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Reasoning
Types of Reasoning

Abductive Reasoning

An abductive reasoning approach creates hypothesis and tests

its validity
/Learning N\ ( Exams A

Spoonbill

Spoonbill :

Pink and round . .

body, Straight neck Itis a Flamlngo
. Flamingo :
Flamingo Pink and round body, No S_Shaped neck
' - S-shaped neck
AN o
Georgia

Tech !
REATING THE NEXT



Reasoning
Types of Reasoning

Abductive Reasoning

An abductive reasoning approach creates hypothesis and tests
its validity

4 N\ ( Exams N

Answer is implicitdinthe
learned knowledge —
Difference isinithe-S-

shaped neck

Why Spoonbill, rather than
Flamingo?

Georgia
Tech |




Reasoning
Types of Reasoning

Abductive Reasoning

An abductive reasoning approach creates hypothesis and tests
its validity

-

N\ ( Exams

Answer is implicitdinthe
learned knowledge —
Difference isinithe-S-

shaped neck

The bird does not have an
S-shaped neck

/72
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Reasoning
Types of Reasoning

Abductive Reasoning

An abductive reasoning approach creates hypothesis and tests
its validity

Abductive Reasoning

73
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Reasoning
Types of Reasoning

Abductive Reasoning

Inductive Reasoning

@]
. "M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.

(Training Knowledge ) ﬁ'esting Reasoning Inference
Base
Spoonbill Feed-Forward
Spoonbill : Detect '
Pink and round body, = Pink and round body, Spoonbil
Straight neck é Straight neck
)
. (8- -
Flam|n_go F|amingo C = g)j ContraStIVe
o Pink and round body, == 0 .
e S-shaped neck Test Image ® Dot Detect Spoonbill
J\_
74
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Reasoning

Types of Reasoning
Inductive/Feed-forward Abductive/Contrastive
Reasoning Reasoning
Inductive Reasoning in Neural Networks Abductive Reasoning in Neural Networks
ﬁraining Knowledge ) ﬂl’esting Reasoning Inference
Base
Spoonbill \ Feed-Forward
Spoonbill : ,
> Pink and round body, Pink and round body, Spoonbil
- Straight neck Straight neck
: ‘ >
Pink and round body, _
> S-shaped neck Test Image — Spoonbill
; y )_'_'75.,%:_@— =
\ \_ 1/
75
N o Georgia |
Tech ||

- . ‘M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021. SmE R



Reasoning
Types of Reasoning

Inductive Reasoning Abductive Reasoning

(Training coweie )/ Testing Reasoning Inference
- Base
Spoonbill — Feed-Forward
Detect -
-
Spoonbill : Pink and round body, Spoonbill
Pink and round body, Straight neck, long beak
Straight neck, long beak —~
Flamingo 5
= Flamingo : 3 Not Detect
Pink and round body, o S-shaped neck
S-shaped neck E o
= @ Contrastive .
Q >
Crane: Test Image % Spoonbill
White/Slate-Gray body,
long beak Not. Detect -
White body

OLIVES

/ ech

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.




Reasoning
Types of Reasoning

Contrastive Reasoning

Feed-Forward Reasoning

 Abductive Reasoning allows humans to better generalize to
unfamiliar situations’? We define unfamiliar situations as during :
 Domain shifted data — different acquisition devices,
backgrounds, poses
« Challenging data — errors in acquisition, challenging
environmental conditions like rain, snow, haze, and noise

77
Georgia
Tech |/
[1] Peirce, Charles Sanders. Collected papers of charles sanders peirce. Vol. 2. Harvard University Press, 1974. g —
[2] Paul, Gabriele. "Approaches to abductive reasoning: an overview." Artificial intelligence review 7.2 (1993): 109-152.




Reasoning
Definition of Reasoning

OLIVES

ﬁraining
‘Spoonbill

Knowledge \
Base

Spoonbill :
Pink and round body,
Straight neck

Flamingo :
Pink and round body,
S-shaped neck

J

T esting

—

Test Image

-

aseg abpajmouyy

Explanations

Feed-Forward

Detect
Pink and round body,
Straight neck

Contrastive
Not Detect

Inference

Spoonbill

Spoonbill

Reasoning is a mental process which can only be surmised based on how it manifests’

[1] Goguen, Joseph A., J. L. Weiner, and Charlotte Linde. "Reasoning and natural explanation." International Journal of Man-Machine Studies 19.6 (1983); 521-559.
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Reasoning
Definition of Reasoning

OLIVES

Reasoning manifests in 2 forms : Explanations and Inference 2

ﬁraining
Spoll

Flamingo

Knowledge \
Base

Spoonbill :
Pink and round body,
Straight neck

Flamingo :
Pink and round body,
S-shaped neck

J

T esting

—

Test Image

-

aseg abpajmouyy

Explanations

Feed-Forward

Detect
Pink and round body,
Straight neck

Contrastive
Not Detect

Inference

Spoonbill

Spoonbill

Reasoning is a mental process which can only be surmised based on how it manifests’

[1] Goguen, Joseph A., J. L. Weiner, and Charlotte Linde. "Reasoning and natural explanation." International Journal of Man-Machine Studies 19.6 (1983); 521-559.

[2] M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021
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Logic-based ML-based
Abductive Abductive Datasets for Methods for
: : Reasoning Reasoning
Reasoning Reasoning

.
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Logic-based ML-based

Abductive Abductive

Reasoning Reasoning
1999 2002 2005 2014 2019
Kakas et.al Camposetal Raina et.al Fortier et.al Dai et.al

OLIVES



Logic-based ML-based

Abductive Abductive

Reasoning Reasoning
1999 2002 2005 2014 2019
Kakas et.al Camposetal! Raina et.al Fortier et.al Dai et.al

Explanation set = {A, E, G, H}

Logic-based programming models

pa;

\
s
OLIVES >

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
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Logic-based ML-based
Abductive Abductive

Abductive Reasoning | r=on

1999 2002 2005 2014 2019

Kakas et.al Camposetal! Raina et.al Fortier et.al Dai et.al

Explanation set = {A, E, G, H}

Logic-based programming models

-

» Decisions are interpretable
(explainable)

(R (B9 \
.
OLIVES >

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
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Logic-based ML-based
Abductive Abductive

Abductive Reasoning | r=on

1999 2002 2005 2014 2019

Kakas et.al Camposetal! Raina et.al Fortier et.al Dai et.al

Explanation set = {A, E, G, H}

Logic-based programming models

» Absence of disentangled features in
current neural networks

\  Not scalable

-

g

4

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
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Abductive Reasoning | r=on

1999 2002

Kakas et.al Campos et.al ’

Raina et.al

Decisions are interpretable

Logic-based ML-based
Abductive Abductive
Reasoning
2014 2019
Fortier et.al Dai et.al?
3 ) ﬂ:onsistency Optimizatiom ("
Dat Machine Learning > Pseudo- > Logical
ata < labels Abduction
) L J :

(explainable)

Absence of disentangled
features in current neural
networks

Not scalable

OLIVES

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using

problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
[2] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).

Domain Knowledge Base

—(
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Logic-based ML-based

Abductive Reasoning | r=on o

1999 2002 2005 2014 2019
Kakas et.al Camposetal! Raina et.al Fortier et.al Dai et.al?
C ) ﬂ:onsistency Optimizatioh ( |
« Decisions are interpretable (I g T -
: -
(explainable) 1
Domain Knowledge Base

« Absence of disentangled , , , .
featutBen current heural « Having a domain knowledge base creates explainability for

networks learning

*  Not scalable

86
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[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
[2] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).



Logic-based ML-based

Abductive Reasoning | e e

1999 2002 2005 2014 2019
Kakas et.al Campos et.al? Raina et.al Fortier et.al Dai et.al?
- A / Consistency Optimization\ (
« Decisions are interpretable Bats B  EED N y Abduction
. ) .
(explainable) L)
Domain Knowledge Base

Knowledge 1
« Absence of disentangled
features in current neural Knowledge 2 Requires manual
networks Knowledge 3 initialization
» Not scalable
87
Georgia

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using Tech|/
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131. ATING EX’
[2] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).



Abductive Reasoning

1999 2002

2005

Logic-based ML-based

Abductive Abductive
Reasoning Reasoning
2014 2019

N —

Kakas et.al Campos et.al ’

Decisions are interpretable
(explainable)

Raina et.al

Fortier et.al Dai et.al?

Absence of disentangled
features in current neural
networks

Not scalable

OLIVES

Manual allocation of disentangled knowledge features defeats the
purpose of learning from data

Not scalable

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
[2] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).




Abductive Reasoning

1999 2002

Logic-based ML-based

Abductive Abductive
Reasoning Reasoning
2014 2019

e

Kakas et.al Campos et.al ’

Raina et.al

Fortier et.al Dai et.al?

Decisions are interpretable
(explainable)

Absence of disentangled
features in current neural
networks

Not scalable

Having a domain knowledge base creates explainability for
learning

OLIVES

Manual allocation of disentangled knowledge features defeats the
purpose of learning from data

Not scalable

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using
problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.
[2] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).




DeepProblLog: Neural Probabilistic Logic Programming’

Inductive Logic Programming via Differentiable Deep Neural
Logic Networks?

OLIVES

[1] Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & De Raedt, L. (2018). Deepproblog: Neural probabilistic logic programming. Advances in Neural Information
Processing Systems, 31, 3749-3759.
[2] Payani, A., & Fekri, F. (2019). Inductive logic programming via differentiable deep neural logic networks. arXiv preprint arXiv:1906.03523.



MNIST Dataset

Relational data — not images

OLIVES

[1] Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & De Raedt, L. (2018). Deepproblog: Neural probabilistic logic programming. Advances in Neural Information
Processing Systems, 31, 3749-3759.
[2] Payani, A., & Fekri, F. (2019). Inductive logic programming via differentiable deep neural logic networks. arXiv preprint arXiv:1906.03523.
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Datasets for Reasoning

Reasoning

2017 2017 2018

S —

Li et.al’ Santoro et.al? Santoro et.al

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

92

0 [1] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language Georgia UL
and elementary visual reasoning. In CVPR, 2017. Tech)
- [2] Santoro, Adam, et al. "A simple neural network module for relational reasoning." arXiv preprint arXiv:1706.01427 (2017). REATING THE NEXT



Datasets for Reasoning

Reasoning
Li et.al’ Santoro et.al? Santoro et.al
Final CNN feature maps RN
[ I 1 [ I 1
e, Object pair
object with question ~ J#-MLP
—|> o fomp
Conv. » COmmES —> @ |
] THI i : : W —» small
- IEI:I- —> m |
Element-wise
zga: 5125 ;: tl’fmetgyl;nder sum
2?:&:213%;2:558 e 0 -

what size is. sphere
Q: Are there an equal number of large things and metal spheres? |
Q: What size is the cylinder that is left of the brown metal thing that LS
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

93
0 [1] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language Georg|a .
and elementary visual reasoning. In CVPR, 2017. Tech|
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Datasets for Reasoning

Reasoning
Li et.al’ Santoro et.al? Santoro et.al
Final CNN feature maps RN
[ I 1 [ I 1
e, Object pair
object with question ~ J#-MLP
o _|> — fomp
n » COmmES —> @ |
] THI i : : W —» small
- IEI:I- —> m |
Element-wise
zga: 5125 ;: tl’fmetgyl;nder sum
2?:;}21395;22558 = I

what size is. sphere
Q: Are there an equal number of large things and metal spheres? |
Q: What size is the cylinder that is left of the brown metal thing that LS
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere? +
Q: How many objects are either small cylinders or metal things? l m ag €S N L P
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and elementary visual reasoning. In CVPR, 2017. Tech|

. [2] Santoro, Adam, et al. "A simple neural network module for relational reasoning." arXiv preprint arXiv:1706.01427 (2017). REATING THE NEXT



Datasets for Reasoning

Reasoning

2017 2017 2018

I

Li et.al’ Santoro et.al? Santoro et.al

Final CNN feature maps RN

[ 1 [ |
. e, Object pair
object with question  J¢-MLP

- @ s Jome

Conv. > COEEES —> @

: |
~|:i_> : BOE —» small
> IEI:I- —> mn |

Element-wise
sum
What size is the cylinder
that is left of the brown
metal thing that is left
of the blg sphere?

what size is. sphere

Q: Are there an equal number of large things and metal spheres? |

Q: What size is the cylinder that is left of the brown metal thing that LS
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere? e i i
Q: How many objects are either small cylinders or metal things? Th IS1S asu peN|Sed taSk
95
0 [1] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language Georgia JL
and elementary visual reasoning. In CVPR, 2017. Tech|

. [2] Santoro, Adam, et al. "A simple neural network module for relational reasoning." arXiv preprint arXiv:1706.01427 (2017). REATING THE NEXT



Part I : Reasoning in Neural Networks

VN

_—

Logic-based
Abductive
Reasoning

ML-based
Abductive
Reasoning

Datasets for
Reasoning

I

—

e

Methods for
Reasoning
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Part I : Reasoning in Neural Networks

VN

_—

Logic-based
Abductive
Reasoning

ML-based
Abductive
Reasoning

Datasets for
Reasoning

I

—

e

Contrastive
Reasoning

97
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Contrastive Reasoning

Contrast definition

O Physical Definition
L Structure of Contrast
d Technical Definition

98
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Contrastive Reasoning

Contrast definition

O Physical Definition
L Structure of Contrast
d Technical Definition

|

In visual space, contrast is the perceived difference between two
known quantities

1

99
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Contrastive Reasoning

Contrast definition

O Physical Definition
L Structure of Contrast
d Technical Definition

In visual space, contrast is the perceived difference between two
known quantities

Contrast B/w Spoonbill and Flamingo  Contrast B/w Bugatti Convertible and Coupe Contrast B/w Fault and Salt Dome

B e e w A ] — N

100
Georgia |

Tech |

REATING THE NEXT



O Physical Definition
O Structure of Contrast

‘Why P, rather than Q?°

d Technical Definition

P ) Prediction
Q ————— COontrast class

OLIVES



Contrastive Reasoning

Contrast definition

O Physical Definition
Q Structure of Contrast ‘Why P, rather than Q?°
[ Technical Definition
Spoonbill
Flamingo
[ ‘Why spoonbill, rather than flamingo?’ ]

102
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Contrastive Reasoning

Contrast definition

O Physical Definition
O Structure of Contrast

‘Why P, rather than Q?°

d Technical Definition

Spoonbill

Pig

‘Why spoonbill, rather than pig?’

103
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Contrastive Reasoning

Contrast definition

O Physical Definition
Q Structure of Contrast ‘Why P, rather than all classes?’
O Technical Definition

Spoonbill

Flamingo/Pigl/...

For N learned classes, there can be N possible contrastive reasons

OLIVES



Contrastive Reasoning

Contrast definition

O Physical Definition
O Structure of Contrast
d Technical Definition

‘Why P, rather than P?’

Spoonbill

Spoonbill

‘Why spoonbill, rather than spoonbill?’

105
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Contrastive Reasoning

Contrast definition

O Physical Definition
O Structure of Contrast
d Technical Definition

‘Why P, rather than P?’

Spoonbill

Spoonbill

‘Why not spoonbill, with 100% confidence?’

106
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Contrastive Reasoning

Contrast definition

O Physical Definition
O Structure of Contrast
d Technical Definition

OLIVES

‘Why P, rather than P?’

Spoonbill

Spoonbill

For 1 predicted class, there is 1 reason why it was not predicted
with 100% confidence



Contrastive Reasoning

Contrast definition

O Physical Definition
L Structure of Contrast
d Technical Definition

108
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Contrastive Reasoning

Contrast definition

In representation space, contrast is the distance between manifolds where an input x is predicted as P vs the
same input x is predicted as @

109
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Contrastive Reasoning

Contrast definition

In representation space, contrast is the distance between manifolds where an input x is predicted as P vs the
same input x is predicted as @

/— —
/ W1 Pe - Introduce
Contrast

Learned Manifold : spoonbill predicted
as a spoonbill

110
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Contrastive Reasoning

Contrast definition

(o representation space, contrast is the A Contrastive Manifold : spoonbill labeled a
distance between manifolds where an input x flamingo
is predicted as P vs the same input x is
redicted as

N P v J
Introduce
Contrast

Learned Manifold : spoonbill predicted

as a spoonbill

OLIVES
©)

@GeorgiaTech

Spoonbill CREATING THE NEXT

M. Prabhushankar and G. AlReqib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.



Contrastive Reasoning

Contrast definition

(o representation space, contrast is the ) Contrastive Manifold : spoonbill labeled a

distance between manifolds where an input x flamingo
is predicted as P vs the same input x is

redicted as
N 0 ¢ /] is aloss function

/_ T 8] (P, Q)
’WZ Wl Pe Introduce oW,

W, show

Contrast spoonbill

Learned Manifold : spoonbill predicted
as a spoonbill

OLIVES

/Learned Manifold : spoonbill labeled a /'
spoonbill

M. Prabhushankar and G. AlReqib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.




Contrastive Reasoning

o, Gradients provide inherent contrast between
Contrast definition P

classes

(o representation space, contrast is the ) Contrastive Manifold : spoonbill labeled a

distance between manifolds where an input x flamingo
is predicted as P vs the same input x is

redicted as _ _
N 0 ¢ /] is aloss function

/_ T 8] (P, Q)
‘WZ Wl Pe Introduce oW,

W, show

Contrast spoonbill

Learned Manifold : spoonbill predicted
as a spoonbill

OLIVES

/Learned Manifold : spoonbill labeled a
spoonbill

M. Prabhushankar and G. AlReqib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.




Parts I, IL, 111

Contrast definition

[ ‘Why P, rather than all classes? }

Confounding Labels

. %
Input image A
X £,
-\

Collection of squared L2 norm
dye

JOLIVES),

Gradient Generation Framework

Trained model
M(0)

‘ Loss
J(6;x,y.)

Backpropagation
Ve ](el X, yc)

l

Layer 0 gradients
ven ](90; X, yc)

Prediction
M(6; x)
’

v
Confounding label
Ye

Layer N gradients
VGN ](GN; X, yC)

{ %, J(80; 30,

[IVoy 7ON; 20l }

y. are all possible Q

v 114
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Parts L, I1, III

Contrast definition

P rather than 1}3? ’

Overview Second P is the reconstructed image

Gradient-based Representation
Existing approaches

Activation-based representation

Forward propagation (Data perspeCtlve) How much of the input

: W e.g.  Reconstruction error (£) does not correspond to
Trained with ‘0

Anomaly m B . the learned information?

First P is original image S

Proposed approach

Input Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w oL w' How much model update is
ow required by the input?
—>

44 115

O LIVE S OLIVES

ankar, D. Temel, and G. AlRegib, "Novelty Detection Through Model-Based Characterization of Neural Networks," 2020

D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



Parts L, II, I11

Contrast definition

‘Why P, rather than Q?°

Introduction
Objectives of Contrastive Visual Explanations

Contrast B/w Spoonbill and Flamingo  Contrast B/w Bugatti Convertible and Coupe Contrast /w Fault and alt Dome

—
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Parts L, II, I11

Contrast definition

[ ‘Why P, rather than Q?° ]
|

More about explanations in Part IV

117
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Reasoning in Neural Networks

1999

2002

2005

2014

2017

2017

2019

2021

e ———————————————————————————————————————

Kakas et.al

[1]

Campos et.al’

Raina et.al

[2]

Fortier et.al

Li et.al?

[3]

Decisions are
interpretable
(explainable)

Reasoning
dataset

Images + Natural
language

Provides relational
reasoning and
validation using
numbers

Absence of
disentangled
features in current
neural networks

Not scalable

Images + Natural
language

Treats reasoning
as a supervised
task

OLIVES

Santoro et.al®

[4]

Dai et.al*

Having a domain
knowledge base
creates
explainability for
learning

Manual allocation of
disentangled
knowledge features
defeats the purpose
of learning from
data

Not scalable

Prabhushankar et.al®

[5]

Does not require
domain
knowledge
Multiple
explanatory
questions

Dependent on
knowledge of
neural network

[1] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary computation approach by using

problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002): 105-131.

[2] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning. In CVPR, 2017.
[3] Santoro, Adam, et al. "A simple neural network module for relational reasoning." arXiv preprint arXiv:1706.01427 (2017).

[4] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).

[5] M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9

2021.
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1999 2002 2005 2014 2017 2017 2019 2021

e ———————————————————————————————————————

Kakas et.al' Campos et.al®° Raina et.al® Fortier et.al* Li et.al® Santoro et.al® Dai et.al” Prabhushankar et.al®

[1] Flach, Peter A., and Antonis C. Kakas. "Abductive and inductive reasoning: background and issues." Abduction and induction.
Springer, Dordrecht, 2000. 1-27.

[2] De Campos, Luis M., Jose A. Gamez, and Serafin Moral. "Partial abductive inference in Bayesian belief networks-an evolutionary
computation approach by using problem-specific genetic operators." IEEE Transactions on Evolutionary Computation 6.2 (2002):
105-131.

[3] Raina, Rajat, Andrew Y. Ng, and Christopher D. Manning. "Robust textual inference via learning and abductive reasoning." AAAI.
2005.

[4] Fortier, Nathan, John Sheppard, and Shane Strasser. "Abductive inference in Bayesian networks using distributed overlapping
swarm intelligence." Soft Computing 19.4 (2015): 981-1001.

[5] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A
diagnostic dataset for compositional language and elementary visual reasoning. In CVPR, 2017.

[6] Santoro, Adam, et al. "A simple neural network module for relational reasoning." arXiv preprint arXiv:1706.01427 (2017).

[7] Dai, Wang-Zhou, et al. "Bridging machine learning and logical reasoning by abductive learning." (2019).

[8] M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and
Machine Intelligence, submitted on Jan. 9 2021.
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* We introduced an interpretation of gradients in the space of models from a perspective
of model uncertainty

* We proposed a framework for efficient gradient generation with confounding labels to
quantify uncertainty of fully trained networks

* We validated that the gradient-based uncertainty measure outperform activation-based
features 1in out-of-distribution detection and corrupted input detection

* We interpreted gradients as a reasoning mechanism within neural networks

A

https://arxiv.org/abs/2103.12329

OLIVES

M. Prabhushankar and G. AlIRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.



* M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural
Networks, " IEEE Transactions on Pattern Analysis and Machine
Intelligence, submitted on Jan. 9 2021. [PDF]

* M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive
Explanations in Neural Networks," in IEEE International Conference on
Image Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.
[PDF][Code][ Video]

* M. Prabhushankar and G. AIRegib, "Extracting Causal Visual Features for
Limited Label Classification," in IEEE International Conference on Image

Processing (ICIP), Anchorage, AK, Sep. 19-22 2021.
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Part 1V : Explanations in Neural Networks
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Part 1V : Explanations in Neural Networks

Causal Questions

Why?’

Abductive Reasoning

7 N

Counterfactual Questions Contrastive Questions

‘What if?’ ‘Why P, rather than Q?’

123
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Part 1V : Explanations in Neural Networks

a7} A
el Observed Causal Observed Counterfactual Observed Contrastive

40 4 2
lS d
— | e
: | b
H' Py 1 s:.é |
'I
b "L ;‘
A ";j 9 ey
&
W o
2415

N

;4 4

*

. . What if Bullmastiff was notin Why Bullmastiff, rather than a
'
Bullmastiff Why Bullmastiff? the image? Boxer?
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Explanations in Neural Networks
Observed Causal Explanations

2013 2014 2017 2018

‘Why the the network predict

a Spoonbill? ’ Simoyan et.al ’ Springenberg et.al 2 Selvaraju et.al 3 Aditya et.al 4

‘Why Spoonbill?’

Original Positive Saliency [1] Smooth Gradients [1] Guided GradCAM [3] GradCAM++ [4]
Backpropagation [2]

125
[1]1 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, Deep inside convolutional networks:Visualising image classification models and saliency maps,’arXiv preprintarXiv:1312.6034, 2013.
[2] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All Convolutional Net. arXiv, 2014 Georgia

inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618-626.
[4] Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). |IEEE, REATING THE NEXT
2018.

[3] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” Tech ‘




Explanations in Neural Networks
Observed Causal Explanations

2013 2014 2017 2018

‘Why the the network predict
a SpOOI’lbill? ’ Simoyan et.al | Springenberg et.al 2 Selvaraju et.al 3 Aditya et.al 4

‘Why Spoonbill?’

Original Positive Saliency [1] Smooth Gradients [1] Guided GradCAM [3] GradCAM++ [4]
Backpropagation [2]

All techniques are a
function of activations and
gradients of logit of
predicted class

126
[1]1 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, Deep inside convolutional networks:Visualising imageclassification models and saliency maps,”arXiv preprintarXiv:1312.6034, 2013.
[2] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All Convolutional Net. arXiv, 2014 Georgia

[3] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” Te h !
; v ! . . ecC
inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618-626.

[4] Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). |IEEE, .ATING TI I
2018.




2013 2014 2017 2018

———————————————

: Why SpOOhbi”? ’ Simoyan et.al ’ Springenberg et.al 2 Selvaraju et.al ® Aditya et.al 4

Grad-CAM

« Pass an image through a network
E== « Obtain the logits after the final layer
Original Grad-CAM [3] » Backpropagate the required logit, y,, to the final
convolutional layer
Forar dien « Sum all the gradients per channel to obtain k
1 cLass 1c 1S None: H
score = logit[:, logit.max(1)[-1]].squeeze() 'mportance Scores
else: _ , « Multiply the importance scores with the activations
score = logit[:, class idx].squeeze()
per channel and average them across channels

logit = .model arch(input)

.model arch.zero grad()
score.backward (

127
O LI ‘ ] E S [1]1 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, Deep inside convolutional networks:Visualising imageclassification models and saliency maps,”arXiv preprintarXiv:1312.6034, 2013.

[2] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All Convolutional Net. arXiv, 2014

[3] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,”
inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618-626.

[4] Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). |IEEE,
2018.



Explanations in Neural Networks
Counterfactual Explanations — Gradient based

2017 2019

What if the bullmastiff was *

not in the image?’ Selvaraju et.al * Goyal et.al 2

Observed Causal Observed Counterfactual

Obtained by

backpropagating the el ;7::" ‘ ,(:
negative gradient of the

|Og|t yp IN Grad-CAM . eeo What if Bullmastiff was not in
Bullmastiff Why Bullmastiff: the image?
framework
128
[1] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” Georg ia ‘

inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618-626. Tech

[2] Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019. REATING THE NE)




Explanations in Neural Networks
Counterfactual Explanations — Non-Gradient based

‘What if the query image
were like the distractor
image?’

OLIVES

2017 2019

Selvaraju et.al ! Goyal et.al 2

Query image Distractor image Composite image Query image Distractor image Composite image

Eared Grebe Horned Grebe

4

-

Olive sided Flycatcher Myrtle Warbler

Blue Grosbeak Indigo Bunting

129

[1] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,”
inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618-626.
[2] Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019.



Explanations in Neural Networks
Contrastive Explanations

2013 2014 2017 2018

Why spoonbill, rather than a “

Flamingo? ’ Simoyan et.al ’ Springenberg et.al 2  Selvaraju et.al 3 Aditya et.al 4

‘ . I ‘Why Spoonbill,
29
Why Spoonbill: rather than Flamingo?’

GradCAM [3] Proposed Contrastive Explanation

130
O LI ‘ ? E S [1]1 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, Deep inside convolutional networks:Visualising imageclassification models and saliency maps,”arXiv preprintarXiv:1312.6034, 2013.

[2] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All Convolutional Net. arXiv, 2014 Georaiz
[3] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” Te ~I
inProceedings of the IEEE internationalconference on computer vision, 2017, pp. 618-626. o
[4] Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). |IEEE,

2018.



Explanations in Neural Networks
Contrastive Explanations

‘Why Spoonbill?* Wz "1 Spoonbill

. 929
« Why P?’framework provided rather than Flamlng N

by existing methods (In this
dissertation proposal, we use
Grad-CAM)

« ‘Why P, rather than Q?’
provided by gradients between
P and Q manifolds

GradCAM Proposed Contrastive Explanation

OLIVES



Implementation : Within Grad-CAM framework

Grad-CAM Contrastive Explanation

LI EL GIENLI logit = .model arch(input)
is None:

score = logit[:, logit.max(1)[-1]].squeeze()f] €€ loss = nn.CrossEntropyLoss()

else: im label as var = Variable(torch.from numpy(np.asarray([0])))
SR = logit[:, class idx].squeeze() pred loss = ce loss(logit.cuda(), im label as var.cuda())

.model arch.zero grad() .model_arch.zero_grad()
score.backward( n -etain graph pred_loss.backward()

132
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Explanations in Neural Networks
Contrastive Explanations - Examples

Stanford Cars Dataset: Grad-CAM : Why Representative Bugatti Why Convertible, Representative Audi Why Bugatti, rather
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? A6 image than Audi A6?

o Cars dataset
o VGG-16 Architecture
o Last convolutional layer

133
Georgia
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Explanations in Neural Networks
Contrastive Explanations - Examples

Stanford Cars Dataset: Grad-CAM : Why Representative Bugatti Why Conpertible, Representative Audi Why Bugatti, rathelN_
Bugatti Convertible Bugatti Convertible? Coupe image rather thAn Coupe? A6 image than Audi A6?

o Cars dataset

o VGG-16 Architecture Highlights the hatchback

o Last convolutional layer

134

0 Highlights the open top Georgia
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"~ M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 92021.



Explanations in Neural Networks
Why Contrastive Explanations?

- Q | i
: & y

CURE-TSR datset : Grad-CAM : Why No- Representative No- Why No-Left, rather Representative Stop Why No-Left, rather
No-Left Image Left? Right image than No-Right? Sign than Stop?

o CURE-TSR dataset
o ResNet-18 Architecture
o Last convolutional layer

135

Not always human interpretable oAl
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- - M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.




Explanations in Neural Networks
Why Contrastive Explanations?

BEEeRRENyYHNASVE

CURE-TSR traffic signs

136
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"~ M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 92021.



Explanations in Neural Networks
Why Contrastive Explanations?

bottom-left edge — enough to
say Not STOP Sign’

BEEeaEENERSMVE

CURE-TSR traffic signs

/> Only traffic sign with a straight

137
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Contrastive Explanations provide more context
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- - M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.



Explanations in Neural Networks
Why Contrastive Explanations? - IQA

Image Quality Assessment (IQA)

IQA Algorithm’ ms——) Score : 0.58

3 _dh - o
== 8 =8 " & " L

Bad Good
Quality Quality
0.0 0.5 1.0

l
The given image is

somewhat OK quality 138
Georgia |
Tech|/
[1] Bosse S, Maniry D, Miiller K R, et al. Deep neural networks for no-reference and full-reference image quality assessment. CREATING THE NEXT

IEEE Transactions on Image Processing, 2018, 27(1): 206-219.



Explanations in Neural Networks
Why Contrastive Explanations? - IQA

Causal Explanations in IQA

Why 0.58? — ‘
I ‘ ;

Grad-CAM Highlights
all parts of the image

== Bad Good

Distorted image Quality Quality
0.0 0.5 1.0

1 1 | | | | | 1
J I I I | 1 1 1

The given image is
somewhat OK quality 139

o Georgia |
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Explanations in Neural Networks
Why Contrastive Explanations? - IQA

Why 0.58, rather

? » -
th%n 1|' . -
Highlights
== Bad Foreground
Distorted image Quality Quality
0.0 0.5 1.0

1 1 | | | | | 1
J I I I | 1 1 1

The given image is
somewhat OK quality

o Georgia |
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Explanations in Neural Networks
Why Contrastive Explanations? - IQA

Why 0.58, rather

than|0.25?
]
Highlights
. Bad Good " SKY“S e
Distorted image Quality Quality
0.0 0.5 1.0

1 1 | | | | | 1
) I I I | 1 1 1

The given image is

somewhat OK quality e

0 0 Georgia |
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.0 © M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive Explanations in Neural Networks," in IEEE International Conference on Image Processing (ICIP), CREATING THE NEXT

* Abu Dhabi, United Arab Emirates, Oct. 2020.



Explanations in Neural Networks
Why Contrastive Explanations? - IQA

ot

Distorted Image - Grad-CAM : Why 0.58, rather Why 0.58, rather Why 0.58, rather

P

Why 0.58, rater
QA Score 0.58 Why 0.58? than 1? than 0.75? than 0.5 than 0.25
Why 0.58?

- Network parsed the entire image to come up with the score

Why 0.58, rather than x?

- Background is less essential than foreground for higher quality
- Lighthouse is more important than cliff for higher quality

- Presence of sky provides a higher quality to the image

.0 © M. Prabhushankar, G. Kwon, D. Temel, and G. AlRegib, "Contrastive Explanations in Neural Networks," in IEEE International Conference on Image Processing (ICIP),
" Abu Dhabi, United Arab Emirates, Oct. 2020.
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Explanations in Neural Networks
Why Contrastive Explanations? - IQA

Contrastive explanations provide fine-grained details that add context and
relevance to existing explanations

143
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* We introduced an interpretation of gradients in the space of models from a perspective of model
uncertainty

* We proposed a framework for efficient gradient generation with confounding labels to quantify
uncertainty of fully trained networks

* We validated that the gradient-based uncertainty measure outperform activation-based features in
out-of-distribution detection and corrupted input detection

* We interpreted gradients as a reasoning mechanism within neural networks

* We showed that gradients can be used to answer three explanatory paradigms. They possess fine-
grained details that add context to explanations

N\ A

https://arxiv.org/abs/2103.12329 https://arxiv.org/abs/2008.00178

[1] M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan.
92021.

[2] Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive Explanations In Neural Networks. In 2020 IEEE International Conference on
Image Processing (ICIP) (pp. 3289-3293). IEEE.




Part V : Robust Machine Learning
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Part V : Robust Machine Learning

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Dumb-bell

Even natural images Manhole cover
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would

Georgia |
Tech |
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Part | : Out-of-distribution detection Part Il : Anomaly/Novelty detection

Goal : Identify images that are from
distributions other than the training Goal : Identify images that belong to an
distributions. Images can belong to the unseen class, given a trained network
same class.
Ex : Training distribution — CIFAR-10 Ex : Training classes — Cars

Testing distribution — CIFAR-10-C Testing classes — Dogs

Gaussian Noise  Defocus Blur ~ Gaussian Blur Spatter

OLIVES Normal Abnormal 147



Robust Machine Learning

Part V : Recognize classes under distortion/domain shift/abnormality
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Robust Machine Learning

2016 2017 2017

Vasiljevic et.al ' Dodge et.al 2 Temel et.al 3
$ 04 0.6
= Sharp |Blurred Sharp | Blurred
3 Image | Image 0.5 Image | Image
8 0.3
2 0.4
a
E 0.2 0.3
(]
o 0.2
204
S
©
<
& 0

3

o
O ‘
’ °

e . o
FS&EELE T S LSSt AS S
& AP & & E & & P
& F & & © & R
N & &
Original Network Trained After Finetuning on mix of
on Sharp Images Sharp and Blurred Images

Advocated for training on noisy images Advocated for training on simulated images

149
0 0 [1] Vasiljevic, I., Chakrabarti, A., and Shakhnarovich, G. Examining the impact of blur on recognition by convolutional networks.arXiv preprint arXiv:1611.05760, 2016. Georgia

[2] Dodge, S. and Karam, L. A study and comparison of human and deep learning recognition performance under visual distortions. In2017 26th international conference on computer communication and networks Tech M
(ICCCN), pp. 1-7. IEEE, 2017. ‘,
- . " [3] Temel, D., Kwon, G., Prabhuhankar, M., and AlRegib, G.CURE-TSR: Challenging unreal and real environments for traffic sign recognition. Advances in Neural Information Processing Systems (NIPS) Machine
Learning for Intelligent Transportations Systems Workshop, 2017.
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Robust Machine Learning

2016 2017 2017 2018

Vasiljevic et.al Dodge et.al Temel et.al Geirhos et.al

Train Test

(a) Super-human performance (b) Super-human performance (¢) Chance level performance

Train and test Train and test
noise are same noise are different

150
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[1] Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Sch’utt,Matthias Bethge, and Felix A Wichmann. Generalisation in humans and deep neural networks. In Advances in Neural Information Processing [ —
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Robust Machine Learning

2016 2017 2017 2018 2019 2020

Hinton et.al 2

Vasiljevic et.al Dodge et.al Temel et.al Geirhos et.al Hendrycks et.al

Sim-CLR : Simple Contrastive Learning Framework
ST, VI T &

Gaussian Noise ~ Shot Noise

N N
'- ) R
- ,,.’ \ 25

g -

Impulse Noise  Defocus Blur Frosted Glass Blur

N .

Brightness Contrast

Elastic Pixelate JPEG

(f) Rotate (". 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Advocated for training on adversarial images Self-supervised training with augmentations
151
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[1] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations.arXiv preprint arXiv:1903.12261, 2019. T .“JLI-I‘Z:

[2] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.



Robust Machine Learning
Recognition

r 3
_ . . _ 00002] =
Consider a ResNet-18 trained to differentiate between 10 classes 0.0001 g
0.0049 | “©
0.0000| €
©
07942 | 8
f(x) c
§.8 —
Pl : ©
' =
L
: ()
0.0005
| J ;

f@) =y,y € REX10
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Robust Machine Learning
Recognition

X
—
Consider a ResNet-18Wween 10 classes g
/ GCJ
g
f(x) : f=
S
/ b
0.0005 L
\ . 7 ;
f@) =y,y € REX10
0J(51) _ eaxy 5
— Georgia
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Robust Machine Learning
Recognition

_ . . _ 00002] =
Consider a ResNet-18 trained to d between 10 classes e
0.0049 ‘E
: o
— oooon |l €
©
07942 | S
f () . c
5 : ©
' =
L
: ()
0.0005
| J ;

f@) =y,y € REX10

[6](5,1) ]
Ty =
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Robust Machine Learning
Recognition

r B
0.0002 | =
Consider a ResNet-18 trained to differentiate between 10 classes 0.0001 g
— 00049 | “©
/ nooonl €
©
07942 | B
f(x) : £
5 : ©
| ®
: [
0.0005
| J ;

f@) =y,y € REX10

- [a](5,1) 61(5,2)’]

ow, ' ow
1 2 155
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Robust Machine Learning
Recognition

Consider a ResNet-18 trained to differentiate between 10 classes 0.0001

/f(x) 0.7942

Well-trained network

f@) =y,y € REX10

0J(5,1) 0J(5,2) 0J(5,3)
= N

ow, ' ow, ' ow
1 2 3 156
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Robust Machine Learning
Recognition

Consider a ResNet-18 trained to differentiate between 10 classes 0.0001

-] %

Concatenated contrastive feature for image x
r, = Ri640 x 1}

Well-trained network

f@) =y,y € REX10

0J(5,1) aJ(5,2) aJ(5,3) 0J(5,10)
&y ow, ' ow, ' awsy T ow.
1 2 3 4 157
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- - M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.
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Robust Machine Learning
Recognition

Consider a ResNet-18 trained to differentiate between 10 classes 0.0001

A f) ]

ﬁ\
© oo
Well-trained network

Contrastive inference based prediction is
made on 1,

158
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Robust Machine Learning
Recognition

Y
A

CIFAR-10 | X — R{640x 50000} H(f, 1)
Trainset f( ) g‘ Ty ‘ MLP ‘ YC

N~

Y.= Contrastive Prediction
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Robust Machine Learning

Recognition
Feed-Forward Inference
X ) Fx) m) P =Y,
Contrastive Inference
X =) f) ) H(f,1y) 28

lech



Feed-Forward Inference

X ) fX) =) Y

Contrastive Inference

X =) f(X) ) H(f, 1) 2




Robust Machine Learning

Recognition

Inductive Reasoning

/Training
Spoonbill

FIamingo

Knowledge
Base

Spoonbill :
Pink and round body,
Straight neck, long beak

Flamingo :
Pink and round body,
S-shaped neck

Crane:
White/Slate-Gray body,
long beak

Abductive Reasoning

D ﬁesting

Test Image

_

\

Reasoning

Feed-Forward
Detect

Pink and round body,
Straight neck, long beak

Not Detect

aseg 98pajmouy

S-shaped neck

Contrastive

Not Detect —_—

"

White body

Inference

P Spoonbill

®» Spoonbill

2V

@]
- . ‘M. Prabhushankar and G. AlIRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.
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Robust Machine Learning
Recognition

> @ & o e

3

ImageNet dataset : Grad-CAM : Why Why Spoonbill, rather | Why Spoonbill, rather | Why Spoonbill, rather Why not Spoonbill,
Spoonbill Spoonbill? than Flamingo? ___than Crane? than Pig? with 100% confidence?
" z ,“ : 4/ e """ "5
“y 5 » F L./
’ ¥ ' :

e

Spoonbil + Gaussian Grad-CAM : Why Why Spoonbill, rather | Why Spoonbill, rather | Why Spoonbill, rather Why not Spoonbill,
noise of kernel = 0.25 | Spoonbill? than Flamingo? than Crane? than Pig? with 100% confidence?
B = o 3 B < = A 3
28 o ; | s v

= e, ¥ F s ks
Spoonbill + Gaussian Grad-CAM : Why Why Window Screen, | Why Window Screen, | Why Window Screen, | Why not Window, with
noise of kernel = 0.75 Window Screen? rather than Flamingo? | rather than Crane? rather than Pig? 100% confidence?
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Networks Train Test Evaluation

CIFAR-10-C’
 ResNet-18 "
. ResNet-34 CIFAR-10 * 19 challenges Recognition accuracy
: S levelsin each of Feed-forward vs
 ResNet-50 50,000 images )
challenge Contrastive Inference

« ResNet-101 . Total 950,000

testing images

OLIVES

[1] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations.arXiv preprint arXiv:1903.12261, 2019.



Robust Machine Learning
Recognition

0.9 1

0.8 1

Accuracy
o
~

o
o

0.5 1

OLIVES

ResNet-18

o @ (o
C\)‘:/ e \)56.\3
2

\S AR\ R
< & (\o\s{’ ;o\\) (\0\336‘)
\)‘)6-\3(\ /\35 Q \>\56 -
ga

A\

2
00()(\ - Q\‘F & 8

HEl Feed-Forward Inference
Il Contrastive Gain Over Feed-Forward

\§ e e 2@ N <
AW \S \S \S O e
PP @ Rt &

S

«°

Blue : Feed-forward accuracy in
individual challenge category

Red : Contrastive gain over Feed-
Forward

Classification accuracy on all 950,000
test images : 67.89%
Classification accuracy on all 950,000
test images : 71.58%

With knowledge of noise mean and
standard deviation, results increase to
75% 165

M. Prabhushankar and G. AlRegib, "Contrastive Reasoning in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted on Jan. 9 2021.



Robust Machine Learning
Recognition

o Blue : Feed-forward accuracy in
individual challenge category

o Red : Contrastive gain over Feed-
Forward

35,055 more images are classified correctly under the
contrastive inference framework compared to feed-

o Classification accuracy on all 950,000
forward framework

test images : 67.89%
o Classification accuracy on all 950,000
test images : 71.58%
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Robust Machine Learning
Recognition

ResNet-34

Il Feed-Forward Inference

B Contrastive Gain Over Feed-Forward @) Blue Feed-forward accuracy |n
individual challenge category
Red : Contrastive gain over Feed-

| . O
II II II Forward
[l 1

|
II II i II II " II o Classification accuracy on all 950,000

test images : 71.77%
o Classification accuracy on all 950,000

0.9 |

[ | |
0.8 1 II

Accuracy
o
~

o
o

05| i o | | test images : 73.21%
<2 o o€ aC (o) o< ) 262 a 200 O X xe R\ el 2 A
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Robust Machine Learning
Recognition

ResNet-50

HEl Feed-Forward Inference

El Contrastive Gain Over Feed-Forward @) Blue Feed_forward accuracy |n
individual challenge category

05 II II II o Red : Contrastive gain over Feed-
11| o T |
| || | I

0.9 1

Accuracy
o
~

II II II II II II II II = II || II o Classification accuracy on all 950,000
test images : 71.4%

II II II II " II II II II II II II II o Classification accuracy on all 950,000
ijm”ﬂmjm test images : 74.02%

o
o

0_ 4

w
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Robust Machine Learning

Recognition
ResNet-101
0.9 1] EEl Feed-Forward Inference .
I Contrastive Gain Over Feed-Forward O Blue Feed_forward accuracy |n
individual challenge category
05 == o Red : Contrastive gain over Feed-
I II II II Forward
2 0r il il
: II I II II II II II II II II II II II II II o Classification accuracy on all 950,000
> test images : 72.54%
05 test images : 74.31%
«® "(\qa‘«' \:(39&'\0 ©® o . (\y\\)‘ (\6\"’:‘0\\“ (\6\3399 ¢ o5 o‘a‘e (\0\5 e ot a‘s'e ‘\0\96 o 169
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Networks

* ResNet-18
* ResNet-34
 ResNet-50
 ResNet-101

Train

CIFAR-10, Office
Dataset

Test

STL, Office Dataset

Evaluation

Recognition accuracy
of Feed-forward vs
Contrastive Inference

[1] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations.arXiv preprint arXiv:1903.12261, 2019.




Robust Machine Learning
Recognition — Domain Adaptation

Table 1. Performance of Proposed CiNN vs Feed-Forward Inference under Classical Domain Shift
CIFAR-10  DSLR DSLR  Amazon Amazon Webcam Webcam

Architectures 1 1 d 1 d d 1
STL Amazon Webcam DSLR Webcam DSLR Amazon
ResNet-18 Feed-Forward 63.7 39.1 78 62.9 59 89.8 42.2
(%) Contrastive 78.5 47 90.7 67.3 63.9 96 44
ResNet-34 Feed-Forward 65.4 41.8 83.3 67.3 60.1 90.6 41.7
(%) Contrastive 79.4 46.4 89.8 67.3 63.9 97.8 43.3
ResNet-50 Feed-Forward 67.4 - - 67.3 62 92.4 33.4
(%) Contrastive 80.9 - - 78.1 68.4 97.8 30.8
ResNet-101  Feed-Forward 67 - - 62.9 59 89.8 31.77
(%) Contrastive 79.4 - - 76.5 67.3 92.4 33.6
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* We introduced an interpretation of gradients in the space of models from a perspective of model
uncertainty

* We proposed a framework for efficient gradient generation with confounding labels to quantify uncertainty
of fully trained networks

* We validated that the gradient-based uncertainty measure outperform activation-based features in out-of-
distribution detection and corrupted input detection

* We interpreted gradients as a reasoning mechanism within neural networks
* We showed that gradients can be used to answer three explanatory paradigms

» Gradients as features can be used to create robust neural networks as a plug-in on top of existing neural
networks

A A

OLIVES

https://arxiv.org/abs/2103.12329 https://arxiv.org/abs/2008.00178



Robust Machine Learning
Image Quality Assessment

Image Quality Assessment

= s

Given the pristine image on the left, humans are asked to subjectively
quantify the quality of the noisy image on the right

Goal : To objectively assess the subjective quality
of an image

Image Quality Assessment

\_ Characteristics

Training \ Inference - \\
5 Knowledge Feed-Forward Inference
ngh Base
= \ . Detect High Quality
= = Image Image
. o \_Characteristics 4
Quality Quality of ‘ %
Image ® | ( Contrastive Inference )
é,", Not Detect High Quality
// \ “2 Distortion

Image
A

Detect noise characteristics to obtain
subjective IQA
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G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , "Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th IEEE
International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019. (*: equal contribution)



Robust Machine Learning
Image Quality Assessment

Original (x,,4)

Plug-in contrastive gradients in an existing

Gradient IQA framework — UNIQUE 1
T Generation
(SAE)
Distorted (x ‘ .
. st) Projection Z' org (Sigmoid)- |Zorg), £2org
->  ar — S — >  Spearman __ Quality
— X % — log (1 — Correlation Score
*=Xorg Z,dst IsttI:Astt

Fig. 4. Block diagram for image quality assessment.
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[1] D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1414- )
1418, Oct. 2016. Georgia |
[2] G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , "Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th Tech |
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Robust Machine Learning
Image Quality Assessment Contrastive

Table 1. Overall performance of image quality estimators.

PSNR PSNR SSIM MS Cw w SR FSIM FSIMc BRIS BIQI BLII Per CSV UNI COHER SUMMER Proposed
Databases HA HMA SSIM SSIM SSIM SIM QUE NDS2 SIM QUE ENSI

[25] [25] [26] [27] [28] [29] [30] [31] [31] [32] [14] [15] [33] [34] [17] [35] [35]

Outlier Ratio (OR)
MULTI 0.013 0.009 0.016 0.013 0.093 0.013 0.000 0.018 0.016 0.067 0.024 0.078 0.004 0.000 0.000 0.031 0.000 0.000
TID13 0.615 0.670 0.734 0.743 0.856 0.701 0.632 0.742 0.728 0.851 0.856 0.852 0.655 0.687 0.640 0.833 0.620 0.620
Root Mean Square Error (RMSE)
MULTI 11.320 10.785 11.024 11.275 18.862 10.049 8.686 10.866 10.794 15.058 12.744 17.419 9.898 9.895 9.258 14.806 8.212 7.943
TID13 0.652 0.697 0.762 0.702 1.207 0.688 0.619 0.710 0.687 1.100 1.108 1.092 0.643 0.647 0.615 1.049 0.630 0.596
Pearson Linear Correlation Coefficient (PLCC)

0.801 0.821 0.813 0.803 0.380 0.847 0.888 0.818 0.821 0.605 0.739 0.389 0.852 0.852 0.872 0.622 0.901 0.908
MULTI -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
TID13 0.851 0.827 0.789 0.830 0.227 0.832 0.866 0.820 0.832 0.461 0.449 0.473 0.855 0.853 0.869 0.533 0.861 0.877

-1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 0 -1 -1

Spearman’s Rank Correlation Coefficient (SRCC)

MULTI 0.715 0.743 0.860 0.836 0.631 0.884 0.867 0.864 0.867 0.598 0.611 0.386 0.818 0.849 0.867 0.554 0.884 0.887

-1 -1 0 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 -1 0
TID13 0.847 0.817 0.742 0.786 0.563 0.778 0.807 0.802 0.851 0.414 0.393 0.396 0.854 0.846 0.860 0.649 0.856 0.865

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 -1 0

Kendall’s Rank Correlation Coefficient (KRCC)

MULTI 0.532 0.559 0.669 0.644 0.457 0.702 0.678 0.673 0.677 0.420 0.440 0.268 0.624 0.655 0.679 0.399 0.698 0.702

-1 -1 0 0 -1 0 0 0 0 -1 -1 -1 -1 0 0 -1 0
TID13 0.666 0.630 0.559 0.605 0.404 0.598 0.641 0.629 0.667 0.286 0.270 0.277 0.678 0.654 0.667 0.474 0.667 0.677

0 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0 0 -1 0
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Robust Machine Learning
Image Quality Assessment Contrastive

W

Contrastive features can be used as plug-in into existing IQA detectors

Feed-Forward */

G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib , "Distorted Representation Space Characterization Through Backpropagated Gradients,” 2019 26th IEEE
International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019. (*: equal contribution)
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Robust Machine Learning
Human Visual Saliency

Human-Visual Saliency
=

Correlation of Correlation of
contrastive Grad-CAM
explanations to eye explanations to eye
tracking data tracking data

Hypothesis : Contrastive regions draw human
gaze

Goal : Given an image, predict likely human eye fixation

177
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Robust Machine Learning
Human Visual Saliency

Human-Visual Saliency
=

Correlation of Correlation of
contrastive Grad-CAM
explanations to eye explanations to eye
tracking data tracking data

To show : Human eye fixation data on MIT 1003
Goal : Given an image, predict likely human eye fixation dataset is more correlated with contrastive
explanations than Grad-CAM
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Robust Machine Learning

Human Visual Saliency

This is background

This is an airpane

This is a car

KUnexpected stimuli

Convolution and
Pooling Layers

Feed-Forward Process

Background

Prediction

This is a Car »| Error Encoding

1 (Loss Function)

w —
o2 I 5 5
0, &) (T 2 N
-z — S "3
58 2 @ E X

S —

5 — 8 Q
o I
= <5
o) 5 o 8

g N @ 8

) |

Airplane Car
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Fig. 3. Saliency map visualization. (a) Input image\(b) Groudtruth (c) Proposed Method (d) Feed-forward feature (e) SalGan [21] (f) ML-
Net [5] (g) DeepGazell [22] (h) ShallowDeep [23]
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Robust Machine Learning
Human Visual Saliency

Table 1. Human visual saliency vs Model Saliency

NSS CC
Networks ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101 | ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101
GradCam 0.7657 0.7545 0.7203 0.7335 0.3496 0.3396 0.3190 0.3210
GBP 0.3862 0.4191 0.3898 0.3415 0.2474 0.2453 0.2443 0.2233
ImplicitSaliency 0.8274 0.8018 0.7659 0.7981 0.4132 0.4112 0.3868 0.4051
Table 2. Robustness Analysis of Implicit Saliency
NSS CC
Gaussian Sal Deep ML Shallow Implicit Sal Deep ML Shallow Implicit
Blur Gan Gazell Net Deep Saliency Gan Gazell Net Deep Saliency
r=20 0.8977 0.6214 0.5431 0.9306 0.7981 0.6280 0.5927 0.4481 0.5120 0.4051
r=250 | 10.2239 | | 0.3436 | | 0.2484 | | 0.2025 | / 0.1793 | | 0.2731 | | 0.3954 | | 0.2940 | | 0.1840 | | 0.1432

lis the performance decrease when an input image is corrupted by gaussian noise of kernel size r
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Robust Machine Learning
Human Visual Saliency

Contrastive feature-based detector correlates better with human gaze than Observed causal Grad-CAM

Contrastive feature-based detector outperforms some of the supervised methods that train on human
saliency datasets. It also is more robust.

10&£
Georgia |

Tech/

Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks,” in IEEE International Conference on Image Processing (ICIP), Abu Dhabi, I

: . CREATING THE NEXT
United Arab Emirates, Oct. 2020.




* Robust Recognition : M. Prabhushankar and G. AlRegib, "Contrastive Reasoning

in Neural Networks, " IEEE Transactions on Pattern Analysis and Machine
Intelligence, submitted on Jan. 9 2021. [PDF]

* Saliency : Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Dee

Neural Networks," in IEEE International Conference on Image Processing (I C]IB,
Abu Dhabi, United Arab Emirates, Oct. 2020. [PDF][Code][ Video]

* IQA Contrastive : G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib,
"Distorted Representation Space Characterization Through Backpropagated =
Gradients," in [EEE International Conference on Image Processing (ICIP), Taipei,

Taiwan, Sep. 2019. [PDF][Code]

* IQA UNIQUE : D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE:
Unsupervised Image %uahtg Estimation,” in IEEE Signal Processing Letters, vol.
23, no. 10, pp. 1414-1418, Oct. 2016.
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* We introduced an interpretation of gradients in the space of models from a perspective of model uncertainty

* We proposed a framework for efficient gradient generation with confounding labels to quantify uncertainty of fully
trained networks

» We validated that the gradient-based uncertainty measure outperform activation-based features in out-of-distribution
detection and corrupted input detection

* We interpreted gradients as a reasoning mechanism within neural networks
* We showed that gradients can be used to answer three explanatory paradigms
* Gradients as features can be used to create robust neural networks as a plug-in on top of existing neural networks

» We showed that there is a higher correlation between gradient-based contrastive features and applications relating to
human visual systems than between feed-forward features and the same applications
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OLIVES@Gatech

https://ghassanalregib.info

Research Interests: Al, Machine Learning, Computer Vision, Perception, Scene Understanding, Learning in the Wild, Learning for
Autonomous Vehicles, Medical Image Analysis, Computational Ophthalmology, Seismic Interpretation
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Robust, Active Learning

Developing algorithms that can robustly operate under real-world challenging
conditions through weakly supervised learning, backpropogated gradients,
hyperpolar classification, and transfer learning.

Introduced three large-scale datasets (>1M) with controlled challenging conditions
to test and develop robust algorithms: CURE-TSD, CURE-TSR, CURE-OR

Working on applications including but not limited to autonomous driving, remote
repositioning, smart and connected healthcare, activity recognition, semantic
segmentation, object classification and detection, defense models design, and
computational seismic interpretation.

Explainability, Limited Annotations

Learning to characterize data using limited labels using weakly-/semi-supervised
learning and sequence modeling for various applications such as subsurface
lithology, structure, and stratigraphy characterization, and material
characterization, OCT analysis, and medical imaging.

Introduced four datascts for subsurface characterization using weak labels and
auxiliary data such as well-logs: LANDMASS-1, LANDMASS-2, Facies
classification benchmark, and one large-scale dataset for material characié*‘f’zation
of textile fabrics: CoMMonS. Also introduced one interactive tool for salt
interpretation benchmarking in large subsurface volumes : Salt Dome
Interpretation Tool.



Thanks for your attention

https://github.com/olivesgatech
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