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Tutorial Materials
Accessible Online

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

https://alregib.ece.gatech.edu/ieee-icip-
2023-tutorial/
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Deep Learning
Expectation vs Reality

People’s expectation of AI and Deep Learning

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning
Expectation vs Reality

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning
Expectation vs Reality

“The best-laid plans of sensors and networks 
often go awry”

- Engineers, probably

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning
Requirements and Challenges

Novel data sources:

• Test distributions
• Anomalous data
• Out-Of-Distribution data
• Adversarial data
• Corrupted data
• Noisy data
• New classes
• …

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." IEEE 
Transactions on Intelligent Transportation Systems (2017). 

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

Novel samples = Most Informative

• The first instance of training must occur with 
less informative samples

• Ex: For autonomous vehicles, less informative 
means

• Highway scenarios
• Parking
• No accidents
• No aberrant events

Benkert, R., Prabushankar, M., AlRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: 
A Second Order Approach to Active Learning. IEEE Transactions on Artificial Intelligence.

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

Catastrophic Forgetting

• The model performs well on the new 
scenarios, while forgetting the old scenarios

• A number of techniques exist to overcome this 
trend

• However, they affect the overall performance 
in large-scale settings

• It is not always clear if and when to 
incorporate novel scenarios in training

Where to handle novel data?

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1 
(2021): 2549.

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning at Inference
Overcoming Challenges at Inference

We handle novel data at Inference!!

Novel data sources:

• Test distributions
• Anomalous data
• Out-Of-Distribution data
• Adversarial data
• Corrupted data
• Noisy data
• New classes
• …

Model Train At Inference

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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To present methodologies to handle novel data at inference using gradients of neural networks

Objective
Objective of the Tutorial

+	0.007	×																															=

Obtain fine-grained explanations
Engineer (and detect) adversarial examples

At the end of the tutorial you will be able to 

Construct XAI techniques for Image Quality Assessment

Training Dataset Testing Dataset

Perform Out-Of-Distribution and Anomaly Detection

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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• Part 1: Gradients in Neural Networks
• Neural network basics, gradient descent, and properties of gradients

• Part 2: Gradients as Information
• Visual explanations, robust recognition

• Part 3: Gradients as Uncertainty
• Anomaly, Out-Of-Distribution, corruption, and adversarial detection

• Part 4: Gradients as Expectancy-Mismatch
• Image Quality Assessment, human visual saliency

• Part 5: Conclusion and Future Directions

Objective
Objective of the Tutorial

To present methodologies to handle novel data at inference using gradients of neural networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Interpretation, and Applications of Gradients
Part I: Gradients in Neural Networks
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At the end of Part 1 you will be able to 

Objectives
Objectives in Part 1

1. Describe the basics of neural networks

2. Discuss the role of 
gradients in optimization 

𝑳(𝜽)

3. Discuss relevant properties of gradients𝑳(𝜽)

𝑥

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning
Overview

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Artificial neurons consist of:
• A single output
• Multiple inputs
• Input weights
• A bias input
• An activation function

Deep Learning
Neurons

The underlying computation unit is the Neuron

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Typically, a neuron is part of a network organized in layers:
• An input layer (Layer 0)
• An output layer (Layer 𝐾)
• Zero or more hidden (middle) layers (Layers 1…𝐾 − 1)

Deep Learning
Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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The number of parameters in models has 
increased exponentially

Deep Deep Deep … Deep Deep Learning
Recent Advancements

Transformers, Large Language and Foundation Models

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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• 𝜃 is a combination of weights and biases

• Compute the gradients of a loss function iteratively 
and update the weights according to the update rule:

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝛼
𝜕	𝐿(𝜽)
𝜕𝜽

𝜃 =	Weights, biases

𝑡 = Iteration step

𝛼 =	Step Length

𝐿 𝜃 =	Loss function between prediction and ground 
truth

67(8)
68

=	Gradient w.r.t weights and biases

Training Neural Networks
Stochastically and via Gradient updates

Iteratively reduce a loss function 𝑳(𝜽) to find the optimal parameters 𝜽

GD = Gradient Descent

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Training Neural Networks
Gradient Descent in Action

Network 𝒇(𝜽)

Predicted 
Class Probability

Ground-Truth 
Label

Dog

Cat

Horse

Bird

Dog

Cat

Horse

Bird

Loss 𝑳(𝜽)

𝑳(𝜽)

𝜽(𝒕 + 𝟏) = 𝜽(𝒕) − 𝜶	𝛁𝜽	𝑳(𝜽)

Backprop 𝑳(𝜽) to generate gradients	𝛁𝜽	𝑳(𝜽)

Loss Accuracy

Gradients construct the manifold

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Training Neural Networks
Gradient Descent in Action

Network 𝒇(𝜽)

Predicted 
Class Probability

Ground-Truth 
Label

Dog

Cat

Horse

Bird

Dog

Cat

Horse

Bird

𝑳(𝜽)

Loss Accuracy

Gradients construct the manifold

Loss 𝑳(𝜽)

𝜽(𝒕 + 𝟏) = 𝜽(𝒕) − 𝜶	𝛁𝜽	𝑳(𝜽)

Backprop 𝑳(𝜽) to generate gradients	𝛁𝜽	𝑳(𝜽)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Training Neural Networks
Gradient Descent in Action

Network 𝒇(𝜽)

Predicted 
Class Probability

Ground-Truth 
Label

Dog

Cat

Horse

Bird

𝑳(𝜽)

Loss Accuracy

Gradients construct the manifold

Dog

Cat

Horse

Bird

Loss 𝑳(𝜽)

𝜽(𝒕 + 𝟏) = 𝜽(𝒕) − 𝜶	𝛁𝜽	𝑳(𝜽)

Backprop 𝑳(𝜽) to generate gradients	𝛁𝜽	𝑳(𝜽)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Training Neural Networks
Gradient Descent in Action

Network 𝒇(𝜽)

Predicted 
Class Probability

Ground-Truth 
Label

Dog

Cat

Horse

Bird

𝑳(𝜽)

Loss Accuracy

Gradients construct the manifold

Dog

Cat

Horse

Bird

Loss 𝑳(𝜽)

𝜽(𝒕 + 𝟏) = 𝜽(𝒕) − 𝜶	𝛁𝜽	𝑳(𝜽)

Backprop 𝑳(𝜽) to generate gradients	𝛁𝜽	𝑳(𝜽)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Training Neural Networks
Gradient Descent in Action

Network 𝒇(𝜽)

Predicted 
Class Probability

Ground-Truth 
Label

Dog

Cat

Horse

Bird

𝑳(𝜽)

Loss Accuracy

Gradients construct the manifold

Dog

Cat

Horse

Bird

Loss 𝑳(𝜽)

𝜽(𝒕 + 𝟏) = 𝜽(𝒕) − 𝜶	𝛁𝜽	𝑳(𝜽)

Backprop 𝑳(𝜽) to generate gradients	𝛁𝜽	𝑳(𝜽)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Training Neural Networks
Gradient Descent in Action

Network 𝒇(𝜽)

Predicted 
Class Probability

Ground-Truth 
Label

Dog

Cat

Horse

Bird

𝑳(𝜽)

Loss Accuracy

Gradients construct the manifold

Dog

Cat

Horse

Bird

Loss 𝑳(𝜽)

𝜽(𝒕 + 𝟏) = 𝜽(𝒕) − 𝜶	𝛁𝜽	𝑳(𝜽)

Backprop 𝑳(𝜽) to generate gradients	𝛁𝜽	𝑳(𝜽)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Our Goal
To Characterize Data at Inference

Network 𝒇(𝜽)

Predicted 
Class Probability

𝑳(𝜽)

Goal: Given the novel data point, the network, and its prediction, characterize the data as a 
function of the learned knowledge

Dog

Stop

Horse

Bird

Given Goal

Represent the novel green 
traffic sign as a function of the 

learned red traffic signOur Claim: Gradients provide the 
methodology!

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

𝑳(𝜽)

Toy visualizations generated using functions
(and thousands of generated data points)

Real data visualizations generated using 
dimensionality reduction algorithms (Isomap)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Challenges at Inference
Manifolds at Inference

However, at inference only the test data point is available and the underlying structure of the 
manifold is unknown

𝑳(𝜽)

Existing methodologies estimate this manifold using 
surrogate networks and validation data at inference. 
However, they lose generalization performance.

𝑳(𝜽)

Ideal Goal

Represent the novel green 
traffic sign as a function of the 

learned red traffic sign

In Practice

Trained network knowledge is 
not easily accessible

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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𝑳(𝜽)

Challenges at Inference
Existing Solutions

Kim et.al.1 use a KNN classifier on validation data at inference to characterize new test data  

Cons of surrogates:
1. Requires a validation set at inference
2. Computationally impractical scale
3. Authors show that performance on anything greater than MNIST is comparable/worse than baseline  

[1] Jiang, H., Kim, B., Guan, M., & Gupta, M. (2018). To trust or not to trust a 
classifier. Advances in neural information processing systems, 31.

The surrogate (approximate) manifold is derived 
from K-Nearest Neighbors search

𝑳(𝜽)

Additional validation 
data

Trained network knowledge is 
not easily accessible

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Relevant Properties of Gradients
Local Information 

𝑳(𝜽)

Gradients provide local information around the vicinity of 𝒙, even if 𝒙 is novel. This is 
because 𝒙 projects on the learned knowledge

𝑥
𝑳(𝜽)

Ideal

𝜶	𝛁𝜽	𝑳 𝜽 provides local information up to a small 
distance 𝜶 away from 𝒙

The exact nature and utility of this information is discussed in Part 2

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Relevant Properties of Gradients
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function 𝑳(𝜽)

𝑳(𝜽)

𝑥

Negative of the gradient provides the descent direction 
towards the local minima, as measured by	𝐿(𝜃)

The exact nature and utility of this directional information is discussed in Part 3

Path 1?

Path 2?

Path 3?

Which direction should we 
optimize towards (knowing 
only the local information)?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Our Technical Goal
To Characterize the Learned Knowledge

𝑳(𝜽)

At Inference

𝑳(𝜽) 𝑥

𝑥′

Representation 
Traversal using 
Gradients

Counterfactual 
Representations 
using Gradients

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

𝑳(𝜽)

Trained network knowledge is 
not easily accessible
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Relevant Properties of Gradients
Counterfactual Manifolds

Gradients allow interventions either on the data or the manifolds to create counterfactuals

𝑳(𝜽)
Counterfactuals can be interpreted as changing the 
manifold to fit the new data 

The exact nature and utility of these counterfactual manifolds is discussed in Part 4

Original manifold with 𝑥

Counterfactual manifold with 𝑥′

𝑥

𝑥′

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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• Part 1: Gradients in Neural Networks
• Deep Learning cannot easily generalize to novel data
• Novel data cannot always be handled during Training
• Gradients provide local information around the vicinity of 𝒙
• Gradients allow choosing the fastest direction of descent given a loss function 𝑳(𝜽)
• Gradients allow interventions either on the data or the manifolds to create counterfactuals

• Part 2: Gradients as Information
• Part 3: Gradients as Uncertainty
• Part 4: Gradients as Expectancy-Mismatch
• Part 5: Conclusion and Future Directions

Takeaways
Takeaways from Part 1

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Interpretation, and Applications of Gradients
Part 2: Gradients as Information
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• Discuss three types of Information
• Interpret gradients as Fisher Information
• Visual Explanations

• Explanatory Paradigms: Correlations, Counterfactuals, and Contrastives
• GradCAM
• ContrastCAM

• Robust Recognition under Challenging Conditions: Introspective Learning
• Introspective Features
• Robustness measures: Accuracy and Calibration
• Downstream Applications

Objectives
Objectives in Part 2

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Colloquially, information is the “surprise” in a system that observes an event

Information
Types of Information

Shannon Information
(Surprise of an event)

Mutual Information
(Surprise conditioned on another event)

Fisher Information
(Surprise of underlying distribution)

𝐻 𝑋 = −B𝑝 𝑥D logH 𝑝(𝑥D)
I

DJK

𝐻 𝑋 =	Shannon Entropy
𝑝 𝑥D = Probability of event 𝑥D	

Connects surprise to probability

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

𝐻 𝑋 =	Shannon Entropy of 𝑋
𝐻 𝑌 =	Shannon Entropy of 𝑌
𝐻(𝑋, 𝑌) =	Joint Entropy

Variance of the partial derivative 
w.r.t. θ of the Log-likelihood 
function ℓ(θ | x).

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕
𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 =	Statistic of distribution
ℓ(θ | x) =	Likelihood function

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Gradients infer information about the statistics of underlying manifolds

Fisher Information
Gradients as Fisher Information

𝒍(𝜽|𝒙)

Likelihood function instead of loss manifold

Using variance decomposition1, 𝐼 𝜃 reduces to: 

𝐼 𝜃 = 𝐸[𝑈8𝑈8Y] where

𝐸[⋅] =	Expectation
𝑈8 = 𝛻8𝑙 𝜃 𝑥 , Gradients w.r.t. the sample

From before, 𝐼 𝜃 = 𝑉𝑎𝑟( 6
68
𝑙 𝜃 𝑥 )

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

A key feature is that every sample draws 
information from the underlying distribution! 

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Gradients infer information about the statistics of underlying manifolds

Fisher Information
Gradients as Fisher Information

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

A key feature is that every sample draws 
information from the underlying distribution! 
And this information can be visualized.

Network 𝒇(𝜽) Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

𝑥

In this case, the image and its 
prediction extracts nose, mouth 
and jowl features. 

Local information (specific to 𝑥) is sufficient!
𝑥

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Gradients infer information about the statistics of underlying manifolds

Applicability of Gradient Information
Gradients as Fisher Information

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

Network 𝒇(𝜽) Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

𝑥
We demonstrate this in two 
applications: 

1. Visual Explainability
2. Robust Recognition

Local information (specific to 𝑥) is sufficient!
𝑥

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Gradients infer information about the statistics of underlying manifolds

Applicability of Gradient Information
Gradients as Fisher Information

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

Network 𝒇(𝜽) Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

𝑥
We demonstrate this in two 
applications: 

1. Visual Explainability
2. Robust Recognition

Local information (specific to 𝑥) is sufficient!
𝑥

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural Networks: 
Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

• Explanations are defined as a set of rationales used to understand the reasons behind a 
decision  

• If the decision is based on visual characteristics within the data, the decision-making 
reasons are visual explanations

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in 
the image?

Why Bullmastiff, rather than a 
Boxer?

Observed 
Correlations

Observed Counterfactual Observed 
Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Visual Explanations

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explainability establishes trust in deep learning systems by developing transparent models 
that can explain why they predict what they predict to humans

class scores

Algorithm

Data Output

Deep models act as algorithms that take 
data and output something without
being able to explain their methodology

Explainability is useful in:
• Medical: help doctors diagnose
• Seismic: help interpreters label seismic 

data
• Autonomous Systems: build appropriate 

trust and confidence 

Explanations
Visual Explanations

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Role of Explanations – context and relevance 

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted 
probabilities change

A gray patch or patch of average pixel value of the dataset
Note: not a black patch because the input images are 
centered to zero in the preprocessing.

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

P(elephant) = 0.95

Explanations
Input Saliency via Occlusions

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted 
probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

P(elephant) = 0.95

P(elephant) = 0.75These pixels 
affect decisions 
more

Explanations
Input Saliency via Occlusions

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

The network is trained with image- labels, but it is sensitive to the common visual regions in 
images 

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

Explanations
Input Saliency via Occlusions
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output

Vanilla Gradients Deconvolution Gradients Guided Backpropagation
Input

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

However, localization remains an issue

Explanations
Gradient-based Explanations
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• To find the important activations that are 
responsible for a particular class 

• We want the activations:
• Class-discriminative to reflect decision-

making
• Preserve spatial information to ensure 

spatial coverage of important regions

Gradient and Activation-based Explanations
GradCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN 
to assign importance values to each activation for a particular decision of interest.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

image

Grad-CAM (up-sampled to original image dimension)

Gradient and Activation-based Explanations
GradCAM

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

Grad-CAM generalizes to any task:
• Image classification
• Image captioning
• Visual question answering
• etc.

Rectified Conv 
Feature Maps

+

Backprop 
till conv

Grad-CAM

Gradient and Activation-based Explanations
GradCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant 
and contextual explanations

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in 
the image?

Why Bullmastiff, rather than a 
Boxer?

Observed 
Correlations

Observed Counterfactual Observed 
Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Gradient and Activation-based Explanations
Explanatory Paradigms
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, global average pool the negative of gradients to obtain 𝛼f for each kernel 𝑘

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

6hi

6jk

𝛼lf

What if Bullmastiff was not in 
the image?

Negating the gradients effectively removes these regions from analysis

Gradient and Activation-based Explanations
CounterfactualCAM: What if this region were absent in the image?
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to 
last conv layer

Backpropagating the loss highlights the differences between classes P and Q. 

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Contrast-CAM 

6m(n,o)
6jk

𝛼lf

Why Bullmastiff, rather than a 
Boxer?

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?
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The contrast classes are unlikely, but the gradients provide information about contrast 
classes 

ContrastCAM
Toy Manifold Example

𝒍(𝜽|𝒙)

Likelihood of a dog predicted as class dog

𝒍(𝜽|𝒙)

Likelihood of a dog predicted as class cat

𝒍(𝜽|𝒙)

Likelihood of a dog predicted as class horse

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Not Human 
Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Not Human 
Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Not Human 
Interpretable

Only traffic sign with a straight
bottom-left edge – enough to 

say `Not STOP Sign’

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Gradients infer information about the statistics of underlying manifolds

Applicability of Gradient Information
Gradients as Fisher Information

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

Network 𝒇(𝜽) Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

𝑥
We demonstrate this in two 
applications: 

1. Visual Explainability
2. Robust Recognition

Local information (specific to 𝑥) is sufficient!
𝑥

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-Stage 
Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

Robustness in Neural Networks
Why Robustness?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

How would humans resolve this challenge? 

We Introspect!

• Why am I being shown this slide?
• Why images of muffins rather than 

pastries?
• What if the dog was a bull mastiff?

Robustness in Neural Networks
Why Robustness?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

Spoonbill
𝑦q

Visual Sensing

Feed-Forward 
Sensing

Sense pink feathers, 
straight beak

	

Why Spoonbill, rather than Flamingo?
𝑥 does not have an S-shaped neck

Why Spoonbill, rather than Crane?
𝑥 does not have white feathers

Why Spoonbill, rather than Pig?
𝑥r𝑠	leg and neck shapes are 
different

Reflection

Spoonbill
𝑦t

Introspection

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Introspection
What is Introspection?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted 
questions.   

What are the possible targeted questions?

Introspection
Introspection in Neural Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

What are the possible targeted questions?

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in 
the image?

Why Bullmastiff, rather than a 
Boxer?

Observed 
Correlations

Observed Counterfactual Observed 
Contrastive

Introspection
Introspection in Neural Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Technical Definition : Given a network  𝑓 𝑥 , a datum 𝑥, and the network’s prediction
𝑓 𝑥 = 𝑦q, introspection in 𝑓 ⋅ is the measurement of change induced in the network 

parameters
when a label 𝑄 is introduced as the label for 𝑥..   

Contrastive Definition : Introspection answers questions of the form `Why 
P, rather than Q?’ where P is a network prediction and Q is the 

introspective class.   

Introspection
Introspection in Neural Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

For a well-trained network, the gradients are sparse and informative

Introspection
Gradients as Features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

For a well-trained network, the gradients are sparse and informative

Informative sparse features

Introspection
Gradients as Features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

For a well-trained network, the gradients are robust

Introspection
Gradients as Features

Lemma1:

Any change in class requires change in 
relationship between 𝑦w and 𝑦q

1
0
0
0
0

0

.

.

.

.

0
1
0
0
0

0

.

.

.

.

0
0
0
0
0

1

.

.

.

.

…

𝑦w
𝑦q = Prediction
𝐽 = Loss function

𝛻y = Gradients w.r.t. weights
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Normalized and vectorized
gradients are introspective 
features

Vector of all ones: A confounding label!

Introspection
Deriving Gradient Features
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Introspective Features

Introspection
Utilizing Gradient Features
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

We define robustness as being generalizable and 
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Introspection provides robustness when the train and test distributions are different  

Introspection
When is Introspection Useful?
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Calibration occurs when there is mismatch between a network’s confidence and its accuracy 

Calibration
A note on Calibration..

• Larger the model, more misplaced is a network’s 
confidence

• On ResNet, the gap between prediction accuracy 
and its corresponding confidence is significantly 
high

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Calibration occurs when there is mismatch between a network’s confidence and its accuracy 

Calibration
A note on Calibration..

CIFAR-10 Testset

𝑓(𝑥)

Average 
Accuracy 

Average Softmax
Probability

𝑓 𝑋 − ℙ(𝑋)

𝑓 𝑋

ℙ(𝑋)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Bin-wise 
subtraction to 
obtain gaps
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Ideal: Top-left 
corner

Y-Axis: 
Generalization

X-Axis: 
Calibration

Introspection in Neural Networks
Generalization and Calibration results
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection is a plug-in 
approach that works on all 
networks and on any 
downstream task!

Introspection is a light-weight option to resolve robustness issues

Introspection in Neural Networks
Plug-in nature of Introspection
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active 
Learning, and Image Quality Assessment!

Introspection in Neural Networks
Plug-in nature of Introspection
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• Part I: Gradients in Neural Networks
• Part 2: Gradients as Information

• Gradients approximate Fisher Information: They provide a methodology to infer information about the 
statistics of underlying manifolds using samples

• Fisher information in gradients allow them to be utilized in explanations
• The versatile information encoded in gradients allow for visualizing correlations, counterfactuals, and 

contrastives within the same GradCAM framework
• Contrastive information can be used to train a second stage that is more robust under noise conditions 

in Introspective Learning
• Part 3: Gradients as Uncertainty
• Part 4: Gradients as Expectancy-Mismatch
• Part 5: Conclusion and Future Directions

Objectives 
Takeaways from Part II

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Part I and Part II
Tying it Back

𝒍(𝜽|𝒙)

Ideal Goal

𝒍(𝜽|𝒙)

In Practice

Trained network 
knowledge is not easily 

accessible

From Part I

In Part II

𝒍(𝜽|𝒙)

𝒍(𝜽|𝒙)

Novel data projects onto the 
likelihood function (however 
incorrectly), and extracts 
fisher information around 
the projection

By backpropagating
contrast classes (and not 
updating the network), the 
network finds the steepest 
descent towards other 
regions of likelihood 
function

𝒍(𝜽|𝒙)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Interpretation, and Applications of Gradients
Part 3: Gradients as Uncertainty
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• Interpret gradients as Uncertainty
• Uncertainty Applications

• Anomaly Detection
• Out-of-Distribution Detection
• Adversarial Image Detection
• Corruption Detection

Objectives
Objectives in Part 3

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]



86 of 166

Uncertainty is a model knowing that it does not know

A simple example: More the training data, lesser the 
uncertainty 

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Uncertainty
What is Uncertainty?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]



87 of 166

Uncertainty is a model knowing that it does not know

• Larger the model, more misplaced is a network’s 
confidence

• On ResNet, the gap between prediction accuracy 
and its corresponding confidence is significantly 
high

• On OOD data, uncertainty is not easy to quantify

Guo, Chuan, et al. "On calibration of modern neural networks." International conference on 
machine learning. PMLR, 2017.

Uncertainty
When is Uncertainty an Issue?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Two major types of uncertainty: Uncertainty in data and uncertainty in model, together termed 
as prediction Uncertainty

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A 
survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.

Uncertainty
Two Types of Uncertainty

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive 
uncertainty estimation using deep ensembles." Advances in neural information processing systems 30 
(2017). 

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽)

Network 𝒇𝟐(𝜽)

Network 𝒇𝑵(𝜽)

.

.

.

Dog

Cat

Horse

Bird

Dog

Cat

Horse

Bird

Via Ensembles1

Variation within outputs 
𝑉𝑎𝑟(𝑦) is the 
uncertainty. Commonly 
referred to as 
Prediction Uncertainty.

Uncertainty
Uncertainty Quantification in Neural Networks
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[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a 
single deep deterministic neural network. In International conference on machine learning (pp. 9690-
9700). PMLR.

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽)

Via Single pass methods1

Uncertainty 
quantification using a 
single network and a 
single pass

𝑳(𝜽)

Calculate distance from some trained clusters

Does not require multiple networks!
However, does requires multiple data points at inference!

Uncertainty
Uncertainty Quantification in Neural Networks
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Our Goal: Use gradients to characterize the novel data at Inference, without global 
information

Distance from unknown cluster 

𝒍(𝜽|𝒙)Two techniques:

1. Gradient constraints during Training 
for Anomaly Detection

2. Backpropagating Confounding labels 
for Out-of-Distribution Detection

Uncertainty
Gradients as Single pass Features
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Our Goal: Use gradients to characterize the novel data at Inference, without global 
information

Distance from unknown cluster 

𝒍(𝜽|𝒙)Two techniques:

1. Gradient constraints during Training 
for Anomaly Detection

2. Backpropagating Confounding labels 
for Out-of-Distribution Detection

Uncertainty
Gradients as Single pass Features
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Backpropagated Gradient Representations for 
Anomaly Detection

Mohit Prabhushankar, PhD
Postdoc, Georgia Tech 

Ghassan AlRegib, PhD
Professor, Georgia Tech

Gukyeong Kwon, PhD
Amazon AWS
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Statistical Definition:
• Normal data are generated from a stationary process 𝑃I
• Anomalies are generated from a different process 𝑃j ≠ 𝑃I

Goal: Detect 𝜙K

Anomalies
Finding Rare Events in Normal Patterns

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ [1]

[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, 
Article 15 (July 2009), 58 pages

1

2

Backpropagated Gradient 
Representations for Anomaly Detection

𝑥 𝑡 = 	 �𝜙�𝜙K
Normal data
Anomalies
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Anomalies
Steps for Anomaly Detection

Backpropagated Gradient 
Representations for Anomaly Detection

• Step 1 ensures that patches from natural 
images live close to a low dimensional 
manifold

• Step 2 designs distance functions that 
detect implausibility based on 
constraints

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

Anomaly

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Constraining Manifolds
General Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

Constrained
Representation

Testing

Training

Encoder Decoder

Statistical deviation (Latent Loss)  Anomaly

2004

Tax et.al 1

2019

Abati et.al 4

2018

Pidhorksyi et.al 3

2016

Fan et.al 2

Activations are 
constrained 
using GANs, 
VAEs, etc.

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.
[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint 
arXiv:1805.11223, 2018. 1, 2
[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.
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Constraining Manifolds
Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

Trained with ‘0’

Encoder Decoder

Input

Forward propagation

Backpropagation

Gradient-based Representation
(Model perspective)

𝑊 𝑊′𝜕ℒ
𝜕𝑊

Activation-based representation
(Data perspective)

Reconstruction error (ℒ)

−

Reconstruction

e.g. 

How much of the input 

does not correspond to 

the learned information?

How much model update is 

required by the input?

Activation Constraints

Gradient Constraints

Anomaly

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020
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Constraining Manifolds
Advantages of Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Reconstructed image manifold

𝑔�(𝑓8 ⋅ )

Abnormal data distribution

𝑥q���

𝑥���

Reconstruction 
Error (ℒ)

Abnormal data distribution

𝑥���

𝜕ℒ
𝜕𝜃

𝜕ℒ
𝜕𝜙
�
�J����,

Backpropagated
Gradients

𝑥q���

𝑔�(𝑓8 ⋅ )

• Gradients provide directional information to characterize anomalies

• Gradients from different layers capture abnormality at different levels of data abstraction

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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GradCON: Gradient Constraint
Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Learned manifold

𝜕ℒ
𝜕𝜙D�,K

𝜕ℒ
𝜕𝜙���

𝜃

𝜙: Weights ℒ: Reconstruction error

𝐽 = ℒ − 𝔼D cosSIM
𝜕𝐽
𝜕𝜙D���

l�K

,
𝜕ℒ
𝜕𝜙D

l

	

Gradient loss

𝜕𝐽
𝜕𝜙D���

l�K

= B
𝜕𝐽
𝜕𝜙D

�l�K

�JK

where

Avg. training 
gradients until (k-1) th iter.

Gradients at
k-th iter.

At k-th step of training,

𝜕ℒ
𝜕𝜙D�,H

Constrain gradient-based representations during training to obtain clear separation between 

normal data and abnormal data
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GradCON: Gradient Constraint
Activations vs Gradients

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Abnormal “class” 
detection (CIFAR-10)

Normal Abnormal

• (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

• (CAE vs. VAE) Performance sacrifice from the latent constraint

• (VAE vs. VAE + Grad) Complementary features from the gradient constraint

e.g.

AUROC Results

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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GradCON: Gradient Constraint
Aberrant Condition Detection

Backpropagated Gradient 
Representations for Anomaly Detection

Abnormal “condition”
detection (CURE-TSR)

Normal Abnormal

AUROC Results

Recon: Reconstruction error, Grad: Gradient loss

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020
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GradCON Applicability
Estimating Disease Severity

Backpropagated Gradient 
Representations for Anomaly Detection

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling 
for Biomarker Classification in OCT," in IEEE International Conference on Image Processing (ICIP), 
Bordeaux, France, Oct. 16-19 2022

Learned Manifold : Healthy OCT

Severity Manifolds

Moderate 
Disease 
Manifold

Severe 
Disease 
Manifold

𝑺𝑺𝟏

𝑺𝑺𝟐

𝑺𝑺𝟐 > 𝐒𝐒𝟏

SS = Severity Score

Goal
• Define severity with respect to distance 

from a healthy manifold.
• This distance can be regarded as a 

severity score.

How to measure severity score?
• Define severity as: “the degree to which a 

sample appears anomalous relative to 
the distribution of healthy images.”

Experimental Plan
• Investigate model responses that can act 

as good surrogate for severity score

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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GradCON Applicability
Estimating Disease Severity

Backpropagated Gradient 
Representations for Anomaly Detection

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling 
for Biomarker Classification in OCT," in IEEE International Conference on Image Processing (ICIP), 
Bordeaux, France, Oct. 16-19 2022

• 9408 images labeled with complete 
biomarker data

• Every image associated with vector 
indicating presence/absence of 16 
potential biomarkers

• 5 biomarkers exist with sufficient 
balanced quantities

• Develop 5 biomarker test sets (PAVF, FAVF, 
IRF, DME, and IRHRF) 

https://github.com/olivesgatech

OLIVES Dataset
https://arxiv.org/pdf/2209.11195.pdf

Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics 
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GradCON Applicability
Estimating Disease Severity

Backpropagated Gradient 
Representations for Anomaly Detection

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling 
for Biomarker Classification in OCT," in IEEE International Conference on Image Processing (ICIP), 
Bordeaux, France, Oct. 16-19 2022

Learned Manifold : Healthy OCT

Severity Manifolds

Moderate 
Disease 
Manifold

Severe 
Disease 
Manifold

𝑺𝑺𝟏

𝑺𝑺𝟐

𝑺𝑺𝟐 > 𝐒𝐒𝟏

𝐿 = 𝐿��f�� + 	𝛼𝐿����
Idea
• Constrain gradients of in-distribution class
• Make gradients sensitive to progressively anomalous data
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GradCON Applicability
Estimating Disease Severity

Backpropagated Gradient 
Representations for Anomaly Detection

K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling 
for Biomarker Classification in OCT," in IEEE International Conference on Image Processing (ICIP), 
Bordeaux, France, Oct. 16-19 2022

Severity Labels used to select positive and negative pairs for weakly-supervised contrastive 
learning

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Our Goal: Use gradients to characterize the novel data at Inference, without global 
information

Distance from unknown cluster 

𝒍(𝜽|𝒙)Two techniques:

1. Gradient constraints during Training 
for Anomaly Detection

2. Backpropagating Confounding labels 
for Out-of-Distribution Detection

Uncertainty
Gradients as Single pass Features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks via 
Gradient Analysis

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor

Jinsol Lee,
PhD Candidate
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Principle: Gradients provide a distance measure between the learned representations space 
and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

However, what is ℒ?

• In anomaly detection, the loss was between the input and 
its reconstruction

• In prediction tasks, there is neither the reconstructed input 
nor ground truth

Abnormal data distribution

𝑥���

𝜕ℒ
𝜕𝜃

𝜕ℒ
𝜕𝜙
�
�J����,

Backpropagated
Gradients

𝑥q���

𝑔�(𝑓8 ⋅ )

Learned Representation

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Uncertainty in Neural Networks
Principle

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Principle: Gradients provide a distance measure between the learned representations space 
and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

𝑄K 𝜕ℒ(𝑃, 𝑄K)
𝜕𝜃

Backpropagated
Gradients

𝑃

Learned Representation

However, what is ℒ?

• In anomaly detection, the loss was between the 
input and its reconstruction

• In prediction tasks, there is neither the 
reconstructed input nor ground truth

• We backpropagate all contrast classes -
𝑸𝟏, 𝑸𝟐	 …𝑸𝑵 by backpropagating N one-hot 
vectors 

• Higher the distance, higher the uncertainty 
score

𝑃		 =	Predicted class
𝑄K =	Contrast class 1
𝑄H =	Contrast class 2

𝑄H

𝜕ℒ(𝑃, 𝑄H)
𝜕𝜃

Backpropagated
Gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Uncertainty in Neural Networks
Principle
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Toy Manifold Example
What is uncertainty?

𝒍(𝜽|𝒙)

𝑥

𝒍(𝜽|𝒙) 𝑥

𝑥′

Similar to introspective learning!

Contrast class 1

𝒍(𝜽|𝒙) 𝑥

𝑥′
Contrast class N

.

.

.

Gradients represent the local required change in manifold

• Gradients 
provide the 
necessary 
change in 
manifold that 
would predict 
the novel data 
‘correctly’.

• Correctly means 
contrastively (or 
incorrectly)!

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]



111 of 166

Probing the Purview of Neural Networks 
via Gradient Analysis

Toy Manifold Example
How is this different from Part 2?

𝒍(𝜽|𝒙) 𝒍(𝜽|𝒙) 𝑥

𝑥′
Part 2: Information

𝒍(𝜽|𝒙)

Part 3: Uncertainty

• In Part 2: Activations of learned 
manifold are weighted by gradients 
w.r.t. activations to extract 
information and provide 
explanations

• In Part 3: Statistics of gradients 
w.r.t. the weights (energy) will be 
directly used as features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Normalized and vectorized
gradients are introspective 
features. 

Why vector of all 1s? The theory is 
presented in [1]

Probing the Purview of Neural Networks 
via Gradient Analysis

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Uncertainty in Neural Networks
Deriving Gradient Features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Step 2: Take L2 norm of all generated gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

𝛁𝜽𝟎	𝑱(𝜽𝟎; 	𝒙, 𝒚𝒄) 𝟐
𝟐 	 𝛁𝜽𝑵	𝑱(𝜽𝑵; 	𝒙, 𝒚𝒄) 𝟐

𝟐
,             ,

Collection of squared L2 norm
𝒅𝛁𝜽

. . .

MNIST: In-distribution, SUN: Out-of-Distribution

Uncertainty in Neural Networks
Utilizing Gradient Features

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Squared L2 distances for different parameter sets

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets 

Gradient-based Uncertainty
Uncertainty in OOD Setting

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect 
adversarial, noisy, and OOD data

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Experimental Setup

Step 1: Train a deep network 𝑓(⋅) on 
some training distribution 
Step 2: Introduce challenging 
(adversarial, noisy, OOD) data 
Step 3: Derive gradient uncertainty on 
both trained and challenge data
Step 4: Train a classifier 𝐻(⋅) to detect
challenging from trained data
Step 5: At test time, data is passed 
through 𝑓(⋅) and then 𝐻(⋅) to obtain a 
Reliability classification

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Vulnerable DNNs in the real world

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

Gradient-based Uncertainty
Uncertainty in Adversarial Setting
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Adversarial Setting

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

CIFAR-10-C

Same application as Anomaly Detection, except there is no need for an additional AE 
network!

CURE-TSR

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

MNIST

CIFAR10 TinyImageNetSVHN LSUN

Train set

Goal: To detect that these datasets are not part of training

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Out-of-Distribution Detection

CIFAR10 TinyImageNetSVHN LSUN

Numbers Objects, natural scenes

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis
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Out-of-Distribution Detection

CIFAR10TinyImageNet SVHNLSUN

More similar 
datasets
(objects)

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis
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• Part I: Gradients in Neural Networks
• Part 2: Gradients as Information
• Part 3: Gradients as Uncertainty

• Defining Uncertainty in the context of Neural Networks
• Anomaly Detection

• GradCON: Gradient Constraints
• Out-of-Distribution Detection
• Adversarial Detection
• Corruption Detection

• Part 4: Gradients as Expectancy-Mismatch
• Part 5: Conclusion and Future Directions

Objectives 
Takeaways from Part III

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Interpretation, and Applications of Gradients
Part 4: Gradients as Expectancy-Mismatch
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• Interpret gradients as Expectancy-Mismatch
• Define expectancy-mismatch utilizing saliency
• Demonstrate counterfactual manifolds as expectancy-mismatch

• Human Visual Saliency
• Image Quality Assessment

Case Study: Expectancy-Mismatch

Objectives
Objectives in Part IV

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Feature 1

Feature 2

Feature 3

Weights

Weights

Fusion

General-purpose Saliency algorithm

Bottom-Up Saliency : Innovation is in designing features and fusion

Top-Down Saliency  : Innovation is in designing weights

Color, Intensity, 
Orientation [1]

Faces, text, 
object detectors 

[1]

[1] Judd, Tilke, Frédo Durand, and Antonio Torralba. "A benchmark of computational models of 
saliency to predict human fixations." (2012).

Saliency
Saliency in Literature
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Feature 1

Feature 2

Feature 3

Weights

Weights

Fusion

General-purpose Saliency algorithm

Bottom-Up Saliency : Innovation is in designing features and fusion

Top-Down Saliency  : Innovation is in designing weights

Color, Intensity, 
Orientation [1]

Faces, text, 
object detectors 

[1]

[1] Judd, Tilke, Frédo Durand, and Antonio Torralba. "A benchmark of computational models of 
saliency to predict human fixations." (2012).

Saliency
Our Goal: Introduce Implicit Saliency in Neural Networks

Features that 
are new and 
unexpected 
(novel) in a 
scene are 
salient

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

𝒍(𝜽|𝒙)

𝑥

At Inference, construct local contrastive manifolds

𝒍(𝜽|𝒙) 𝑥

𝑥′

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

𝒍(𝜽|𝒙)

𝑥

At Inference, construct local contrastive manifolds

𝒍(𝜽|𝒙) 𝑥

𝑥′

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

𝒍(𝜽|𝒙)

𝑥

Similar to introspective learning!

Contrast class 1

Contrast class N

Mean of 
projected 
gradients is 
the 
expectancy!

.

.

.

𝒍(𝜽|𝒙)

𝒍(𝜽|𝒙)

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]



134 of 166

Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

𝒍(𝜽|𝒙)

𝑥

𝒍(𝜽|𝒙) 𝑥

𝑥′

Similar to introspective learning!

Contrast class 1

𝒍(𝜽|𝒙) 𝑥

𝑥′
Contrast class N

Variance of 
gradients is 
the 
mismatch!

.

.

.
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Mean of 
projected 
gradients is 
the 
expectancy!

𝒍(𝜽|𝒙)

𝒍(𝜽|𝒙)

𝒍(𝜽|𝒙) 𝑥

𝑥′

𝒍(𝜽|𝒙) 𝑥

𝑥′
Variance of 
gradients 
is the 
mismatch!

Point-wise 
Multiplication

Saliency Map
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

Similar to introspective learning!

Wrong class 1

Wrong class N

.

.

.

Gradients in the 𝑘�¤ layer: Pseudo-saliency maps

Saliency Map

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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1
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0
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yQ

1!R

R unexpected stimuli vectors

...R Pseudo
Saliency

Maps

cSaliency
Deriving Gradient-based Implicit Saliency

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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1
0

0

...

0
1

0
0

...

0

0
0

1

...

0
0

0
1

...

0

...

yQ

1!R

R unexpected stimuli vectors

...R Pseudo
Saliency

Maps

Implicit Saliency
Deriving Gradient-based Implicit Saliency

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Mean
of the R Pseudo 
Saliency Maps

Variance
of the R Pseudo 
Saliency Maps

Pixel-wise 
Multiplication

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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Contrastive saliency is correlated with attention more than its Feed-Forward counterpart

Implicit Saliency
Experiments

p Feed-forward expectation features:
• Edges and textures 
• Without specific localization

p Proposed expectation-mismatch Saliency:
• Localized saliency maps
• Highly correlated with ground truthInput Image Groundtruth Proposed 

Method
Feed-forward 

feature

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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Contrastive Saliency outperforms explanation methods like GradCAM and Guided Backprop

Implicit Saliency
Experiments

Input Image

GradCam

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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Compare performance of unsupervised Contrastive Saliency model against existing saliency 
models

Implicit Saliency
Experiments

Saliency Models Training data

SalGan SALICON

ML-Net SALICON

DeepGazeII SALICON

ShallowDeep SALICON/iSUN

Existing Learning based methods

Deep 
Neural Networks

Training data

Contrastive Saliency is unsupervised!

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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Compare performance of unsupervised Contrastive Saliency model against existing saliency 
models

Implicit Saliency
Experiments

Input Image Groundtruth Proposed 
Method

SalGan ML-Net DeepGazeII ShallowDeep

ComprehensivePrecise

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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Contrastive Saliency drops the least performance with noise added

Implicit Saliency
Robustness Analysis

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

Sun, Yutong, Mohit Prabhushankar, and Ghassan AlRegib. "Implicit saliency in deep neural 
networks." 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
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Expectancy-Mismatch
Our Goal: Introduce Expectancy-Mismatch in Neural Networks

𝒍(𝜽|𝒙)

𝑥

At Inference, construct local contrastive manifolds

𝒍(𝜽|𝒙) 𝑥

𝑥′

Change in Network Parameters: Expectancy-Mismatch when presented with novel data!

We demonstrate on two applications:
1. Human Visual Saliency
2. Image Quality Assessment

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Image Quality Assessment  
Algorithm :
DIQaM [1]

Score : 0.58

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

[1] Bosse S, Maniry D, Müller K R, et al. Deep neural networks for no-reference and full-reference image 
quality assessment. IEEE Transactions on Image Processing, 2018, 27(1): 206-219.

Image Quality Assessment
What is IQA?

IQA is the objective Assessment of Subjective Quality

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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[1] Ponomarenko, Nikolay, et al. "Image database TID2013: Peculiarities, results and 
perspectives." Signal processing: Image communication 30 (2015): 57-77

Image Quality Assessment
Expectancy-Mismatch in Dataset Construction

• Subjects are shown a reference image in a 
controlled setting 

• Based on the reference image, they are asked to 
pick one of the images on the top that differs least 
from the reference image

• Reference image sets the expectancy
• The task of subjectively picking the least mis-

matched image is IQA

Expectancy-Mismatch arises during 
Dataset Construction

This requires Fine-grained Analysis! 

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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[1] Ponomarenko, Nikolay, et al. "Image database TID2013: Peculiarities, results and 
perspectives." Signal processing: Image communication 30 (2015): 57-77

Image Quality Assessment
Expectancy-Mismatch in Dataset Construction

Expectancy-Mismatch arises during 
Dataset Construction

This requires Fine-grained Analysis on the 
part of the subjects!

Our Goal: To determine if a trained IQA 
detector understands the fine-grained nature 
of expectancy-mismatch in quality

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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DIQaM :
0.58

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

Why 0.58?

Grad-CAM

Add heatmap
Explain blue
Yellow, red, green

Image Quality Assessment
GradCAM in IQA

GradCAM explanation for Why 0.58?

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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DIQaM :
0.58

Good 
Quality

Bad 
Quality

The given image is 
somewhat OK quality

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

Why 0.58?

Grad-CAM

Grad-CAM explanation tells us 
that the quality score was 
decided based on all parts of 
the image and specifically 
based on the base of the 
lighthouse

Image Quality Assessment
GradCAM in IQA

GradCAM explanation may not be useful for fine-grained analysis

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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DIQaM :
0.58

Good 
Quality

Bad 
Quality

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

Why 0.58, 
rather than 1?

Contrastive explanation

Image Quality Assessment
ContrastCAM in IQA

All the distortions in the foreground prevent a quality score of 1

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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Good 
Quality

Bad 
Quality

DIQaM :
0.58

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

Why 0.58, 
rather than 0.75?

Contrastive explanation

Image Quality Assessment
ContrastCAM in IQA

The distortions on the lighthouse and houses prevent a higher score of 0.75

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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DIQaM :
0.58

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

Why 0.58, 
rather than 0.5?

Contrastive explanation

Image Quality Assessment
ContrastCAM in IQA

The quality of the lighthouse and sky is better than a score of 0.5

Good 
Quality

Bad 
Quality

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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DIQaM :
0.58

Lighthouse image with level 5 lossy
compression from TID 2013 dataset

Why 0.58, 
rather than 0.25?

Contrastive explanation

Image Quality Assessment
ContrastCAM in IQA

The sky, lighthouse, and cliff merit a quality higher than 0.25

Good 
Quality

Bad 
Quality

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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Image Quality Assessment
ContrastCAM in IQA

Contrastive IQA elicits the fine-grained decisions made by the network

Stochastic Surprisal: An Inferential 
Measurement of Free Energy in Neural 
Networks

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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• Part I: Gradients in Neural Networks
• Part 2: Gradients as Information
• Part 3: Gradients as Uncertainty
• Part 4: Gradients as Expectancy-Mismatch

• Presented a case study of utilizing both the contrastive manifolds and manifold traversal perspectives 
• Human Visual Saliency is a by-product of expectancy-mismatch
• Neural networks that have never explicitly learned human salient regions have implicitly been trained to 

use them in tasks
• Using Contrastive explanations in IQA provides a fine-grained analysis of neural network’s perception of 

quality
• Part 5: Conclusion and Future Directions

Objectives 
Takeaways from Part IV

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Interpretation, and Applications of Gradients
Part 5: Conclusions and Future Directions
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Key Takeaways
Role of Gradients

• Robustness under distributional shift in domains, environments, and adversaries are challenges for neural 
networks

• Gradients at Inference provide a holistic solution to the above challenges
• Gradients can help traverse through a trained and unknown manifold

• They approximate Fisher Information on the projection
• They can be manipulated by providing contrast classes
• They can be used to construct localized contrastive manifolds
• They provide implicit knowledge about all classes, when only one data point is available at inference

• Gradients are useful in a number of Image Understanding applications
• Highlighting features of the current prediction as well as counterfactual data and contrastive classes
• Providing directional information in anomaly detection
• Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
• Providing expectancy mismatch for human vision related applications

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Future Directions
Research at Inference Stage

• Test Time Augmentation (TTA) Research
• Multiple augmentations of data are passed through the network at inference
• Research is in designing the best augmentations 

• Active Inference
• Utilize the knowledge in Neural Networks to ask it to ask us
• Neural networks ask for the best augmentation of the data point given that one data point at inference

• Uncertainty in Explainability, Label Interpretation, and Trust quantification
• Uncertainty research has to expand beyond model and data uncertainty
• In some applications within medical and seismic communities, there is no agreed upon label for data. 

Uncertainty in label interpretation is its own research
• Test-time Interventions for AI alignment

• Human interventions at test time to alter the decision-making process is essential trustworthy AI
• Further research in intelligently involving experts in a non end-to-end framework is required

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Deep learning cannot easily generalize to novel data

Memes to Wrap it Up
Deep Learning and Novel Data

Novel data may not 
be available during 
training

Even if 
available, 
novel data 
does not 
easily fit into 
either the 
earlier or 
later stages 
of training

A = Deep Neural Networks
B = Novel data

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Existing research on robustness focuses on data collection and optimization 

Memes to Wrap it Up
Robustness Research in the Inferential Stage of Neural Networks

Optimization

Data 
Collection

Inference

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Trained Neural Networks have a wealth of implicit stored knowledge, waiting to be extracted 
at inference

Memes to Wrap it Up
Implicit Knowledge in Neural Networks

Traditional Why P?
Why P, rather than Q?

What if?

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Cannot depend on training to construct 
robust models

Memes to Wrap it Up
Robustness at Inference

Robustness

Deep Learning

Adversarial 
Images

Deep Learning

[Tutorial@ICIP'23] | [Ghassan AlRegib and Mohit Prabhushankar] | [Oct 8, 2023]
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Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection 

• Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural 
Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

• Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International Conference 
on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

• Gradients for Open set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image Processing 
(ICIP). IEEE, 2021.

• GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. In European 
Conference on Computer Vision (pp. 206-226). Springer, Cham.

• Gradients for adversarial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," in IEEE 
Access, Mar. 21 2023.

• Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural networks. In 2020 
IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

• Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated Gradients," 
in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

• Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal Processing 
Magazine, 39(4), 59-72.

• Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on 
Image Processing (ICIP) (pp. 3289-3293). IEEE.

• Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, ”Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference on Image 
Processing (ICIP), Sept. 2021.

• Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers in 
Neuroscience, Perception Science, Volume 17, Feb. 09 2023.

References
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Self Supervised Learning

• Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker 
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023. 

• Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye Data," 
in Open Journal of Signals Processing, Apr. 28 2023.

• Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," 
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation," 
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction 

• Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on Intelligent 
Transportation Systems, submitted on Dec. 28 2022.

• Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

• Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 10, pp. 
1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

• CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics," in IEEE 
Transactions on Intelligent Transportation Systems, Jul. 2019

• CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural 
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

• CURE-OR: D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning and 
Applications (ICMLA), Orlando, FL, Dec. 2018 
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Active Learning

• Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A Second 
Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

• Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. Parchami, 
"FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

• Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-Distribution 
Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," in IEEE 
International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

• Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020

• Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural Network 
Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

• Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With Prediction 
Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

• Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurIPS 2022 
Workshop on Human in the Loop Learning, Oct. 27 2022

• Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection," 
in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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