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Deep Learning
Expectation vs Reality

People’s expectation of Al and Deep Learning
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Deep Learning

Expectation vs Reality
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LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop

Even natural images
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks
often go awry”

- Engineers, probably
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Deep Learning
Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Novel data sources:

* Test distributions

« Anomalous data
e Out-Of-Distribution data
 Adversarial data

» Corrupted data

* Noisy data

* New classes

Gr Georgia
Tech.
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

»  Model Representation
A
@
Low Information ©0 - - ‘o -
) (X X » The first instance of training must occur with
2 ¢ less informative samples
o \@ o L L
& B . . .
% ® ® ®  Ex: For autonomous vehicles, less informative
z means
o . .
2;:, « Highway scenarios
« Parking
B o in _ * No accidents
1 niormation
- * No aberrant events
Samples @ Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
9 . : . .
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Deep Learning at Training

Overcoming Challenges at Training: Part 2

Test Accuracies (%)

Subsequent training must not focus only on novel data
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Catastrophic Forgetting
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(2021): 2549.

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1

The model performs well on the new
scenarios, while forgetting the old scenarios

A number of techniques exist to overcome this
trend

However, they affect the overall performance
in large-scale settings

It is not always clear if and when to
incorporate novel scenarios in training

Where to handle novel data?

Gr Georgia
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Deep Learning at Inference
Overcoming Challenges at Inference

We handle novel data at Inference!!

Model Train At Inference

Novel data sources:

 Test distributions
 Anomalous data

« Out-Of-Distribution data
* Adversarial data

» Corrupted data

* Noisy data

* New classes
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Objective

Objective of the Tutorial

To present methodologies to handle novel data at inference using gradients of neural networks
At the end of the tutorial you will be able to

Observed

Observed

Obse \ed
CO{ﬁ?ﬁons Counterfactual Contrﬁ"ve

Why Bullmastiff, rather
than a Boxer?

hat if Bullmastiff was

Why Bullmastiff? i not in the image?
Obtain fine-grained explanations

1QA Score 0. 58 Why 0. 58? than 1? than 0 75? than 0 5 than 0 25
&7 : r
el 1 o[ 123M &7
o= = i ] : ol/7]23H[5]6]7]72]8 A . il
Wh“"“‘ T i e el A Training Dataset Testlng Dataset
Perform Out-Of-Distribution and Anomaly Detection

Construct XAl techniques for Image Quality Assessment
\OLIVES/u Gr Georgia
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To present methodologies to handle novel data at inference using gradients of neural networks

 Part 1: Gradients in Neural Networks
» Neural network basics, gradient descent, and properties of gradients

« Part 2: Gradients as Information
* Visual explanations, robust recognition

« Part 3: Gradients as Uncertainty
* Anomaly, Out-Of-Distribution, corruption, and adversarial detection

» Part 4. Gradients as Expectancy-Mismatch
* Image Quality Assessment, human visual saliency

 Part 5: Conclusion and Future Directions

Georgia
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Interpretation, and Applications of Gradients
Part I: Gradients in Neural Networks
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Objectives
Obijectives in Part 1

At the end of Part 1 you will be able to

gl Trainable
Feature Classifier
>

2

1. Describe the basics of neural networks

Ex. LeCun, 2015

2. Discuss the role of L(O).
gradients in optimization :

X

L(9)
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Deep Learning
Overview

Low-Level| |Mid-Level| [High-Level Trainable
—_— — —
Feature Feature Feature Classifier

Ex. LeCun, 2015
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Deep Learning

Neurons
The underlying computation unit is the Neuron
.&%% Artificial Neuron
i . E E%{NPKI,I/@/
Artificial neurons consist of: .. N\
~ ‘ %‘% .
« A single output SShe N | -
: M |t| |e in uts _g ?%x» - summation activation
ultip . p c output
. Inpyt V\{elghts 3 Z >
A bias input =
» An activation function " J/
o /#(%’5
@"“52«"”
: /

.«» ﬂ bias
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Deep Learning
Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

input layer

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
* An input layer (Layer 0)
* An output layer (Layer K)
» Zero or more hidden (middle) layers (Layers 1...K — 1)

Gr Georgia
Tech.
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Low-Level| |Mid-Level| |High-Level Trainable
e 1 — |
Feature Feature Featu{e Classifier

Ex. LeCun, 2015
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15,000x increase in 5 years
Transformers, Large Language and Foundation Models GPT-31T

1 trillion

The number of parameters in models has

increased exponentially g Magatron-Tiing
: 530B
v 2
© ™D
o .
=
GPT-3 /
1758
Inception-v3 ) : '
® bEE B Transformers BERT GPT-2 GPT-288 T5 Turing-NLG
Network In Network ® ® Inception-v4 65M 340M 1.58 8.3B 118 178
. . : . MID 2018 2019 MID LATE 2020 MID LATE 2022
2015 2015 ) Rty 18 2017 2019 2019 2020 2021

® i ® ® Time
VGG : Xception ResNeXts
i

Inception-vi ®

ResNets ®
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Training Neural Networks
Stochastically and via Gradient updates

Iteratively reduce a loss function L(0) to find the optimal parameters 6
L(6)

4

* 6 is a combination of weights and biases

« Compute the gradients of a loss function iteratively

and update the weights according to the update rule: GD = Gradient Descent

dL(0)
00
68 = Weights, biases

O(t+1)=06(t) —«a Gradient

/g Initial loss
t = Iteration step minimum o of |
loss & -4
a = Step Length o
L(8) = Loss function between prediction and ground -1 H_‘_ *_&FE >
truth o Oize 9
_ _ _ optimal weights initial weights
ala'(:) = Gradient w.r.t weights and biases (random)
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
Cat cat |
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy

v
v

Gr Georgia
Tech.
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
Cat cat |
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
@)
O O

v
v

Gr Georgia
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21 of 166 l%%;((ﬁ [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Kuala Lampur



Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(O) Dog Dog
Cat car [N
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
© @)
O O

v
v

Gr Georgia
Tech.
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(O) Dog Dog
Cat car [N
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
@) . o @)
@) o ©
@)

v
v
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
/ Cat cor [
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
A A O
@) . o @)
o @)
@) 0O o

v
v

Gr Georgia
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Training Neural Networks
Gradient Descent in Action

] ] Predicted Ground-Truth
Gradients construct the manifold Class Probability Label
Network f(0) Dog Dog
/ Cat cor |
Horse Horse
Bird Bird
Backprop L(0) to generate gradients Vg L(0) Loss L(0)
O(t+1)=06(t) —aVy L(O)
| o Loss Accuracy
A A ‘
@)
@) . o @)
@) o ©
O @ @)
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Our Goal

To Characterize Data at Inference

Goal: Given the novel data point, the network, and its prediction, characterize the data as a
function of the learned knowledge

Given |
Predicted
Class Probability
Network f(0)
2 ., Dog
Stop
Horse
Bird
Represent the novel green
. . . traffic sign as a function of the
Our Clalm: Gradlents prOVIde the learned red traffic S|gn

methodology!
G ez
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)
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Challenges at Inference
Manifolds at Inference

However, at inference only the test data point is available and the underlying structure of the
manifold is unknown

In Practice |deal Goal

L(6) Trained network knowledge is
not easily accessible

0o

Represent the novel green
traffic sign as a function of the
learned red traffic sign

Existing methodologies estimate this manifold using
surrogate networks and validation data at inference.
However, they lose generalization performance.

A A
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Challenges at Inference
Existing Solutions

Kim et.al.’ use a KNN classifier on validation data at inference to characterize new test data

Additional validation

B data :
L(g) .| Trained netvyork knowledge is — L(O) -
‘ not easily accessible -1, :

::>?\\ » /04
08 07 - e /<)6
> us>?f“\\ ot 0
83" Tl us 1
2 s .
0, 0

The surrogate (approximate) manifold is derived

Cons of surrogates: , from K-Nearest Neighbors search
1. Requires a validation set at inference

2. Computationally impractical scale
3. Authors show that performance on anything greater than MNIST is comparable/worse than baseline

290f 166 B A 30t [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] 0\OLIVES b Gr Georgia
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Relevant Properties of Gradients
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

|deal
L(e) 1 ~4
. | / a Vg L(0) provides local information up to a small
sole” | e distance a away from x
02 48” 07 g ’ : //(05
. 06 o4 s 027_?‘\///0& 91
0 g

A
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Relevant Properties of Gradients
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(09)

===l Path 1?
Which direction should we
===p Path 2? optimize towards (knowing

X only the local information)?
& /@ ===  Path 37
" OF*0
L) O
-, Negative of the gradient provides the descent direction
ook | //m/ towards the local minima, as measured by L(6)
S = - ; //Zos
<ol 5% Dz}.\\ﬁ//"na 91
60 X o !

The exact nature and utility of this directional information is discussed in Part 3
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Our Technical Goal
To Characterize the Learned Knowledge

o - At Inference

|/ Trained network knowledge is
not easily accessible

Representation Counterfactu_al
Traversal using Rgpresentqhons
Gradients using Gradients
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Relevant Properties of Gradients
Counterfactual Manifolds

Gradients allow interventions either on the data or the manifolds to create counterfactuals

© Original manifold with x

@ Counterfactual manifold with x'

p . Counterfactuals can be interpreted as changing the
L®) | manifold to fit the new data
’17 » //D‘ 02
° os 07 46 i . /(05
. 08 o4 a3 02>.0>_\///"/m=: 91
0 g

A
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Takeaways
Takeaways from Part 1

Part 1: Gradients in Neural Networks
* Deep Learning cannot easily generalize to novel data
* Novel data cannot always be handled during Training
» Gradients provide local information around the vicinity of x
« Gradients allow choosing the fastest direction of descent given a loss function L(8)
« Gradients allow interventions either on the data or the manifolds to create counterfactuals

Part 2: Gradients as Information

Part 3: Gradients as Uncertainty

Part 4: Gradients as Expectancy-Mismatch

Part 5: Conclusion and Future Directions
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Interpretation, and Applications of Gradients
Part 2: Gradients as Information

350f 166 [ Jnr// % Gr Georgia
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Objectives
Objectives in Part 2

Discuss three types of Information

Interpret gradients as Fisher Information

Visual Explanations
» Explanatory Paradigms: Correlations, Counterfactuals, and Contrastives
« GradCAM
» ContrastCAM

Robust Recognition under Challenging Conditions: Introspective Learning
 Introspective Features
» Robustness measures: Accuracy and Calibration
* Downstream Applications

L. .4
360f166 f{ {20t [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] OLIVES
i n m \\\\Q\ / Gr Georgia
I \Q pel Tech.
Al Ruala Lampur



Colloquially, information is the “surprise” in a system that observes an event

Shannon Information Mutual Information Fisher Information
(Surprise of an event) (Surprise conditioned on another event) = (Surprise of underlying distribution)
N I(X;Y) = H[X]+ H[Y]-H(X,Y) 16) = Var(il(elx))
H[X] = — z p(x;) log, p(x;) H[X] = Shannon Entropy of X 96
i=1 H[Y] = Shannon Entropy of Y 6 = Statistic of distribution
H(X,Y) = Joint Entropy £(0 | x) = Likelihood function
H[X] = Shannon Entropy
p(x;) = Probability of event x; HOG HOY)

Variance of the partial derivative
w.r.t. 8 of the Log-likelihood

Connects surprise to probability function #(0 | x)

H(X,Y)
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Fisher Information
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

From before, 1(6) = Var(>=1(8x))
Using variance decomposition’, 1(6) reduces to:
1(6) = E[UgU{] where

= E[-] = Expectation
Ug = Vyl(0]x), Gradients w.r.t. the sample

A key feature is that every sample draws
information from the underlying distribution!

Likelihood function instead of loss manifold

Gr Georgia
Tech.
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Fisher Information
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

In this case, the image and its
prediction extracts nose, mouth
and jowl features.

A key feature is that every sample draws
information from the underlying distribution!
And this information can be visualized.

06 - 02)\\//03 1
90 M o !
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Applicability of Gradient Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

We demonstrate this in two
applications:

,,,,,,,,,

1. Visual Explainability
2. Robust Recognition

A
30th
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Applicability of Gradient Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

We demonstrate this in two
applications:

1. Visual Explainability

g Sy > ) 2. Robust Recognition
90 ’ a4 u' !
i . , . :
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- Explanatory Paradigms in Neural
Exp I a n atl o ns m=rr e | Networks: Towards Relevant and
Visual EX |anati0ns - Contextual Explanations
p SCAN ME

 Explanations are defined as a set of rationales used to understand the reasons behind a
decision

» If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed
Corralations Contrasti‘)‘/e

N

What if Bullmastiff was not in | Why Bullmastiff, rather than a

' iff? .
Bullmastiff Why Bullmastiff" the image? Boxer?
L 5 , . , . . &
430f 166 F : 30th m [Tutorial@ICIP'23] | [Ghassan AlIRegib and Mohit Prabhushankar] | [Oct 8, 2023] Gr Georgla
4 . - AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and Tech.
J Kuala Lampur contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.



SCAN ME

Explainability establishes trust in deep learning systems by developing transparent models
that can explain why they predict what they predict to humans

Algorithm

: e : | T Output
Explainability is useful in: === | ﬂ

. ) : r‘r—m—‘ = ’ ] class scores
« Medical: help doctors diagnose o =tk J‘HJ~
« Seismic: help interpreters label seismic ma =

data . == -

* Autonomous Systems: build appropriate Deep models act as algorithms that take

trust and confidence data and output something without
being able to explain their methodology
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SCAN ME

Role of
. > It is a Spoonbill Explainability
o Pink and i ;
s f A _ -~ round bod e networ i !
> hf Why Spoonbill? — %~ — —— Vv taught me Explain f(:)’s
= "sé‘ oak about spoonbills decision
7 % The network
= Why Spoonbill, z Lack of S- does not know
2 ratherthana — @ shaped about the Assess f(-)
= Flamingo? E neck _ difference in
o legs
; Neck, beak,
§ Whhy Spgonblll, _ body, legs n | trust the Garners
S £ rather than a are all g > network trustin f(+)
a Fox? [ different |
45 of 166 'E A 300 [Tutorial @ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] NOLIVES ),
IEJ‘ m AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and X\ /
WL Kwala Lampa contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

(" sy Georgia

Tech.



Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusions

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted
probabilities change

55
2 \ \ \
| \ =N "‘-‘_u [‘\‘ 13 \ [\ \
Fos | 1\ V) \
t 2 . : =
R\~ | ¥ 5 | ==
N S\ : \ . e 1 4 13 -
W\ \{'|2z X ; l'*.‘[“ 1R (I N T e e ant -_
T AN AR ) o\ ik b Y | '\ \ LN AN .
N | \\Les_| X = 1 192 128 \/ 20as \/ aoae
l i ey \27 128 1\ N\ " s X /Y &
" | B A DY \ 13 N N N\ /\ A
| | | r 3 N
1z A\ s, X 113 N } 1 9| |Dense
13 W \ %]
\ il i 27 \d iR, Dersel |Densd
NN 1 \ J
L | N et 192 192 138 — S
28\ kenad | 128 e om o
ots 1 M Max .
3 & Pooling  Pooliny R
Local Response ocal Respon:
Normalization ormmalization

A gray patch or patch of average pixel value of the dataset
Note: not a black patch because the input images are
centered to zero in the preprocessing.
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusions

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted
probabilities change

L S LA P(elephant) =0.95

152 =2

These pixels "
affect decisions =

2 N\ \u \ e O
N { L e 11l P(elephant) =0.75

&) L4
i
§
// )¢
5
§
1
1
.A_J]

more 25 s ‘?" .\\ 13 \ \& =
} j '\ l = ILL 13 g o oercal _: T
\L \ m | \ ] i
poe \'1!5"'}‘\, o 192 92 s ;.O.r »—; ks
ots Mar Max e
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusions

SCAN ME

The network is trained with image- labels, but it is sensitive to the common visual regions in
images

African elephant, Loxodonta africana

T\ \ 0.8
\27 X -
| {A 13 [j)l
13 3 [ 0.7
27 ll \\ ' ,-' . d 3 ]
7w\ T‘:Au 3 \ -z 12 0.6
\\ 27 ‘:; 1\ 2 'L 13 0.5
= =
Local Response Local Response
09
‘\27 \\ 08
. : »Pu [;u -
7 ‘I b u LR > a6
27 123 ’\: ’\f S \u 05
N = . (= I Ko e
N '
h 192 12 o
a ;:;(m( mme 02
Local Response Local Response
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations

Gradient-based Explanations SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output

Vanilla Gradients Deconvolution Gradients  Guided Backpropagation

However, localization remains an issue
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
GradCAM

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

- To find the important activations that are K\
responsible for a particular class NN RN

\27

¢ \ =0 \ 13
{ 55 : i
L - . Y -
; \ R \ =
% \ \ 7 3

 \WWe want the activations:

- Class-discriminative to reflect decision-
making
* Preserve spatial information to ensure o

spatial coverage of important regions

Local Response
Normalization

bhd S . : - : 3
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SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

Ad;_M % Boxer }Image Classification
>

y

Rectified Conv

Feature Maps global average pooling

e oim 3YY o
TaNétsvesﬁ(lflc Z - ' 0 A f:]
N

0
|

--------------------

E <«—— Gradients E

Activations gradients via backprop
<—J ¢ L § : e Ak

Backprop till conv LGrad-C AM — ReLU (8 kA

04 0 k:
Grad-CAM (up-sampled to original image dimension) . ~
linear combination
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Gradient and Activation-based Explanations
GradCAM

Grad-CAM generalizes to any task:

» Image classification

* Image captioning

Visual question answering

* efc.

--------------------

____________________
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

{Iba
]

C | Boxer

Image Classification

Rectified Conv
Feature Maps

(or)

Ta pecmc - 9
Netwqrk

A cat lying on
the ground

Image Captioning

(or)

FC Layer

till conv

—
Bac kp rop = Question RANNLSTM

Visual
Question Answering

Grad-CAM
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Explanatory Paradigms

SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Counterfactual Observed
Corralations Contrasti‘\_/e

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?

Bullmastiff
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if this region were absent in the image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain ¢ for each kernel k

1€ M % Senxer }Image Classification
> /S

y

Rectified Conv
Feature Maps global average pooling

55 s N
Al s | e = lzz y°
ask-specific = —
__________________ Network k Z “ . OAF.
¢ ) % 7 7 ]
| <€—— Gradients ! 144
A i T:“fjl"f] C(]i gradients via backprop

....................

<—J c § : c Ak

Backprop til conv LGrad-C AM — RelLU . A

oy°¢ 2

What if Bullmastiff was not in Y 5Ak N P
the image? . Mo e

linear combination

Negating the gradients effectively removes these regions from analysis
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q7

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

'S %% R }Image Classification

y

Rectified Conv
Feature Maps global average pooling

% -~ 7N ~
Al g g, & Z S 8J(P,Q)
— TagK-specific & kE — — M. A
.................... Network Z et £ oA,
i <€—— Gradients : t J
Aot 1 afa | ]i gradients via backprop

____________________

N |

2N [

— Z k
Backprop til conv Lérad-C AM — RelLU sz A
dJ(P,Q) 2

Qe e s

Why Bullmastiff, rather than a ’ Ak “ <
Boxer? i bt
1near combination
Contrast-CAM

Backpropagating the loss highlights the differences between classes P and Q.
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

ContrastCAM
Toy Manifold Example

SCAN ME

The contrast classes are unlikely, but the gradients provide information about contrast
classes
Likelihood of a dog predicted as class cat

Likelihood of a dog predicted as class dog
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM
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Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

-

= -:, . —- G <
Representative Why Spoonbill, rather Representative Pig Why Spoonbill, rather Why not Spoonbill,
Flamingo image than Flamingo? | image i than Pig? with 100% confidence?
| i 3

ImageNet dataset : | Grad-CAM : Why : Bull Why Bull Mastiff, Representative Blueja Why Bull Mastiff,
Bull Mastiff Mastiff? imae rather than Boxer image rather than Blue jay?

CURE-TSR dataset : Grad-CAM : Why No- Representative No- | Why No-Left, rather Represemauve Stop hy o-Left, rather | Why not No-Left with
No-Left Image Left? Right image than No-Right? _Sign than Stop? 100% confidence?

SCAN ME

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

SCAN ME

lmageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather |  Representative Pig Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? 'l image . than Pig? with 100% confidence?
) 3 ' F "

ga

'
ol
.3
Why Bull Mastiff, | Representative Blue jay [ Why Bull Mastiff,
rather than Boxer image rather than Blue jay? [ with 100% confidence?

»

CURE-TSR dataset : Grad-CAM : Why No- Representative No Why No-Left, rather Representatcve Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Rrght image than No-Right? _Sign than Stop? 100% confidence?
\ N

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible,

Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe?

image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Results from GradCAM, Counterfactual CAM, and ContrastCAM
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SCAN ME

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2
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ImageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather Representa Pig ’ Why Spoonbill, rather Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?
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Representative Boxer | Why Bull Mastiff, | Representative Blue jay | Why Bull Mastiff, Why not Bull Mastiff,
image rather than Boxer image rather than Blue jay? | with 100% confidence?

¥
.8
=
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epresentative Stop Why No-Left, rather Why not No-Left with
Sign than Stop? 100% confidence?

Why No-Left, rather
than No-Right?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti

Why Convertible, |Representative Audi A6 | Why Bugatti, rather
Bugatti Convertible Bugatti Convertible? Coupe image

Why not Bugatti with
rather than Coupe? image than Audi A6?

100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM
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Input Contrastive Contrastive
Image Grad-CAM  Contrast 1

Explanation 1 Contrast 2 Explanation 2

, : - :_',./ -
A t L
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ImageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather Representa Pig ’ Why Spoonbill, rather Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?
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Represetive Blue jay Why Bull Mastiff, Why not Bull Mastiff,
image image rather than Blue jay? | with 100% confidence?

v e
ImageNet dataset : | Grad-CAM : Why : Bull | Representative Boxer
_Bull Mastiff Mastiff?
-

Stanford Cars Dataset: Grad-CAM: Why
Bugatti Convertible Bugatti Convertible?

Representative Bugatti Why Convertible,
Coupe image rather than Coupe?

Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
image than Audi A6? 100% confidence?
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SCAN ME
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SCAN ME

Only traffic sign with a straight
> bottom-left edge — enough to
say Not STOP Sign’
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Applicability of Gradient Information

Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

We demonstrate this in two
applications:

1. Visual Explainability
v . 2. Robust Recognition

0o
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustnhess in Neural Networks
Why Robustness?

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop Dumb-bell Racket

Even natural images Manhole cover
can fool a DNN, s e
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would

recognize.

enature
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustnhess in Neural Networks
Why Robustness?

How would humans resolve this challenge?

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bull mastiff?
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspectlon
e e e e e e i
. Visual Sensing | Reflection !
. - I
Sense pink feathers, Why Spoonbill, rather than Flamingo? -
straight beak x does not have an S-shaped neck )
|
Spoonbill Why Spoonbill, rather than Crane? : _
y x does not have white feathers : »Spoonblll
! y
Why Spoonbill, rather than Pig? |
i Feed-Forward x's leg and neck shapes are -
- Sensing different '
e D |
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection

Introspection in Neural Networks
SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Counterfactual Observed
Contrasti‘)‘/e

5

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form Why
P, rather than Q? where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the networks prediction
f(x) =9y, introspection in f () is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Why 5, rather than 0? Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspection
Gradients as Features

Networks

Introspective Learning: A Two-stage
Approach for Inference in Neural

w | TN LB B B B

Informative sparse features
[—

Why 5, rather than 07? Why 5, rather than 1?
I‘ B : B X |
| » " R
Why 5, rather than 2? \ Why 5, rather than 4?
| N
| - -
- i B
Input Image x Why 5, rather than 5? | Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

SCAN ME

For a well-trained network, the gradients are robust

Vi = Gradients w.r.t. weights

J = Loss function Yi
9 = Prediction Lemmal:Vyw J(yr,9) = —Vwyr + Vwlog| 1 + £y
Vi
\
{r N r 3 r \\
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
| | _ Any change in class requires change in
0 0 : relationship between y; and y
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features
Gradients =« = = —

a](yr}'l)

Weights, W,

Normalized and vectorized
gradients are introspective

features
X -+ Sensing \
Network .
£0) Vector of all ones: A confounding label!
\ J

Y
fiL-13(x)

kol . . .
30th ' C
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Introspection

Utilizing Gradient Features

Networks

Gradients =« = = =
Weights, W; ——

Introspective Features

X -+ Sensing
Network

)

Y
fi-13(x)

Vwl(3.y1)

[

4————————0——0-———)(ﬂ

Txm

MLP
H()

M vectorized
and normalized
gradients

IntrosPecti\}e Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Gau55|an Nmse Defocus Blur  Gaussian Blur Spatter

i o : o ) '
.- ». "4 a2l 1
- pe - - o > ',; )
. o’ 5
>y & - - - - . . . - .
P : Wl
W ’ ‘gu NE '
< s < - i
¥ . |
I A

No Decolor- Lens Dirty Gaussian
Challenge  ization Blur Lens Exposure Blur Noise Snow
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SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
1.0 TR B
- 0i8 g Tt
= %3"2 §| gl
0. 2 S . : :
§ ' h = « Larger the model, more misplaced is a network’s
— 04 . . .
s i 4 confidence
R 9 S | 1<
1 (. L
0.0 ool —— | « On ResNet, the gap between prediction accuracy
i e o 00 9.8 B0 08 02 U2 80 U8 and its corresponding confidence is significantly

B Outputs B Outputs .
0.8 ||z Gap A Gap high
>
g 0.6
=
8 04
<
0.2
00 Error=44.9
. 00 02 04 06 08 1.0 0.0 0.2 04 0.6 0.8 1.0
Confidence
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Calibration
A note on Calibration..

SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy

= ST . BEED
CEETENeESe [ Average
Pl BN O Accuracy
e e L By | /0 Bin-wise
(Y o 9 R f ) —

A

HE~sBre = f(X) = P(X) subtraction to
REECEDSaNE Treo obtain gaps

j.!ﬂ]ﬂ-ﬂmﬁll | Average Softmax
Skl RS e | Probability
AR NEESTS0h

CIFAR-10 Testset
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Introspection in Neural Networks
Generalization and Calibration results

|deal: Top-left
corner

Y-AXis:
Generalization

X-Axis:
Calibration

|
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks
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Introspection in Neural Networks
Plug-in nature of Introspection

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
INTROSPECTIVE 71.4% . . =
Introspection is a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% n etWO rkS a n d O n a ny
SIMCLR (19) FEED-FORWARD 70.28% down Stream task'
INTROSPECTIVE 73.32% )
AUGMENT NOISE (23) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (2%) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Plug-in nature of Introspection

SCAN ME

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active
Learning, and Image Quality Assessment!

. . Table 2: Recognition accuracy of Active Learn-
Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image  ing strategies.

Quality Estimators. Top 2 results in each row are highlighted.

Methods Architecture Original Testset Gaussian Noise
PSNR IW SR FSIMc Per CSV SUM Feed-Forward Introspective RiI3 R34 X8 R
Database HA SSIM SIM SIM MER UNIQUE UNIQUE Entropy @)  FoodForward - 0365 0358 0244 0249
Outlier Ratio (OR, 1) Py Introspective 0,365 0359 0258  0.255
utiier 0
MULTI 0013 0013 0000 0016 0004 0.000 0.000 0.000 0.000 Lt @) e 0373 0362 024 6%
TID13 0.615 0.701 0632 0.728 0.655 0.687 0.620 0.640 0.620 i Feed-Forward 038 0369 0251 0253
Root Mean Square Error (RMSE, |) NginIeE Introspective 0381 0373 0265 0263
MULTI 11320 10.049 8686 10794 9.898 9.895 8.212 9.258 7.943 BALDWN PR Gwe DS e a6
TID13 0.652 0.688 0.619 0.687 0.643 0.647 0.630 0.615 0.596 w, OB 0% 05 0w
Pearson Linear Correlation Coefficient (PLCC, 1) BADGE @3) | iospective 039 037 0265 0260
MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
21 o 0 -1 31 -1 ol -1 Table 3: Out-of-distribution Detection of exist-
i 0.851 0832 0866 0832 0855 0853 0.861 0.869 0.877 ing techniques compared between feed-forward
ks 1 0 -1 q e 0 0 and introspective networks.
Spearman’s Rank Correlation Coefficient (SRCC, 1) T - e pre=—reen
MULTI 0.715 0.884 0867 0.867 0.818 0.849 0.884 0.867 0.887 Datasets  (95% at TPR) Error
-1 0 0 0 -1 5| 0 0 : g i
0.847 0.778 0.807 0.851 0.854 0.846 0.856 0.860 0.865 ReosFocnanyinuosporine
TID13 -1 -1 5| -1 0 5 | 0 0 Textures 58.74/19.66 18.04/7.49 88.56/97.79
MSP (235) SVHN 61.41/51.27 16.92/15.67 89.3991.2
Kendall’s Rank Correlation Coefficient (KRCC) Places365 58.04/547-43 197.01115-707 8%;91217-:;
0532 0702 0678 0677 0624 0655 0.698 0.679 0.702 e SPORL SRS s
MULTI Textures 52.3/9.31 22.17/6.12 $4.91/91.9
-1 0 0 0 -1 0 0 0 ODIN (24) SVHN 66.81/48.52 23.51/15.86 83.52/91.07
0.666 0598 0.641 0.667 0.678 0.654 0.667 0.667 0.677 Places365 42215187 16231571 91.06/90.95
TID13 0 1 1 0 0 0 0 0 LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87
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Part |: Gradients in Neural Networks

Part 2: Gradients as Information

« Gradients approximate Fisher Information: They provide a methodology to infer information about the
statistics of underlying manifolds using samples

» Fisher information in gradients allow them to be utilized in explanations

» The versatile information encoded in gradients allow for visualizing correlations, counterfactuals, and
contrastives within the same GradCAM framework

« Contrastive information can be used to train a second stage that is more robust under noise conditions
in Introspective Learning

Part 3: Gradients as Uncertainty

Part 4: Gradients as Expectancy-Mismatch

Part 5: Conclusion and Future Directions

20th [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] \OLIVES ),
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Part | and Part Il
Tying it Back

From Part |

1(6]x)

|
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04
//os

T >\ 0, Novel data projects onto the

likelihood function (however
incorrectly), and extracts
fisher information around

m‘ In PraCtICe the projection
Trained network M

o

knowledge is not easily : e
accessible > 1(0|x) ~ .
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In Part Il

By backpropagating
contrast classes (and not
updating the network), the
network finds the steepest
descent towards other
regions of likelihood

function
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Interpretation, and Applications of Gradients

Part 3: Gradients as Uncertainty

840f166 f f Jnr// % Gr Georgia
Tech.
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Objectives
Obijectives in Part 3

* Interpret gradients as Uncertainty

« Uncertainty Applications
« Anomaly Detection
» Out-of-Distribution Detection
« Adversarial Image Detection
» Corruption Detection
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Prediction
20 1 - Predictive mean
+ Taining data
15 1 Epistemic uncertainty
10 A
g 987 A simple example: More the training data, lesser the
0.0 - uncertainty
-0.5
-1.0 1
-‘15 T
-15 -1.0 -0.5 0.0 05 10 15
X
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Uncertainty is a model knowing that it does not know

LeNet (1998) ResNet (2016)
i CIFAR-100 CIFAR-100
' 1] 12
& 08 -2"?:" . .%i §|
2 S5 1 &l
g 0.6 Eng 58 ' : ’
3 S\ S, « Larger the model, more misplaced is a network’s
ik 04 . . .
3 A confidence
5 02 e
0.0 ool —— | « On ResNet, the gap between prediction accuracy
I e e O GOUCE D8 T8 S8 and its corresponding confidence is significantly
B Outputs B Outputs .
0.8 ||z Gap A Gap high
>
€06 : . :
§ « On OOD data, uncertainty is not easy to quantify
804
0.2
- Error=44.9 Error=30.6
0.0 0.2 04 06 08 1.0 0.0 02 04 0.6 0.8 1.0
Confidence
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Uncertainty
Two Types of Uncertainty

Two major types of uncertainty: Uncertainty in data and uncertainty in model, together termed
as prediction Uncertainty

@ Training data @ Training data @ Training data
—— Underlying Data High data ___ Underlying Data High model ___ Underlying Data
Generator uncertainty ° Generator uncertainty g Generator
~— Model 1
— Model 2 %z
Out of Out of
e e, distribution distribution
..r. / >
Model 1
Low data Low model ]
uncertainty uncertainty Model 2
i . . . . .
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Uncertainty

Uncertainty Quantification in Neural Networks

Via Ensembles’

89 of 166 Fﬁ%;uﬁ
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Dog
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive
uncertainty estimation using deep ensembles." Advances in neural information processing systems 30

Variation within outputs
Var(y) is the
uncertainty. Commonly
referred to as
Prediction Uncertainty.
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Uncertainty
Uncertainty Quantification in Neural Networks

Via Single pass methods

Network f1(8) Dog Uncertainty

74 777 _ Cat quantification using a
Horse single network and a
Bird single pass

Does not require multiple networks!
However, does requires multiple data points at inference!
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques:

1. Gradient constraints during Training g o
for Anomaly Detection \\ _ /g;/"’
2. Backpropagating Confounding labels o O A
for Out-of-Distribution Detection 0, e 1

Georgia
Gl‘ Tech.
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques:

1. Gradient constraints during Training g o
for Anomaly Detection \\ _ /g;/"’
2. Backpropagating Confounding labels o O A
for Out-of-Distribution Detection 0, e 1

Georgia
Gl‘ Tech.
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Backpropagated Gradient Representations for
Anomaly Detection
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[=] ¥ []
Anomalles : Backpropagated Gradient

[=] Representations for Anomaly Detection

Finding Rare Events in Normal Patterns SCAN ME

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ ]

@ r Statistical Definition:
H  Normal data are generated from a stationary process Py

* Anomalies are generated from a different process P, + Py

R R =
"‘L‘"L”"l" 'l" Goal: Detect ¢,

() = ®o Normal data
$1 Anomalies

bo b1 do
|
: N W

~ ® ® ®

~ 9 o] @ ) ®

B & ® ® ®

o
t
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=]
SCAN ME

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

« Step 1 ensures that patches from natural
images live close to a low dimensional
manifold

» Step 2 designs distance functions that
detect implausibility based on
constraints

Anomaly
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[m] 3%+ [a]

3
=
SCAN ME
2004 2016 2018 2019
Tax et.al ! Fan et.al 2 Pidhorksyi et.al 3 Abati et.al4
Encoder Decoder
- i
Training . % ' @ .
Activations are
constrained Statistical deviation (Latent Loss)

using GANSs, Anomal
VAESs, etc. ' A
Testing

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint
arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. AlImohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822-6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481-490.

96 of 166 [ { 30¢ [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] OLIVES 7~ __ Georgia

Tech




=]
SCAN ME

Activation Constraints

Activation-based representation

Forward propagation (Data perspective) How much of the input

] e.g. Reconstruction error ( does not correspond to
Trained with ‘0

Anomaly

. . the learned information?

; | Gradient Constraints
Input | | | / Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w £y w’ How much model update is
ow required by the input?
—>
e OLIVES P -
H A 2% n . Georgia
T\H‘c P23 T Tech,

G Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



Backpropagated Gradient

Constraining Manifolds _ |
) ) [=] Representations for Anomaly Detection
Advantages of Gradient-based Constraints SCAN ME

» Gradients provide directional information to characterize anomalies
« Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution

: Backpropagated
econstruction 9o fo (D)™, Gradients
Error (L) 0L
9¢(fo ('))"\‘ :
‘.“‘ X=Xout
x
Xout

Reconstructed image manifold

98 of 166 30th [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] o o Georgia
' GI Tech.
Kuala Lampar L= 2 .
G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



GradCON: Gradient Constraint P

: Backpropagated Gradient
=]
Gradient-based Constraints

Representations for Anomaly Detection
SCAN ME

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data

Gradient loss
0L

/\
- -

] At k-th step of training,
|

| a¢out

|

|

-
e o e - in,1
< SRR ’ ]=£—IE-[COSSIM< , )]
S l 0bigypy 00

Avg. training Gradients at
gradients until (k-1) th iter. k-th iter.

Learned manifold

k-1 k-1 t
where Z 2

_ | 0igpy 409
¢: Weights L: Reconstruction error
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SCAN ME

AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
detection (ClFAR_10) CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 O.?ll 0.390 0.564
CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554

e.g. + Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661

VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
econ 0.55 : ; D : 0 : .0 DO ! O
Latent 0.586 0.396 0.618 0.476 0.719 0.474 0.698 0.537 0.586 0.413 0.550
Grad 0.736 0.625 0.5901 0.596 0.707 0.570 0.740 0.543 0.73% 0.629 0.647 |

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

-

VAE
+ Grad

Normal Abnormal

« (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
« (CAE vs. VAE) Performance sacrifice from the latent constraint

« (VAE vs. VAE + Grad) Complementary features from the gradient constraint

IcP2
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GradCON: Gradient Constraint 2| Backpropagated Gradient

[=] Representations for Anomaly Detection

Aberrant Condition Detection SCAN ME

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure

Abnormal “condition”
detection (CURE-TSR)

Levels Levels

Gaussian Blur Rain

Normal Abnormal

Levels Levels

|->&- Recon (CAE) —<— Recon (CAE+Grad) |—e— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss

A
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Severity Manifolds * Define severity with respect to distance

Severe from a healthy manifold.

Disease . .

Manifold  This distance can be regarded as a
severity score.

SS, >SS,

Moderate
Disease

p Manifold g How to measure severity score?
- « Define severity as: “the degree to which a
sample appears anomalous relative to
é) = the distribution of healthy images.”

Learned Manifold : Healthy OCT Experimental Plan
SS = Severity Score * Investigate model responses that can act
as good surrogate for severity score
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SCAN ME

Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics

o 5
Ofm

https://eithub.com/olivesgatech

* 9408 1mages labeled with complete
biomarker data

* Every image associated with vector
indicating presence/absence of 16
potential biomarkers

* 5 biomarkers exist with sufficient [m] 2 1@
balanced quantities ?: h,."{l
* Develop 5 biomarker test sets (PAVF, FAVF, b oy ‘_ Gy
IRF, DME, and IRHRF) qu:ﬁ
s mPFel

OLIVES Dataset
https://arxiv.org/pdf/2209.11195.pdf

OLIVES Gecrale

g ’nc E’g K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling St Tech
LU Kuala L for Biomarker Classification in OCT," in IEEE International Conference on Image Processing (ICIP),
Bordeaux, France, Oct. 16-19 2022
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SCAN ME
Activation-based representation
Forward propagatig (Data perspective)
Seve rity M an ifo I d S Trainedmwith () e.g. Reconstruction error (£)
SS, >SS, Disease ==
Manifold ul Gradient-based Representation
Input Reconstruction (Model perspective)

Moderate Encoder Decoder w oL

Disease - Backpropagation ow
Manifold ==>

3 ._-), k—] -)sk Y kl k‘l,) ¢
Lorad=—E [('osSIM (( J oL )} . aT - n 1 . N

a) = ] ()('), avg i)()l (.)C)l avg i)()l

t=1
Learned Manifold : Healthy OCT

L= Lyecon + aLgrad

Idea
» Constrain gradients of in-distribution class
 Make gradients sensitive to progressively anomalous data
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SCAN ME

Severity Labels used to select positive and negative pairs for weakly-supervised contrastive
learning

Low Severity Score

High Severity Score

.\.;‘%,;.‘_OLIVES;&?; Gr Georgia
Tech.
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Uncertainty
Gradients as Single pass Features

Our Goal: Use gradients to characterize the novel data at Inference, without global
information

Distance from unknown cluster

Two techniques:

1. Gradient constraints during Training g o
for Anomaly Detection \\ _ /g;/"’
2. Backpropagating Confounding labels o O A
for Out-of-Distribution Detection 0, e 1

Georgia
Gl‘ Tech.
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data

However, what is L?

Abnormal data distribution

* In anomaly detection, the loss was between the input and

its reconstruction
* |In prediction tasks, there is neither the reconstructed input

nor ground truth

Backpropagated
Gradients

9 (fo ()™,

a0 0
! ¢ X=Xout
Learned Representation
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data
P = Predicted class
Q, = Contrast class 1

Q, = Contrast class 2 However, what is L?
Backpropagated * In anomaly detection, the loss was between the
Gradients input and its reconstruction

dL(P,Q1) « In prediction tasks, there is neither the
00 reconstructed input nor ground truth

 We backpropagate all contrast classes -
Q1,Q, ...Qy by backpropagating N one-hot

vectors
Backpropagated « Higher the distance, higher the uncertainty
Gradients score
Learned Representation 0L(P, Q)
d0
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Toy Manifold Example

What is uncertainty?

Probing the Purview of Neural Networks
via Gradient Analysis

Gradients represent the local required change in manifold ‘X
Contrast class 1

Similar to introspective learning! ‘ l(0|x):§ = Gradients

+ provide the
gy T necessary

g Ehgrle w9 change in
A manifold that
X would predict
Contrast class N ® the novel data
‘correctly’.

» Correctly means
contrastively (or
incorrectly)!
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Probing the Purview of Neural Networks
via Gradient Analysis

Toy Manifold Example

How is this different from Part 27
SCAN ME

Part 2: Information Part 3: Uncertainty

* In Part 2: Activations of learned * InPart 3: Statistics of gradients
w.r.t. the weights (energy) will be

manifold are weighted by gradients _
w.r.t. activations to extract directly used as features

information and provide
explanations

Gr Georgia
Tech.
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Deriving Gradient Features

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Introspective Features
Gradients =« = = —

Weights, W, d] (¥, . .
b i L M y Normalized and vectorized
aw, yi=1 gradients are introspective
' features.
X —» Sensing Vwl (3,51
Network
£0) 2P

\ )
! $=3 Why vector of all 1s? The theory is
fi-1(x - presented in [1]

kol . . .
30th ' i
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A | n m [1]1 M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural O N 7% y Tech,
W Kuala Lampur Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1 - O <l O ,
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Uncertainty in Neural Networks
Utilizing Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 2: Take L2 norm of all generated gradients

) Collection of cslquared L2 norm 1V, J(B0; x, yc)”§ o ||Vey J(Ow; X, J’c)”z -
Vo
** q;i'f {';!+'I'T{'9+§!'I‘i

(¢ .
-— vi...‘. -L&-‘-; -y b L — Ay s e aa — — —

F I T
F S & & b

A& s},;‘ & KAy g & 3 R r”x_., A / r ; #
X & & ) P ¢ v # £ ¢
Network Parameters
MNIST: In-distribution, SUN: Out-of-Distribution
bd S . : . . .
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Gradient-based Uncertainty
Uncertainty in OOD Setting

17.5 T
> 10
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Probing the Purview of Neural Networks
via Gradient Analysis

Datasets
Bl MNIST
B SVHN
B TinylmageNet
EEE LSUN
BN CIFAR-10

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets
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Gradient-based Uncertainty
Experimental Setup

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect
adversarial, noisy, and OOD data

B . - . B . Step 1: Train a deep network f(-) on
173 . . I 3.0 ) 0oa T some training distribution
15.0 _ . . T Step 2: Introduce challenging
a 4 8 T (adversarial, noisy, OOD) data
o 20 Step 3: Derive gradient uncertainty on
‘_;3.10'0 ’ . - both trained and challenge data
e 2 . Step 4: Train a classifier H(-) to detect
50 e challenging from trained data
o : : 05 Step 5: At test time, data is passed
- - = |- oo through f(-) and then H(-) to obtain a

Reliability classification

L4 R . : : - :
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Gradient-based Uncertainty
Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“vanda” noise “cibbon”

57.7% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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SCAN ME

Access 11 (2023): 32716-32732.

MODEL ATTACKS BASELINE  LID M(V) MP) MFE) M(P+FE) OURS
FGSM 51.20 90.06 81.69 84.25 99.95 99.95 93.45

BIM 49.94 99.21 87.09 89.20 100.0 100.0 96.19

RESNT C&W 53.40 76.47 74.51 75.71 92.78 92.79 97.07
PGD 50:03 67.48 56.27 57.57 65.23 75.98 95.82

ITERLL 60.40 85.17 62.32 64.10 85.10 92.10 98.17

SEMANTIC 52.29 86.25 64.18 65.79 83.95 84.38 90.15

FGSM 52.76 908.23 86.88 87.24 99.98 99.97 96.83

BIM 49.67 100.0 89.19 89.17 100.0 100.0 96.85

C&W 54.53 80.58 75.77 76.16 90.83 90.76 97.05

UENSENET  -pry 49.87  83.01 7039 6652 8694  83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84 98.53

SEMANTIC 53.54 81.41 62.16 62.15 67.98 67.29 89.55
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Probing the Purview of Neural Networks
via Gradient Analysis

Gradient-based Uncertainty

Uncertainty in Detecting Challenging Conditions
SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Gaussian Noise Defocus Blur  Gaussian Blur Spatter

T

No
Challenge  ization

Haze
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

2 Method Mahalanobis [12] / Ours

g Corruption Level | Level 2 Level 3 Level 4 Level 5
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur | 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
” GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
c—? DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure | 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
| Noise | 2546/5020 4754/6387 4732/8120 66.19/91.16 8314/9481
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
?—ﬁ? DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
%J Exposure | 74.90/88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/9542 89.68/96.91
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Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Gaussian Noise Defocus Blur  Gaussian Blur Spatter
2 . = J

No Decolor- Lens Dirty
Challenge Blur Lens

ization

Gr Georgia
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

2 Method Mahalanobis [12] / Ours

g Corruption Level | Level 2 Level 3 Level 4 Level 5
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur | 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
” GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
c—? DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure | 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
| Noise | 2546/5020 4754/6387 4732/8120 66.19/91.16 8314/9481
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
?—ﬁ? DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
%J Exposure | 74.90/88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/95.42 89.68/96.91
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Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Gaussian Noise Defocus Blur  Gaussian Blur Spatter
2 . = J

No Decolor- Lens Dirty
Challenge Blur Lens
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

SCAN ME

CIFAR10 TinyImageNet
A A . , . . i
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68 /93.18

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 7/ 99.60 / 92.66

87.34/88.42/85.02/98.60 / 98.37
79.98/80.12/74.10/ 88.84 /97.90

92.79794.48/90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82/99.87
81.01/80.95780.83/90.25/98.11

In Out
SVHN
CIFAR-10  TinylmageNet
LSUN
CIFAR-10
SVHN  TinylmageNet
LSUN
122 of 166 l*ym

81.70/81.92/79.35/96.17/97.74
80.96 /81.15/79.52/97.50/99.04

83.69 /83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93
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81.97/82.01/84.67/98.84 /99.21
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Out-of-Distribution Detection

Dataset Distribution Detection Accuracy

AUROC

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68/93.18

via Gradient Analysis

SCAN ME

Probing the Purview of Neural Networks

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 7/ 99.60 / 92.66

In Out
SVHN ' 83.36/88.81/79.39/91.95 / 98.04
CIFAR-10  TinyImageNet | 84.01/85.21/83.60/97.45/86.17
LSUN 87.34/88.42/85.02/98.60 / 98.37
CIFAR-10  79.98/80.12/74.10/88.84 /97.90

SVHN TinyImageNet = 81.70/81.92/79.35/96.17/97.74
LSUN

80.96 /81.15/79.52/97.50/99.04

92.797/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79
83.69/83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93
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Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

92.30/94.22/89.80/99.82/99.87
81.01/80.957/80.83/90.25/98.11
82.54/82.60/85.50/98.17/97.93
81.97/82.01/84.67/98.84/99.21

Objects, natural scenes
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution Detection Accuracy

In Out

SVHN 83.36/88.81/79.39/91.95/98.04

84.01/85.21/83.60/97.45/86.17

CIFAR-10  TinyImageNet

AUROC

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68/93.18

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 7/ 99.60 / 92.66

LSUN

87.34/88.42/85.02/98.60 / 98.37

92.79/94.48 /90.11/99.86 / 99.86

92.30/94.22/89.80/99.82/99.87

81.50/81.49/79.31/95.05/99.79

81.01/80.95/80.83/90.25/98.11

CIFAR-10 79.98 /80.12/74.10/ 88.84 / 97.90
SVHN TinylmageNet = 81.70/81.92/79.35/96.17/97.74
LSUN 80.96 /81.15/79.52/97.50/99.04

83.69 /83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

More similar
datasets
(objects)

TinyImageNet CIFAR10

A A sou

LicPR

Kuala Lumpur
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Objectives
Takeaways from Part

e Part I: Gradients in Neural Networks
 Part 2: Gradients as Information

« Part 3: Gradients as Uncertainty
» Defining Uncertainty in the context of Neural Networks
* Anomaly Detection
» GradCON: Gradient Constraints
» Qut-of-Distribution Detection
« Adversarial Detection
» Corruption Detection

« Part 4: Gradients as Expectancy-Mismatch

e Part 5: Conclusion and Future Directions

A
i

bhd S ) : . . )
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Interpretation, and Applications of Gradients
Part 4: Gradients as Expectancy-Mismatch
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Objectives
Objectives in Part IV

Case Study: Expectancy-Mismatch

* Interpret gradients as Expectancy-Mismatch
» Define expectancy-mismatch utilizing saliency
« Demonstrate counterfactual manifolds as expectancy-mismatch

* Human Visual Saliency
* Image Quality Assessment

127 of 166 £ ﬁ};m [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Saliency
Saliency in Literature

General-purpose Saliency algorithm

f\"\“
Weights
" Fusion
Feature 2
Feature 3

Weights
Bottom-Up Saliency : Innovation is in designing features and fusion

Top-Down Saliency : Innovation is in designing weights

(

Color, Intensity, Faces, text,

Orientation [1]

object detectors

[1]

128 of 166 l%%;((ﬁ [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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[1] Judd, Tilke, Frédo Durand, and Antonio Torralba. "A benchmark of computational models of

PR Caa saliency to predict human fixations." (2012).



Saliency
Our Goal: Introduce Implicit Saliency in Neural Networks

General-purpose Saliency algorithm

! Feature 1
| Weights I
Fusion
Feature 2
Weights
Feature 3

Bottom-Up Saliency : Innovation is in designing features and fusion

Features that
are new and
unexpected

: Faces, text, (novel) ina
Color, Intensity,

: : object detectors scene are
Orientation [1] (] salient
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Top-Down Saliency : Innovation is in designing weights

(
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[1] Judd, Tilke, Frédo Durand, and Antonio Torralba. "A benchmark of computational models of

PR Caa saliency to predict human fixations." (2012).



Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

0,
At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment

130 of 166 %mﬁ [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

0,
At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment
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Stochastic Surprisal: An Inferential

?frontiers | Measurement of Free Energy in Neural
In Neuroscience Networks

-

Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Contrast class 1

Similar to introspective learning! ‘ l(0|xj

Mean of
projected
gradients is
the
expectancy!

Contrast class N

) )

Georgia
Gl" Techgl
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

!/
X i
Contrast class 1 ey

) o

2~

Similar to introspective learning!

3

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Variance of
gradients is
the

mismatch!
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

—_

. Mean of
Variance of roiected
gradients Point-wise proje .
s L gradientsis
is the Multiplication the
mismatch!
expectancy!
Saliency Map
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Wrong class 1

Saliency Map

Wrong class N

Gradients in the k" layer: Pseudo-saliency maps

OLIVES (i Georgia

Tech

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.



Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

cSaliency
Deriving Gradient-based Implicit Saliency

SCAN ME

/ 0|0 \yQ\
I th Conv Layer Ypred 0 1 0 0
M,
/,' CrossEntropy - - . )
- {quii | |- | || xR
Loss . " neE " =
< 0| [0 1/ 1/0
0| |0 0| [1F

Backpropagation Q unexpected stimuli vectoy

R Pseudo
Saliency
Maps
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networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.



Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Deriving Gradient-based Implicit Saliency

SCAN ME

/7 0| [oe I
I th Conv Layer )| Yered 0 1 0 0
My, 4
CrossEntropy | | " - - -
- ﬁ | |- | || xR
Loss . . e . .
—
0| O 1 0
0| |0 0| |1
Backpropagation Q unexpected stimuli vectoy

Mean
of the R Pseudo

Saliency Maps

R Pseudo Pixel-wise
Saliency Multiplication
Maps Variance

of the R Pseudo

Saliency Maps

-
ICP2 Gr S
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Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.



Input Image ~ Groundtruth Proposed  Feed-forward
Method feature
ResNet-18 ResNet-34 ResNet-50
081 081 081
074 074 0.7
061 061 061
wnos{ wn o5 u\ 054 wnos{
%D.d £04 204 ‘£L‘.4~
031 031 031
024 021 024
014 014 014
0.0+ 0.0+ 0.0+ 0.0+
ResNet-18 ResNet-34 ResNet-50

0,40+

0.35
0.30+
1=
O 0.25+
0.20+
0.15+
0.10
- 0.05
convl conw2 comv3 convd  convs

I Feed-Forward Inference

0.40 {

0.351 035+ 0.351
0.304 0.30+ 0.304
B(:-zs Snzsr Bus
0.20{ 0.20 0.20{
0151 0.15+ 0151
0,101 0,10+ 0.10{
005+ 0,05~ s 005+

1390f 166 £ f

06
$ 054
Z 04
034
024
014
0.0+
convl conv2 conv3  cony corms

« Edges and textures
« Without specific localization

O Feed-forward expectation features:

O Proposed expectation-mismatch Saliency:

» Localized saliency maps
» Highly correlated with ground truth

ResNet-101

ResNet-101

0.35 |
0.30
0 9251

‘-’ozo
0151

I I I I I ool
0.05+

mmm Conflicting Gain Over Feed-Forward

VGG16

_ VGG16

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural

networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.

convl conv2 conv3 convd convs
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0.3
02
01
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Faster R-CNN

Faster R-CNN
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035
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0.151
0101
0.05
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Experiments

SCAN ME

Contrastive Saliency outperforms explanation methods like GradCAM and Guided Backprop

NSS CcC
Networks ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101 | ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101
GradCam 0.7657 0.7545 0.7203 0.7335 (0.3496 0.3396 0.3190 0.3210
GBP 0.3862 0.4191 0.3898 0.3415 (0.2474 (0.2453 (0.2443 0.2233
Contrastive Saliency | 0.8274 0.8018 0.7659 0.7981 0.4132 0.4112 0.3868 0.4051

Input Image -
GradCam
o
140 of 166 R { 30tk [Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023] Georgia
Kunell Lawepar Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural Tech

networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.



Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Experiments

SCAN ME

Compare performance of unsupervised Contrastive Saliency model against existing saliency

models

Contrastive Saliency is unsupervised!

‘ Training data

Saliency Models Training data

SalGan SALICON
Deep ML-Net SALICON
Neural Networks DeepGazell SALICON
ShallowDeep SALICON/iISUN
Existing Learning based methods
141 of 166 30th [Tutorial@ICIP'23] | [Ghassan AlIRegib and Mohit Prabhushankar] | [Oct 8, 2023] q- Georgia
/(M/a‘;z«m//m, Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural Tech.

networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.



SCAN ME

Compare performance of unsupervised Contrastive Saliency model against existing saliency

models

il
I |

Input Image  Groundtruth

Proposed
Method

SalGan

ML-Net DeepGazell

.

ShallowDeep

<

v

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural

networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.

Precise Comprehensive
NSS CC
Sal Deep ML Shallow | Contrastive Sal Deep ML Shallow | Contrastive
Gan Gazell Net Deep Saliency Gan Gazell Net Deep Saliency
0.8977 | 0.6214 0.5431 | 0.9306 ().7981 0.6280 | 0.5927 | 0.4481 0.5120 (0.4051
OLIVES

., Georgia
Tech



Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Implicit Saliency
Robustness Analysis

NSS CC
Gaussian Sal Deep ML Shallow | Contrastive Sal Deep ML Shallow | Contrastive
Blur Gan Gazell Net Deep Saliency Gan Gazell Net Deep Saliency
r=0 | 0.8977 | 0.6214 | 0.5431 | 0.9306 0.7981 0.6280 | 0.5927 | 0.4481 | 0.5120 0.4051
r=>50 |]0.2239 | 0.3436 | | 0.2484 | ] 0.2025| | 0.1793 |] 0.2731 | ] 0.3954 | | 0.2940 | | 0.1840 | | 0.1432

X %
143 of 166 % ﬁ“l 30th
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

0,
At Inference, construct local contrastive manifolds

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment

i
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
What is IQA?

The given image is
somewhat OK quality

Image Quality Assessment

Algorithm : m——) Score : 0.58

DIQaM [1]
Bad Good
Quality Quality
Lighthouse image with level 5 lossy 0.0 0.5 1.0
compression from TID 2013 dataset I R } — I
145 of 166 R { 20th [Tutorial@ICIP'23] | [Ghassan AlIRegib and Mohit Prabhushankar] | [Oct 8, 2023] q‘ Georgia
Xiels Liviaar [1] Bosse S, Maniry D, Muller K R, et al. Deep neural networks for no-reference and full-reference image Tech.

quality assessment. IEEE Transactions on Image Processing, 2018, 27(1): 206-219.



Image Quality Assessment
Expectancy-Mismatch in Dataset Construction

Expectancy-Mismatch arises during
Dataset Construction

Subjective experiments for TID2008

* Subjects are shown a reference image in a
controlled setting

« Based on the reference image, they are asked to
pick one of the images on the top that differs least
from the reference image

» Reference image sets the expectancy

« The task of subjectively picking the least mis-

Among two images in the upper

7 Imagesst
part of the screen select the . .
Start t image that differs less from the
T e e matched image is IQA
Click mouse on it

Please do not think too much For
each selection use up to 2-3

seconds This requires Fine-grained Analysis!

If it is difficult to select (images
quality is comparable) click on any
of them

/Sr
Qe 101

Path to the image database
| \ba08\
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Image Quality Assessment

Expectancy-Mismatch in Dataset Construction
Expectancy-Mismatch arises during

Dataset Construction

This requires Fine-grained Analysis on the
part of the subjects!

Among two images in the upper
part of the screen select the

(age it afrsios o e Our Goal: To determine if a trained IQA
sample image in the bottom part. . .
detector understands the fine-grained nature

of expectancy-mismatch in quality

Please do not think too much For
each selection use up to 2-3
seconds

7 Image set

Start new experiment |

/Sr
Qe 101

Path to the image database
| \ba08\

If it is difficult to select (images
quality is comparable) click on any
of them

gx_OLIVES/O Georgla
\SE\,QZ%/ Gr Tech.
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[1] Ponomarenko, Nikolay, et al. "Image database TID2013: Peculiarities, results and
perspectives." Signal processing: Image communication 30 (2015): 57-77
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
GradCAM in IQA

SCAN ME

GradCAM explanation for Why 0.58?

The given image is
somewhat OK quality

0.58
. , : B
Lighthouse image with level 5 lossy Quzclli ‘ gl?;)”c: Add heatmap
compression from TID 2013 dataset y y Explain blue
00 s | 4 Yellow, red, green
——+— —t—
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Kuala Lumpur Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural Tech.

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.



E _ Stochastic Surprisal: An Inferential
Eeits | Measurement of Free Energy in Neural
a

Image Quality Assessment
GradCAM in IQA

SCAN ME

GradCAM explanation may not be useful for fine-grained analysis

Grad-CAM explanation tells us
that the quality score was
decided based on all parts of
the image and specifically
based on the base of the
lighthouse -

Georgia
Tech.
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Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

—

Why 0.58,
rather than 1?

Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
0.0 0.5 1.0 / Good
——+—+—+—F+—+—+—+—+—  Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

—

Why 0.58,
rather than 0.757

Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
0.0 0.5 1.0 Good
——+—+—+—+—+—+—+—+—  Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

Why 0.58,
rather than 0.57

Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
———+—+—F+—+—+—+—+— Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

Contrastive explanation

‘ DIQaM :

Lege Why 0.58,
rather than 0.257
Lighthouse image with level 5 lossy Bad
compression from TID 2013 dataset Quality
———=—+—F—+—+—+—+— Quality
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Stochastic Surprisal: An Inferential
Measurement of Free Energy in Neural
Networks

Image Quality Assessment
ContrastCAM in IQA

-

e gl o g . - : Nl s ¥ .
Distorted Image - Grad-CAM : Why 0.58, rather Why 0.58, rather Why 0.58, rather Why 0.58, rather
IQA Score 0.58 Why 0.58? than 1? than 0.75? than 0.5 than 0.25

L ;
Distorted Image - Grad-CAM : Why 0.48, rater Why 0.48, rather Why 0.48, rather Why 0.48, rather
IQA Score 0.48 Why 0.48? than 1? than 0.75? than 0.5 than 0.25
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Objectives
Takeaways from Part IV

e Part I: Gradients in Neural Networks
e Part 2: Gradients as Information
» Part 3: Gradients as Uncertainty

« Part 4: Gradients as Expectancy-Mismatch
* Presented a case study of utilizing both the contrastive manifolds and manifold traversal perspectives
* Human Visual Saliency is a by-product of expectancy-mismatch

» Neural networks that have never explicitly learned human salient regions have implicitly been trained to
use them in tasks

» Using Contrastive explanations in IQA provides a fine-grained analysis of neural network’s perception of
quality

 Part 5: Conclusion and Future Directions

e . , . .
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Interpretation, and Applications of Gradients
Part 5: Conclusions and Future Directions
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* Robustness under distributional shift in domains, environments, and adversaries are challenges for neural
networks

» Gradients at Inference provide a holistic solution to the above challenges

» Gradients can help traverse through a trained and unknown manifold
» They approximate Fisher Information on the projection
* They can be manipulated by providing contrast classes
* They can be used to construct localized contrastive manifolds
« They provide implicit knowledge about all classes, when only one data point is available at inference

» Gradients are useful in a number of Image Understanding applications
» Highlighting features of the current prediction as well as counterfactual data and contrastive classes
* Providing directional information in anomaly detection
* Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
* Providing expectancy mismatch for human vision related applications

7 Georgia
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Test Time Augmentation (TTA) Research
« Multiple augmentations of data are passed through the network at inference
« Research is in designing the best augmentations

Active Inference
» Utilize the knowledge in Neural Networks to ask it to ask us
» Neural networks ask for the best augmentation of the data point given that one data point at inference

Uncertainty in Explainability, Label Interpretation, and Trust quantification
« Uncertainty research has to expand beyond model and data uncertainty

* In some applications within medical and seismic communities, there is no agreed upon label for data.
Uncertainty in label interpretation is its own research

Test-time Interventions for Al alignment
* Human interventions at test time to alter the decision-making process is essential trustworthy Al
» Further research in intelligently involving experts in a non end-to-end framework is required

{ = Georgia
~*4 Tech
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Deep learning cannot easily generalize to novel data

Novel data may not Even if
be available during available,
training novel data
does not
easily fit into
either the
earlier or
later stages
of training
A = Deep Neural Networks
B = Novel data
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Existing research on robustness focuses on data collection and optimization

Optimization \ 7 Inference
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Memes to Wrap it Up
Implicit Knowledge in Neural Networks

Trained Neural Networks have a wealth of implicit stored knowledge, waiting to be extracted
at inference
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Memes to Wrap it Up
Robustness at Inference

Robustness

TRAIN & TEST WERE DIFFERENT IIISTIIIBUTIOHS

imgfiip.com @SCOtt ai

Cannot depend on training to construct
robust models
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Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection

*  Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

*  Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International Conference
on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

. ?I;g}g)lelllltisE %)rz(()) 1en set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image Processing

* GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. In European
Conference on Computer Vision (pp. 206-226). Springer, Cham.

. gradienﬁ for2 ?%%E?arial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," in [EEE
ccess, Mar. .

* Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural networks. In 2020
IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

*  Gradient-based Imalge Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated Gradients,"
in /[EEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

. %/[xplan_atog% 42)1rg(91i§12ns: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. /EEE Signal Processing
agazine, , 59-72.

*  Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on
Image Processing (ICIP) (pp. 3289-3293). [EEE.

. Explainabilt% in Limited Label Settings: M. Prabhushankar, and G. AlRegib, Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference on Image
Processing (ICIP), Sept. 2021.

* Explainabilty through E)épectanc -Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers in
Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Active Learning

* Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AIRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A Second
Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

* Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. Parchami,
"FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

* Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-Distribution
Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

* Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AIRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," in /EEE
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* Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image Processing (ICIP),
Abu Dhabi, United Arab Emirates, Oct. 2020

* Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural Network
Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

* Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With Prediction
Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

* Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurI/PS 2022
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* Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection,"
in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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