
A Holistic View of Perception in 
Intelligent Vehicles

Mohit Prabhushankar, PhD
Postdoctoral Fellow 

Ghassan AlRegib, PhD
Professor

Omni Lab for Intelligent Visual Engineering and Science (OLIVES) 
School of Electrical and Computer Engineering

Georgia Institute of Technology 
{ alregib, mohit.p } @gatech.edu

June 04, 2023 – Anchorage, Alaska 



2 of 184

Autonomous Vehicles

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Why Autonomous Vehicles?

Safety in Mobility Mobility Experience

Safety: https://www.lensculture.com/articles/arnold-odermatt-karambolage-smash-up#slideshow
Experience: https://innovationatwork.ieee.org/autonomous-vehicles-for-today-and-for-the-future/
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Autonomous Vehicles

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Why Autonomous Vehicles?

In 2020, despite COVID-19 restrictions, fatalities increased in the US 

Tefft, B.C. & Wang, M. (2022). Traffic Safety Impact of the COVID-19 Pandemic: Fatal Crashes Relative to Pre-
Pandemic Trends, United States, May–December 2020 (Research Brief). Washington, D.C.: AAA Foundation for 
Traffic Safety.
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Autonomous Vehicles

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Why Autonomous Vehicles?

Next Revolution in Mobility Safety: AI

Center for Sustainable Systems, University of Michigan. 2021. "Autonomous Vehicles Factsheet." Pub. No. 
CSS16-18.

94% of all car accidents are due to human error

It is estimated that, globally, AVs can prevent 4.22 million accidents per year by 2050
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Autonomous Vehicles

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

How will AI ensure Safety in Mobility?

AI identifies and overcomes human limitations in sensing and simulates complex 
environments for testing 

https://www.unrealengine.com/en-US/spotlights/multi-purpose-car-simulation-environment-gets-a-boost-from-
unreal-engine

Active sensors like LIDAR overcome the limitations of 
passive vision sensing

Incredibly complex driving scenarios can be 
simulated using AI to test itself  
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Autonomous Vehicles

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

How will AI ensure Safety in Mobility?

AI provides technologies to handle large data modalities in real time environments

https://www.telecomreview.com/articles/reports-and-coverage/3985-connected-and-autonomous-cars-balancing-
morality-and-regulation

Real-time connection to other 
vehicles, pedestrians, 

infrastructure and networks is 
facilitated by AI
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• Part I: Challenges in Perception and Autonomy 
• Part II: Deep Learning for Perception
• Part III: Existing Deep Learning solutions to Challenges in Perception
• Part IV: Remaining Challenges and Future Directions

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Objectives of the Tutorial



A Holistic View of Perception in Intel. Vehicles
Part I: Perception and Autonomy
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• Summarize the progress of AVs over the years 
• Discuss the role of perception in AVs and where it fits within the AV workflow
• Review well-known failures of AVs in providing safety to drivers and to others
• Discuss major technical challenges currently facing AV
• Motivate deep learning as a holistic solution to perception challenges

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Objectives in Part I
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Perception

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What is Perception? ME!!!!

What is perception?

See, process, understand.

https://www.animalcognition.org/2015/04/15/list-of-animals-that-have-passed-the-mirror-test/
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Perception

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Perception in AVs
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Tsubaka Mechanical Engineering Laboratory (1977)

Tsubaka: Srinivas Rao, P., Gudla, R., Telidevulapalli, V. S., Kota, J. S., & Mandha, G. (2022). Review on self-
driving cars using neural network architectures.

Technology demonstrated: 

Two video cameras and an analog computer onboard for 
image processing, Detect street markings

First standalone “autonomous” vehicle
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Eureka PROMETHEUS Project (1987 - 1995)

PROMETHEUS: https://en.wikipedia.org/wiki/Eureka_Prometheus_Project

New technologies 
demonstrated: 

Vision enhancement, Lane 
keeping support, visibility 
range monitoring, Driver status 
monitoring, Collision 
avoidance, Cooperative 
driving, Autonomous intelligent 
cruise control 
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

DARPA Grand Challenge (2004 - 2005)

Urmson, Chris, Charlie Ragusa, David Ray, Joshua Anhalt, Daniel Bartz, Tugrul Galatali, Alexander Gutierrez et 
al. "A robust approach to high-speed navigation for unrehearsed desert terrain." Journal of Field Robotics 23, no. 
8 (2006): 467-508.

New technologies demonstrated: 

Wide sensor suite including stereo vision, LIDAR, 
radar, and ultrasound sensors, sensor fusion, 
obstacle detection, off-road path following, path 
finding
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Georgia Tech in DARPA Challenge

[PhD] | [Ghassan AlRegib] | [May 16, 2023]

Video/News Articles

Need for Failsafe in AVs
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New technologies 
demonstrated: 

Low latency failsafe 
mechanisms in 
connected cars

Remote Repositioning 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

A driver in the Cloud Remotely Drives a Completely Equipped Vehicle 
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

A Leap in Progress

Source: https://www.statista.com/chart/17144/test-miles-and-reportable-miles-per-disengagement/

Disengagement: Cases 
where the car’s software 
detects a failure or the 
driver perceived a 
failure, resulting in 
control being seized by 
the driver.  

AV statistics in California (Dec 2019 – Nov 2020) 
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Setbacks and Challenges

https://www.businessinsider.com/details-about-the-fatal-tesla-autopilot-accident-released-2017-6

Autopilot didn’t detect the trailer as an obstacle (NHTSA 
investigation and Tesla statements)

1. The National Highway Traffic Safety Administration (NHTSA) 
determined that a “lack of safeguards” contributed to the 
death

2. "Neither Autopilot nor the driver noticed the white side of the 
tractor trailer against a brightly lit sky, so the brake was not 
applied," Tesla said.
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Challenges in Perception in Autonomous Vehicles

1. The National Highway Traffic Safety 
Administration (NHTSA) determined 
that a “lack of safeguards” contributed 
to the death

2. "Neither Autopilot nor the driver 
noticed the white side of the tractor 
trailer against a brightly lit sky, so the 
brake was not applied," Tesla said.

https://www.businessinsider.com/details-about-the-fatal-tesla-autopilot-accident-released-2017-6

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Setbacks and Challenges

1. https://www.telegraph.co.uk/technology/2018/03/20/ubers-fatal-accident-end-driverless-cars/
2. https://www.cnbc.com/2018/05/24/ubers-self-driving-suv-saw-the-pedestrian-in-fatal-accident-but-didnt-brake-
officials-say.html
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Technical Challenges

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception
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Technical Challenges in Perception for AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Challenging Sensing and Weather

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." IEEE 
Transactions on Intelligent Transportation Systems (2017). 
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Technical Challenges in Perception for AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Challenging Environments

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

Dokania, S., Hafez, A. H., Subramanian, A., Chandraker, M., & Jawahar, C. V. (2023). IDD-3D: Indian Driving 
Dataset for 3D Unstructured Road Scenes. In Proceedings of the IEEE/CVF Winter Conference on Applications 
of Computer Vision (pp. 4482-4491).
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Technical Challenges in Perception for AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Context Awareness

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

Does the fire impede mobility?
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Technical Challenges in Perception for AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Embedded Perception

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

On-board computational capabilities of modern deep learning algorithms is a challenge
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Technical Challenges in Perception for AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

V2X Perception

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

Source: Fast and Furious 8!
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Role of Perception

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Wards Intelligence, Smarter Than Humans? AI for AVs: Sensing, Perception, Prediction and 
Planning

Role of Perception within AVs

Role of Perception:

• Filter,
• process, and
• understand

sensor data
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Sensors

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Role of Sensors for Perception

DARPA Grand Challenge (2004 - 2005)Eureka PROMETHEUS Project (1987 - 1995)Tsubaka Mechanical Engineering Laboratory (1977)

More sensors and better fusion strategies!
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Sensors

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

How can we choose the “appropriate” Sensors?
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Sensors

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Choosing the Appropriate Sensors

• Sensors need to work under challenging weather 
conditions

• Sensors need to have sensing capacity and resolution in 
meeting challenging sensing environments

• Sensors must be cost effective
• Sensor fusion and sensor registration must be 

computationally effective
• Sensors must output minimum noise or their working 

ranges must be known in advance
• Sensor data must be resistant to cyber and adversarial 

attacks
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Sensors

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Choosing the Appropriate Sensors

Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor fusion technology in 
autonomous vehicles: A review. Sensors, 21(6), 2140.
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Sensors

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Choosing the Appropriate Sensors

Ma, Y., Wang, Z., Yang, H., & Yang, L. (2020). Artificial intelligence applications in the development of 
autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 315-329.
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Levels of Autonomy

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Taxonomy

https://www.sae.org/blog/sae-j3016-update

Current technology: 

• Levels 1 and 2 are in the 
market

• Extensive testing on 
Level 3
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Levels of Autonomy

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Levels 1 and 2 Autonomy

The vehicle is self-sufficient
in terms of onboard sensors and 
perception!

Yeong, De Jong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. "Sensor and sensor fusion 
technology in autonomous vehicles: A review." Sensors 21, no. 6 (2021): 2140.
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Levels of Autonomy

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Levels 3 and Beyond

Haque, K. F., Abdelgawad, A., Yanambaka, V. P., & Yelamarthi, K. (2020). Lora architecture for v2x 
communication: An experimental evaluation with vehicles on the move. Sensors, 20(23), 6876.

The vehicle needs help 
from other sensors, 
sources, and processors!
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Levels of Autonomy

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Achieving Perception

Yeong, De Jong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. "Sensor and sensor fusion 
technology in autonomous vehicles: A review." Sensors 21, no. 6 (2021): 2140.

How to filter, process, and understand sensor data?



37 of 184

Levels of Autonomy

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Achieving Perception

Yeong, De Jong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. "Sensor and sensor fusion 
technology in autonomous vehicles: A review." Sensors 21, no. 6 (2021): 2140.

How to filter, 
process, and 
understand sensor 
data?

Detection, 
Localization,

…

Before: Perception is decomposed into a number of manageable applications
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Levels of Autonomy

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Goal of the Tutorial

Yeong, De Jong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. "Sensor and sensor fusion 
technology in autonomous vehicles: A review." Sensors 21, no. 6 (2021): 2140.

How to filter, 
process, and 
understand sensor 
data?

Deep 
Learning

Deep Learning: Provides a holistic solution to perception
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• Part I: Challenges in Perception and Autonomy 
• Robustness under challenging conditions, environments, context and surroundings-awareness are 

challenges in AV perception
• Deep Learning promises a holistic solution to a number of the above challenges

• Part II: Deep Learning for Perception
• Part III: Existing Deep Learning solutions to Challenges in Perception
• Part IV: Remaining Challenges and Future Directions

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Takeaways from Part I



A Holistic View of Perception in Intel. Vehicles
Part II: Deep Learning for Perception
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• Discuss myths surrounding deep learning 
• Brief history of deep learning
• Review deep learning models for vision
• Deep learning extensions into sensor domain
• Transfer Learning and foundation models
• Self-supervised learning
• Case study: Self-supervised learning for fisheye images

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Objectives in Part II
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Meme to start off with

Data

Expectation

Robust

Generalizable

Explainable

Reality

Data

Data
Hyperparameters

Network

Uncertainty

Regularization
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Meme to start off with
People’s expectation of AI and Deep Learning
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Model Decomposition
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Some Common Myths about Deep Learning

“Deep learning is hard to train”
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Some Common Myths about Deep Learning
“Deep learning requires lots of data”

exemplar

Zero-Shot Learning

Weakly-Supervised Learning

So
ur

ce
 D

om
ai

n

Ta
rg

et
 D

om
ai

n

Adapt

Domain Adaptation



47 of 184

Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Some Common Myths about Deep Learning exemplar

“Deep learning has poor interpretability”

Activation Visualizations
Maximally activated patches

Nearest 
Neighbor

Dimensionality 
Reduction

Saliency via occlusion
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Some Common Myths about Deep Learning exemplar

“More the data, better the model”

Data imbalance issues

Dataset uncertainties
Label 3

Label 1

Label 2

Human labeling 
issues
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Some Common Myths about Deep Learning exemplar

“Deep learning is State-of-the-Art in every field”
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

The Building Block exemplar

Artificial neurons consist of:
• A single output
• Multiple inputs
• Input weights
• A bias input
• An activation function

The underlying computational unit is the artificial neuron
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Artificial Neural Networks exemplar

Typically, a neuron is part of a network organized in layers:
• An input layer (Layer 0)
• An output layer (Layer 𝐾)
• Zero or more hidden (middle) layers (Layers 1…𝐾 − 1)
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Convolutional Neural Networks exemplar
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Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Evolution of CNN Architectures exemplar
• LeNet
• AlexNet
• VGG
• GoogLeNet (Inception-V1)
• ResNet
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CNN Architectures

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

LeNet5 (1998) exemplar

Novelty:
• Reduced	number	of	learnable	parameters	and	learned	from	raw	pixels	automatically
• The	1st popular	CNN	that	became	the	“standard”	template	of	CNNs

• Stacking	convolutional,	activation,	pooling	layers	
• Ending	with	fully	connected	layers	

• Good	results	on	small	datasets
• Top-5	error	rate	on	MNIST	is	0.95%	

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
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Long Gap (1998 – 2012)

• Working to improve computational power 
• Existing accelerators were not yet sufficiently powerful to make deep multichannel, multilayer CNNs 

with a large number of parameters.

• Existing datasets were relatively small 
• Limited storage capacity of computers

• Tricks for neural network training were not established yet 
• Parameter initialization
• Variants of stochastic gradient descent
• Non-squashing activation functions
• Effective regularization techniques

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
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CNN Architectures

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlexNet (2011) exemplar

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

Novelty:
• First to implement Rectified Linear Units (ReLUs) as activation, solving the 

vanishing gradient problem
• Applied	dropout	regularization	to	fully	connected	layer	to	control	complexity
• Deep	CNN	that	runs	on	GPU	hardware
• Deeper	and	wider	than	LeNet
• More	robust	than	LeNet (data	augmentation)
• Won	ImageNet	Challenge	and	significantly	outperformed	traditional	methods
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AlexNet (2012)

Figure Credit: Zitzewitz, Gustav. "Survey of neural networks in autonomous driving." (2017)
16.4% top 5 error in ILSVRC 2012 

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012)

Imagenet: 
1000 classes, 1.2M training images, 150K for testing

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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ResNet (2015)

Figure Credit: Zitzewitz, Gustav. "Survey of neural networks in autonomous driving." (2017)

Imagenet: 
1000 classes, 1.2M training images, 150K for testing

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

~3.6% top 5 error in ILSVRC 2015, 
lower than human recognition error!

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2016.
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CNN Architectures

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

ResNet (2015) exemplar

Novelty:
• Introduced residual learning (Residual blocks)

• Shortcut connections with identity mapping 
• Popularized skip connections
• 20 and 8 times deeper than AlexNet and VGG, 

respectively with less computational complexity and 
without compromising generalization power

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2016.
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Object Detection Architectures

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

YOLO (2016 - Ongoing) exemplar

Novelty:

• Object detection is reformulated as a 
regression problem from image space 
to bounding-box coordinate space

• Single stage object detectors
• Feature extraction, detection, 

classification performed in one go
• Contextual information is encoded 

within each prediction

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object 
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

All previous object detection techniques required multiple stages of detection
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Deep Learning for LIDAR data

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

PointNet (2017)

The challenge in utilizing LIDAR data is the volume of point cloud data and the permutation of 
their processing

• Performed classification and segmentation on n points of LIDAR data. Input nx3 refers to n points with {𝑥, 𝑦, 𝑧}
coordinate dimensions

• Used RNNs to overcome the permutation issues within LIDAR data 

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and 
segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
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Deep Learning for Sensor Fusion

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Vision and LIDAR

YOLO Framework is used to independently 
extract features from cameras and LIDAR 
sensors and fused to detect missed boxes

Kim, J., Kim, J., & Cho, J. (2019, December). An advanced object classification strategy using YOLO through 
camera and LiDAR sensor fusion. In 2019 13th International Conference on Signal Processing and 
Communication Systems (ICSPCS) (pp. 1-5). IEEE.

This is ‘late fusion’, in the sense that each sensor modality is independently evaluated
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Deep Deep Deep … Deep Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Recent Advancements

The number of parameters in models has 
increased exponentially
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Deep Deep Deep … Deep Deep Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Motivation

Underlying features among different vision tasks are similar

This similarity leads to Transfer Learning

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. 
Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).
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Transfer Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What is Transfer Learning?

• Deep networks tend to learn common representations for various tasks in their earlier layers
• Can be exploited to transfer representations from networks trained on large datasets on one task (i.e., 

Image Classification on ImageNet) called the source to a different task called the target task
• Usually done by taking large pretrained network and then finetuning last layer (with all other layers 

frozen) on target dataset 
• Pre-trained frozen backbone acts as a feature extractor while finetuned last layer acts to project the 

representations into the decision boundary for the target task
• Utility depends on how closely related the source and target datasets and/or tasks are 
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Transfer Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Foundation Models

Source: https://gluon-cv.mxnet.io/ Source: https://www.move-lab.com/blog/tracking-
things-in-object-detection-videos

Source: https://www.saagie.com/blog/object-detection-part1/

Pretraining Finetuning

AlexNet

Foundation Model
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Foundation Models

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Origin of the term Foundation Models

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. 
Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

• Foundation models are like any other deep network that have employed transfer learning, except at scale
• Scale brings about emergent properties that are common between tasks
• Before 2019: Base architectures that powered multiple neural networks were ResNets, VGG etc.
• Since 2019: BERT, DALL-E, GPT, Flamingo
• Changes since 2019: Transformer architectures and Self-Supervision 
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Foundation Models

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Origin of the term Foundation Models

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. 
Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

‘By harnessing self-supervision at scale, 
foundation models for vision have the potential 
to distill raw, multimodal sensory information 
into visual knowledge, which may effectively 
support traditional perception tasks and 
possibly enable new progress on challenging 
higher-order skills like temporal and 
commonsense reasoning These inputs can come 
from a diverse range of data sources and 
application domains, suggesting promise for 
applications in healthcare and embodied, 
interactive perception settings’
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Foundation Models

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Segment Anything Model

Segment Anything Model (SAM) released by Meta on April 5, 2023 was trained on Segment Anything 1 Billion 
dataset with 1.1 billion high-quality segmentation masks from 11 million images

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. 
"Segment anything." arXiv preprint arXiv:2304.02643 (2023).



70 of 184

Foundation Models

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Segment Anything Model

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. 
"Segment anything." arXiv preprint arXiv:2304.02643 (2023).

Cityscapes dataset 
semantic segmentation 
annotation took ~90 
mins per image
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Foundation Models

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Training Foundation Models

Foundation models are trained via Self-Supervision

Self-Supervision:

• Type of unsupervised learning

• Primary difference is the introduction of a “pre-text 
task.”

• The pre-text task generates pseudo-labels that are 
used to train a network.

Ericsson, L., Gouk, H., Loy, C. C., & Hospedales, T. M. (2021). Self-Supervised Representation 
Learning: Introduction, Advances and Challenges. arXiv preprint arXiv:2110.09327.
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Self-Supervision

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Overall Training Process
1. Identify Labeled and Unlabeled 

Data 

Unlabeled Data 
(𝑥, …𝑥-)

Labeled Data 
(𝑥, …𝑥/)	, (𝑦, 	…𝑦/)

2. Generate pseudo-labels with some pre-text 
task 𝑷

Unlabeled Data 
(𝑥, …𝑥-)

𝑃
Pseudo - Labeled 

Data 
(𝑥, …𝑥-), (z,, … , z5)
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Self-Supervision

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Example Training Process

Gidaris, S., Singh, P., & Komodakis, N. (2018). Unsupervised representation learning by 
predicting image rotations. arXiv preprint arXiv:1803.07728.

Step 1: Generate pseudo-labels via image 
rotations

Rotate 90

Rotate 180

Rotate 270
Unlabeled
Image 𝒙

𝒙𝟏, 𝒛𝟏 = 𝟗𝟎

𝒙𝟐, 𝒛𝟐 = 𝟏𝟖𝟎

𝒙𝟑, 𝒛𝟑 = 𝟐𝟕𝟎

Step 3: Attach linear layer and train to classify 
labels (𝒚) on labeled dataset

Step 2:  Network learns to predict angle image 
is rotated

ConvNet 𝒛̂ 𝑳(𝒛C, 𝒛𝟏)

Update

ConvNet
Trained

Update

𝑳(𝒚D, 𝒚𝟏)
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Self-Supervision

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Motivation

Gidaris, S., Singh, P., & Komodakis, N. (2018). Unsupervised representation learning by 
predicting image rotations. arXiv preprint arXiv:1803.07728.

Step 1: Generate pseudo-labels via image 
rotations

Rotate 90

Rotate 180

Rotate 270
Unlabeled
Image 𝒙

𝒙𝟏, 𝒛𝟏 = 𝟗𝟎

𝒙𝟐, 𝒛𝟐 = 𝟏𝟖𝟎

𝒙𝟑, 𝒛𝟑 = 𝟐𝟕𝟎

Learning pre-text task will allow network to learn 
relevant features without needing explicit labels!
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Self-Supervision

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Types of Pre-text Tasks

Differences in self-supervision are based on the type of pre-text task that is defined 

Transformation Prediction
• Pre-text task performs some transformation on data and tasks model with trying to learn nature of 

transformation.
Masked Prediction
• Pre-text task removes some part of the data and the model is tasked with trying to predict what was 

removed.
Deep Clustering
• Identify clusters of features and iteratively assign pseudo-labels to train model.
Contrastive Learning
• Pre-text task identifies positive and negative pairs of data and the model is tasked with learning similarities to 

discriminate between positive and negatives.
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Contrastive Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Sim-CLR Framework

The Pseudo-labels are used to create positive-negative pairs within each batch 

Contrastive loss on embeddings

Note: The positive pairs are only the augmentations and negative 
pairs are all other images in the batch

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv
preprint arXiv:2002.05709 (2020).
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Contrastive Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Contrastive Learning vs Supervised Learning

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv
preprint arXiv:2002.05709 (2020).

Performance vs Models Performance vs Parameters 
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Contrastive Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Contrastive Learning other than SIM-CLR

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv
preprint arXiv:2002.05709 (2020).

The way that similar pairs (positives) 
and dissimilar pairs (negatives) are 

generated.

What differentiates other Contrastive Learning methods from Sim-CLR?
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Exploiting the Distortion-Semantic 
Interaction in Fisheye Data

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor

Kiran Kokilepersaud,
PhD Student
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Contrastive Learning for Fisheye Images

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Positive-negative pairs in Fisheye Images

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv
preprint arXiv:2002.05709 (2020).

Intuition: Regions within a fisheye image are their own class. Hence, any object within them 
are positives

Exploiting the Distortion-Semantic 
Interaction in Fisheye Data

Intuition for Loss 1:

All objects from the edge (be it a car, bike, 
pedestrian) are positives and objects from the centre
(be it a car, bike, pedestrian) are negatives

Intuition for Loss 1:

All objects from labeled car (be it in the center or the 
edge) are positives and all other objects (be it in the 
center or the edge) are negatives
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Contrastive Learning for Fisheye Images

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Positive-negative pairs in Fisheye Images

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv
preprint arXiv:2002.05709 (2020).

Intuition: Regions within a fisheye image are their own class. Hence, any object within them 
are positives

Exploiting the Distortion-Semantic 
Interaction in Fisheye Data

𝛼𝐿GHIJJ + 1 − 𝛼 𝐿LMNOPQRHIJJ
𝛼 controls the level of unsupervised 
contrastive learning
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Contrastive Learning for Fisheye Images

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Positive-negative pairs in Fisheye Images

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv
preprint arXiv:2002.05709 (2020).

Are there alternative ways of partitioning the regions?

Exploiting the Distortion-Semantic 
Interaction in Fisheye Data

Defining the positive-negative pairs is application dependent
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• Part I: Challenges in Perception and Autonomy 
• Part II: Deep Learning for Perception

• Transfer Learning and training at scale are essential for foundation model development
• Self-supervised Learning provides a framework for large scale learning on unannotated data

• Part III: Existing Deep Learning solutions to Challenges in Perception
• Part IV: Remaining Challenges and Future Directions

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Takeaways from Part II



A Holistic View of Perception in Intel. Vehicles 
Part III: Deep Learning at Inference
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• Challenging conditions at training
• Inference

• Deficiencies at Inference
• Overcoming deficiencies at Inference

• Anomaly Detection
• Uncertainty
• Explainability

• Case study 1: Robustness to challenging conditions
• Case study 2: Aberrant Object Detection

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Objectives in Part III
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Technical Challenges

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception
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Challenging Conditions in Deep Learning
Integrating Challenging Conditions in Training

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

The most novel/aberrant samples should not be used in early training

Novel samples = Most Informative

• The first instance of training must occur with 
less informative samples

• Less informative:
• Highway scenarios
• Parking
• No accidents
• No aberrant events

Benkert, R., Prabushankar, M., AlRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: 
A Second Order Approach to Active Learning. IEEE Transactions on Artificial Intelligence.
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Challenging Conditions in Deep Learning
Integrating Challenging Conditions in Training

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Subsequent training must not focus only on novel data

Catastrophic Forgetting

• The model performs well on the new 
scenarios, while forgetting the old scenarios

• A. number of techniques exist to overcome 
this trend

• However, they affect the overall performance 
in large-scale settings

• It is not always clear if and when to 
incorporate novel scenarios in training

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1 
(2021): 2549.

Handle challenging 
conditions at Inference!
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Novel data sources:

• Test distributions
• Anomalous data
• Out-Of-Distribution data
• Adversarial data
• Corrupted data
• Noisy data
• New classes
• …

Inference
What is Inference?

Ability of a system to predict correctly on novel data

Model Train At Deployment

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Novel data sources

• Test distributions
• Anomalous data
• Out-Of-Distribution data
• Adversarial data
• Corrupted data
• Noisy data
• New classes
• …

Inference
What is Inference?

Ability of a system to predict correctly on novel data

Trained Model Cat

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Inference
Deficiencies at Inference

“The best-laid plans of sensors and networks 
often go awry”

- Engineers, probably
[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Inference
Overcoming Deficiencies at Inference

To overcome deficiencies, predictions from neural networks must be equipped with:

• Anomaly scores: How close to the training data is the novel data at inference?
• Uncertainty scores: How close to the best possible network is the trained network?
• Contextual Explainability: How relevant are the network explanations for its prediction?

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What is required when networks are met with challenging data at inference? 

Training
data

Anomalous 
data Certain objects Uncertain objects ‘Why P’ ‘Why P, rather 

than Q?’
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Inference
Overcoming Deficiencies at Inference

To overcome deficiencies, predictions from neural networks must be equipped with:

• Anomaly scores: How close to the training data is the novel data at inference?
• Uncertainty scores: How close to the best possible network is the trained network?
• Contextual Explainability: How relevant are the network explanations for its prediction?

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What is required when networks are met with challenging data at inference? 

Training
data

Anomalous 
data Certain objects Uncertain objects ‘Why P’ ‘Why P, rather 

than Q?’
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Backpropagated Gradient Representations for 
Anomaly Detection

Mohit Prabhushankar, PhD
Postdoc, Georgia Tech 

Ghassan AlRegib, PhD
Professor, Georgia Tech

Gukyeong Kwon, PhD
Amazon AWS
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Statistical Definition:
• Normal data are generated from a stationary process 𝑃-
• Anomalies are generated from a different process 𝑃S ≠ 𝑃-

Goal: Detect 𝜙,

Anomalies
Finding Rare Events in Normal Patterns

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ [1]

[1] V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, 
Article 15 (July 2009), 58 pages

1

2

Backpropagated Gradient 
Representations for Anomaly Detection

𝑥 𝑡 = 	 W𝜙X𝜙,
Normal data
Anomalies

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Anomalies
Steps for Anomaly Detection

Backpropagated Gradient 
Representations for Anomaly Detection

• Step 1 ensures that patches from natural 
images live close to a low dimensional 
manifold

• Step 2 designs distance functions that 
detect implausibility based on 
constraints

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

Anomaly

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Constraining Manifolds
General Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

Constrained
Representation

Testing

Training

Encoder Decoder

Statistical deviation (Latent Loss)  Anomaly

2004

Tax et.al 1

2019

Abati et.al 4

2018

Pidhorksyi et.al 3

2016

Fan et.al 2

Activations are 
constrained 
using GANs, 
VAEs, etc.

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.
[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint 
arXiv:1805.11223, 2018. 1, 2
[3] S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822–6833.
[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481–490.

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Constraining Manifolds
Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

Trained with ‘0’

Encoder Decoder

Input

Forward propagation

Backpropagation

Gradient-based Representation
(Model perspective)

𝑊 𝑊′𝜕ℒ
𝜕𝑊

Activation-based representation
(Data perspective)

Reconstruction error (ℒ)

−

Reconstruction

e.g. 

How much of the input 

does not correspond to 

the learned information?

How much model update is 

required by the input?

Activation Constraints

Gradient Constraints

Anomaly

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Constraining Manifolds
Advantages of Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Reconstructed image manifold

𝑔^(𝑓 ⋅ )

Abnormal data distribution

𝑥CPbc

𝑥Pbc

Reconstruction 
Error (ℒ)

Abnormal data distribution

𝑥Pbc

𝜕ℒ
𝜕𝜃

𝜕ℒ
𝜕𝜙
e
fgfhij,

Backpropagated
Gradients

𝑥CPbc

𝑔^(𝑓 ⋅ )

• Gradients provide directional information to characterize anomalies

• Gradients from different layers capture abnormality at different levels of data abstraction

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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GradCON: Gradient Constraint
Gradient-based Constraints

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Learned manifold

𝜕ℒ
𝜕𝜙OQ,,

𝜕ℒ
𝜕𝜙Pbc

𝜃

𝜙: Weights ℒ: Reconstruction error

𝐽 = ℒ − 𝔼O cosSIM
𝜕𝐽
𝜕𝜙OIsN

tu,

,
𝜕ℒ
𝜕𝜙O

t

	

Gradient loss

𝜕𝐽
𝜕𝜙OIsN

tu,

= v
𝜕𝐽
𝜕𝜙O

ctu,

cg,

where

Avg. training 
gradients until (k-1) th iter.

Gradients at
k-th iter.

At k-th step of training,

𝜕ℒ
𝜕𝜙OQ,w

Constrain gradient-based representations during training to obtain clear separation between 

normal data and abnormal data

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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GradCON: Gradient Constraint
Activations vs Gradients

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Abnormal “class” 
detection (CIFAR-10)

Normal Abnormal

• (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

• (CAE vs. VAE) Performance sacrifice from the latent constraint

• (VAE vs. VAE + Grad) Complementary features from the gradient constraint

e.g.

AUROC Results

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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GradCON: Gradient Constraint
Aberrant Condition Detection

Backpropagated Gradient 
Representations for Anomaly Detection

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020

Abnormal “condition”
detection (CURE-TSR)

Normal Abnormal

AUROC Results

Recon: Reconstruction error, Grad: Gradient loss

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Inference
Overcoming Deficiencies at Inference

To overcome deficiencies, predictions from neural networks must be equipped with:

• Anomaly scores: How close to the training data is the novel data at inference?
• Uncertainty scores: How close to the best possible network is the trained network?
• Contextual Explainability: How relevant are the network explanations for its prediction?

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What is required when networks are met with challenging data at inference? 

Training
data

Anomalous 
data Certain objects Uncertain objects ‘Why P’ ‘Why P, rather 

than Q?’
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Probing the Purview of Neural Networks via 
Gradient Analysis

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor

Jinsol Lee,
PhD Candidate
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Uncertainty
What is Uncertainty?

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Uncertainty is a model knowing that it does not know

A simple example: More the training data, lesser the 
uncertainty 

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/



106 of 184

Uncertainty
When is uncertainty an issue?

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Uncertainty is a model knowing that it does not know

• Larger the model, more misplaced is a network’s 
confidence

• On ResNet, the gap between prediction accuracy 
and its corresponding confidence is significantly 
high

• On OOD data, uncertainty is not easy to quantify

Guo, Chuan, et al. "On calibration of modern neural networks." International conference on 
machine learning. PMLR, 2017.
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Uncertainty
Types of Uncertainty

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Two major types of uncertainty: Uncertainty in data and uncertainty in model

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A 
survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.
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Uncertainty
Types of Uncertainty

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

For the purpose of predictions: Both uncertainties are combined as Predictive Uncertainty

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A 
survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.
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Uncertainty in Neural Networks
Principle

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Principle: Gradients provide a distance measure between the learned representations space 
and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

However, what is ℒ?

• In anomaly detection, the loss was between the input and 
its reconstruction

• In prediction tasks, there is neither the reconstructed input 
or ground truth

Abnormal data distribution

𝑥Pbc

𝜕ℒ
𝜕𝜃

𝜕ℒ
𝜕𝜙
e
fgfhij,

Backpropagated
Gradients

𝑥CPbc

𝑔^(𝑓 ⋅ )

Learned Representation

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.
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Uncertainty in Neural Networks
Principle

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Principle: Gradients provide a distance measure between the learned representations space 
and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

𝑄, 𝜕ℒ(𝑃, 𝑄,)
𝜕𝜃

Backpropagated
Gradients

𝑃

Learned Representation

However, what is ℒ?

• In anomaly detection, the loss was between the 
input and its reconstruction

• In prediction tasks, there is neither the 
reconstructed input or ground truth

• We backpropagate all possible classes -
𝑸𝟏, 𝑸𝟐	 …𝑸𝑵 by backpropagating N one-hot 
vectors 

• Higher the distance to all classes, higher the 
uncertainty score

𝑃		 =	Predicted class
𝑄, =	Contrast class 1
𝑄w =	Contrast class 2

𝑄w

𝜕ℒ(𝑃, 𝑄w)
𝜕𝜃

Backpropagated
Gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.
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Uncertainty in Neural Networks
Deriving Gradient Features

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Normalized and vectorized
gradients are introspective 
features

Why vector of all 1s? The theory is 
presented in [1]

Probing the Purview of Neural Networks 
via Gradient Analysis

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.
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Uncertainty in Neural Networks
Deriving Gradient Features

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Step 2: Take L2 norm of all generated gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

𝛁𝜽𝟎	𝑱(𝜽𝟎; 	𝒙, 𝒚𝒄) 𝟐
𝟐 	 𝛁𝜽𝑵	𝑱(𝜽𝑵; 	𝒙, 𝒚𝒄) 𝟐

𝟐
,             ,

Collection of squared L2 norm
𝒅𝛁𝜽

. . .

MNIST: In-distribution, SUN: Out-of-Distribution
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Gradient-based Uncertainty
Uncertainty Results in OOD setting

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Squared L2 distances for different parameter sets

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets 
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Gradient-based Uncertainty
Uncertainty Results in Adversarial Setting

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Vulnerable DNNs in the real world

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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Gradient-based Uncertainty
Uncertainty Results in Adversarial Setting

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.
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Gradient-based Uncertainty
Uncertainty Results to Detect Challenging Conditions

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

CIFAR-10-C

Same application as Anomaly Detection, except there is no need for an additional AE 
network!

CURE-TSR
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Gradient-based Uncertainty
Uncertainty Results to Detect Challenging Conditions

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.
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Gradient-based Uncertainty
Uncertainty Results to Detect Challenging Conditions

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Probing the Purview of Neural Networks 
via Gradient Analysis

MNIST

CIFAR10 TinyImageNetSVHN LSUN

Train set

Goal: To detect that these datasets are not part of training
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Probing the Purview of Neural Networks 
via Gradient Analysis
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Out-of-Distribution Detection

CIFAR10 TinyImageNetSVHN LSUN

Numbers Objects, natural scenes

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Out-of-Distribution Detection

CIFAR10TinyImageNet SVHNLSUN

More similar 
datasets
(objects)

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Inference
Overcoming Deficiencies at Inference

To overcome deficiencies, predictions from neural networks must be equipped with:

• Anomaly scores: How close to the training data is the novel data at inference?
• Uncertainty scores: How close to the best possible network is the trained network?
• Contextual Explainability: How relevant are the network explanations for its prediction?

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

What is required when networks are met with challenging data at inference? 

Training
data

Anomalous 
data Certain objects Uncertain objects ‘Why P’ ‘Why P, rather 

than Q?’
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Explanatory Paradigms in Neural Networks: 
Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor
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Explanations
What are Visual Explanations?

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

• Explanations are defined as a set of rationales used to understand the reasons behind a 
decision  

• If the decision is based on visual characteristics within the data, the decision-making 
reasons are visual explanations

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in 
the image?

Why Bullmastiff, rather than a 
Boxer?

Observed 
Correlations

Observed Counterfactual Observed 
Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.
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Explanations
Why Explainability?

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explainability matters establishes trust in deep learning systems by developing transparent
models that can explain why they predict what they predict to humans

class scores

Algorithm

Data Output

Deep models act as algorithms that take 
data and output something without
being able to explain their methodology

Explainability is useful in:
• Medical: help doctors diagnose
• Seismic: help interpreters label seismic 

data
• Autonomous Systems: build appropriate 

trust and confidence 
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Explanations
Role of Visual Explanations

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.
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Explanations
Input Saliency via Occlusion

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Intervention: Mask part of the image before feeding to CNN, check how much predicted 
probabilities change

A gray patch or patch of average pixel value of the dataset
Note: not a black patch because the input images are 
centered to zero in the preprocessing.

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

P(elephant) = 0.95
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Explanations
Input Saliency via Occlusion

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Intervention: Mask part of the image before feeding to CNN, check how much predicted 
probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

P(elephant) = 0.95

P(elephant) = 0.75These pixels 
affect decisions 
more
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Explanations
Input Saliency via Occlusion

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

The network is trained with image- labels, but it is sensitive to the common visual regions in 
images 

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014
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Explanations
Input Saliency via Gradients

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output

Vanilla Gradients Deconvolution Gradients Guided Backpropagation
Input

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

However, localization remains an issue
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• To find the important activations that are 
responsible for a particular class 

• We want the activations:
• Class-discriminative to reflect decision-

making
• Preserve spatial information to ensure 

spatial coverage of important regions
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• Given an image, feed forward through CNN

image
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• Given an image, feed forward through CNN

• Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

image
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• Given an image, feed forward through CNN

• Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

image

Gradient-based backpropagation to 
obtain activation importance

perturb neuron activations in the last conv 
layer and see how it affects the decision
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• Given an image, feed forward through CNN

• Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

• Backward pass to last conv layer

image

Gradient-based backpropagation to 
obtain activation importance

perturb neuron activations in the last conv 
layer and see how it affects the decision

Backprop prediction for c-th class with respect to 
feature map activations in the last conv layer
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• Given an image, feed forward through CNN

• Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

• Backward pass to last conv layer

• Compute gradients w.r.t. last conv activations
image

���

�S�
: gradients of prediction for c-th

class with respect to k-th feature map 
activations 𝐴t in the last conv layer

𝛼tG is the scalar importance of k-th
feature map obtained by averaging 
���

�S�
spatially
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Gradients provide a one-shot means of perturbing the input that changes the output. 
Activations provide the localization.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

• Given an image, feed forward through CNN

• Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

• Backward pass to last conv layer

• Compute gradients w.r.t. last conv activations
image

���

�S�
: gradients of prediction for c-th

class with respect to k-th feature map 
activations 𝐴t in the last conv layer

𝛼tG is the scalar importance of k-th
feature map obtained by averaging 
���

�S�
spatially

Grad-CAM (up-sampled to original image dimension)



139 of 184

Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN 
to assign importance values to each activation for a particular decision of interest.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

image

Grad-CAM (up-sampled to original image dimension)
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Gradient and Activation-based Explanations
GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

Grad-CAM generalizes to any task:
• Image classification
• Image captioning
• Visual question answering
• etc.

Rectified Conv 
Feature Maps

+

Backprop 
till conv

Grad-CAM
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Gradient and Activation-based Explanations
Extensions of GradCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant 
and contextual explanations

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in 
the image?

Why Bullmastiff, rather than a 
Boxer?

Observed 
Correlations

Observed Counterfactual Observed 
Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.
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Gradient and Activation-based Explanations
CounterfactualCAM: What if P is not there in the Image?

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

In GradCAM, global average pool the negative of gradients to obtain 𝛼G for each kernel 𝑘

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

���

�S�

𝛼tG

What if Bullmastiff was not in 
the image?

Negating the gradients effectively removes these regions from analysis
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Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to 
last conv layer

Backpropagating the loss highlights the differences between classes P and Q. 

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Contrast-CAM 

��(�,�)
�S�

𝛼tG

Why Bullmastiff, rather than a 
Boxer?
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Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1
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Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable
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Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM
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Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Not Human 
Interpretable



148 of 184

Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Not Human 
Interpretable
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Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input
Image Grad-CAM Contrast 1 Contrast 2

Contrastive 
Explanation 2

Contrastive 
Explanation 1

Human 
Interpretable

Same as Grad-
CAM

Not Human 
Interpretable

Only traffic sign with a straight
bottom-left edge – enough to 

say `Not STOP Sign’
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Introspective Learning: A Two-Stage 
Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD
Postdoc

Ghassan AlRegib, PhD
Professor

Case Study 1: Leveraging anomaly scores, uncertainty scores, and explanations for 
Robust Recognition 
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Robustness in Neural Networks
Why Robustness?

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Robustness in Neural Networks
Why Robustness?

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

How would humans resolve this challenge? 

We Introspect!

• Why am I being shown this slide?
• Why images of muffins rather than 

pastries?
• What if the dog was a bull mastiff?
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Introspection
What is Introspection?

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Spoonbill
𝑦C

Visual Sensing

Feed-Forward 
Sensing

Sense pink feathers, 
straight beak

	

Why Spoonbill, rather than Flamingo?
𝑥 does not have an S-shaped neck

Why Spoonbill, rather than Crane?
𝑥 does not have white feathers

Why Spoonbill, rather than Pig?
𝑥�𝑠	leg and neck shapes are 
different

Reflection

Spoonbill
𝑦�

Introspection

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection
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Introspection
Introspection in Neural Networks

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted 
questions.   

What are the possible targeted questions?
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Introspection
Introspection in Neural Networks

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

What are the possible targeted questions?

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in 
the image?

Why Bullmastiff, rather than a 
Boxer?

Observed 
Correlations

Observed Counterfactual Observed 
Contrastive
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Introspection
Introspection in Neural Networks

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Technical Definition : Given a network  𝑓 𝑥 , a datum 𝑥, and the network’s prediction
𝑓 𝑥 = 𝑦C, introspection in 𝑓 ⋅ is the measurement of change induced in the network 

parameters
when a label 𝑄 is introduced as the label for 𝑥..   

Contrastive Definition : Introspection answers questions of the form `Why 
P, rather than Q?’ where P is a network prediction and Q is the 

introspective class.   



157 of 184

Introspection in Neural Networks
Gradients as Features

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

For a well-trained network, the gradients are sparse and informative
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Introspection in Neural Networks
Gradients as Features

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

For a well-trained network, the gradients are sparse and informative

Informative sparse features
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Introspection in Neural Networks
Deriving Gradient Features

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Normalized and vectorized
gradients are introspective 
features

Vector of all ones: A confounding label!
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Introspection in Neural Networks
Utilizing Gradient Features

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Introspective Features
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Introspection in Neural Networks
When is Introspection Useful?

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

We define robustness as being generalizable and 
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Introspection provides robustness when the train and test distributions are different  
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Introspection in Neural Networks
Generalization and Calibration

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Ideal: Top-left 
corner

Y-Axis: 
Generalization

X-Axis: 
Calibration
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Introspection in Neural Networks
Plug-in Nature of Introspection

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Introspection is a plug-in 
approach that works on all 
networks and on any 
downstream task!

Introspection is a light-weight option to resolve robustness issues
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Introspection in Neural Networks
Generalization and Calibration

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active 
Learning, and Image Quality Assessment!
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Detecting and Classifying Anomalies in Artificial 
Intelligence Systems

Mohit Prabhushankar, PhD
Postdoc, Georgia Tech 

Ghassan AlRegib, PhD
Professor, Georgia Tech

Gukyeong Kwon, PhD
Amazon AWS

Case Study 2: Leveraging anomaly scores, uncertainty scores, and explanations for 
Anomalous object classification
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Aberrant Object Detection
Deriving Gradient Features

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 
Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 
2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Uncertainty: We took energy of 
all gradients
Robustness: We trained a new 
network 
Aberrant Objects: We take 
variance across gradients from 
object detector
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Aberrant Object Detection
Aberrance Detection

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Uncertainty using variance of introspective gradients rather than energy of gradients

• Object detection algorithms would pick up on all the trained objects

• The gradient-based uncertainty approach picks up only the aberrant object – objects that bear a 
resemblance to novel classes

AlRegib, Ghassan, et al. "Detecting and Classifying Anomalies in Artificial Intelligence Systems." 
U.S. Patent Application No. 17/633,878.
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Aberrant Object Detection
Complementary to object detectors

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Uncertainty using variance of introspective gradients rather than energy of gradients

AlRegib, Ghassan, et al. "Detecting and Classifying Anomalies in Artificial Intelligence Systems." 
U.S. Patent Application No. 17/633,878.
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Aberrant Object Detection
Active Learning

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Parchami, Armin, et al. "Variance of gradient based active learning framework for training perception 
algorithms." U.S. Patent Application No. 17/172,854.

Use the uncertain boxes for obtaining labels from annotators

Use new annotations for subsequent training in an active learning setting
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• Part I: Challenges in Perception and Autonomy 
• Part II: Deep Learning for Perception
• Part III: Existing Deep Learning solutions to Challenges in Perception

• It is not always clear if aberrant events and challenges must be incorporated in training
• Instead, they can and should be equipped with diagnostic tools at predictions
• These diagnostic tools are anomaly and uncertainty scores for decision making and contextual 

explainability for post-hoc stakeholders
• Gradients provide the change induced by an aberrant event in the network and can be used to obtain 

the required prediction diagnosis
• Part IV: Key Takeaways and Future Directions

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Takeaways from Part III



A Holistic View of Perception in Intel. Vehicles 
Part IV: Key Takeaways and Future 
Directions
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• Takeaway Messages and Key Insights
• Unaddressed Challenges in Perception

• Context Awareness
• Embedded Perception
• V2X Perception

• Future Research Directions
• Temporal Processing
• Sensor Processing Architectures
• Sensors research
• Infrastructure + AV Datasets

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Objectives in Part IV
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• Robustness under challenging conditions, environments, context and surroundings-awareness are 
challenges in AV perception

• Deep Learning provides a holistic solution to a number of the above challenges
• Transfer Learning and training at scale help to create foundation models

• Self-supervised Learning provides a framework for large scale learning on unannotated data
• It is not always clear if aberrant events and challenges must be incorporated in training

• Instead, model predictions must be equipped with diagnostic tools at inference
• These diagnostic tools are anomaly and uncertainty scores for decision making and contextual 

explainability for post-hoc stakeholders
• Gradients provide the change induced by an aberrant event in the network and can be used to obtain 

the required prediction diagnosis

Objectives 

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Takeaway Messages and Key Insights
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Unaddressed Technical Challenges for Level 3 Automation

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

• Foundation models are great but the real-time feasibility 
is an issue

• The inaccuracies from model outputs is dangerous in 
urban settings
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Unaddressed Technical Challenges for Levels 4 and 5

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception 

• Levels 4 and 5 automation relies on roadside 
infrastructure to obtain high-resolution predictions

• 10x is the rough estimate of the increase in processing 
power between levels of automation

Foundation models with multiple sensor modalities

Kim, J., Kim, J., & Cho, J. (2019, December). An advanced object classification strategy using YOLO through 
camera and LiDAR sensor fusion. In 2019 13th International Conference on Signal Processing and 
Communication Systems (ICSPCS) (pp. 1-5). IEEE.
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Perception in AVs

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Unaddressed Technical Challenges for Levels 4 and 5

• Challenging weather
• Challenging sensing
• Challenging environments
• Context awareness
• Embedded perception
• V2X perception

• Levels 4 and 5 automation relies on roadside 
infrastructure to obtain high-resolution predictions

• 10x is the rough estimate of the increase in processing 
power between levels of automation

• Current temporal processing = linear spatial processing 
in time

Foundation models with multiple sensor modalities and on temporal data

C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based 
Relation Learning," IEEE Transactions on Intelligent Transportation Systems, submitted on Dec. 28 2022
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Future Direction 1

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Temporal processing of data

Temporal processing ≠ Linear spatial processing

C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based 
Relation Learning," IEEE Transactions on Intelligent Transportation Systems, submitted on Dec. 28 2022

Late temporal fusion: Encode all spatial data in a 
time-wise fashion and determine temporal 
relationships 

Early temporal fusion: Encode both spatial and 
temporal information together and fuse them 

within the network
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Future Direction 2

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Sensor processing architectures

Vision data processing was revolutionized by CNNs

Language data processing was revolutionized by 
Transformers

LIDAR data processing is revolutionized by ?

RADAR data processing is revolutionized by ?

…

Deep Learning 
Community

Vision, 
NLP

LIDAR, RADAR

V2X, Infrastructure
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Future Direction 3

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

More data with less sensors!

4 Fisheye cameras provide a 360 degree surround view of the car

Important context and 
objects are not 
segmented

Results from Zero-shot (i.e. using the trained model out of the box) Segment Anything Model on Woodscape
dataset
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Future Direction 4
Infrastructure + AV Datasets

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Abundance of egocentric AV datasets! Dearth of Infrastructure + AV datasets

NuScenes

Argoverse

• Infrastructure datasets: Stationary 
sensors at traffic junctures, streets, 
heavy pedestrian traffic areas etc.

• Infrastructure + AV datasets: Egocentric 
sensors on vehicles + stationary 
sensors for the same scenes
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Some Memes to Wrap it Up

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

Deep Learning AVs

Monocular

Stereo

Fisheye

Deep Learning 
Community

Vision, 
NLP

LIDAR, RADAR

V2X, Infrastructure
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Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection 

• Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural 
Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

• Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International Conference 
on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

• Gradients for Open set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image Processing 
(ICIP). IEEE, 2021.

• GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. In European 
Conference on Computer Vision (pp. 206-226). Springer, Cham.

• Gradients for adversarial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," in IEEE 
Access, Mar. 21 2023.

• Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural networks. In 2020 
IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

• Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated Gradients," 
in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

• Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal Processing 
Magazine, 39(4), 59-72.

• Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on 
Image Processing (ICIP) (pp. 3289-3293). IEEE.

• Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, ”Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference on Image 
Processing (ICIP), Sept. 2021.

• Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers in 
Neuroscience, Perception Science, Volume 17, Feb. 09 2023.

References
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Self Supervised Learning

• Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker 
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023. 

• Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye Data," 
in Open Journal of Signals Processing, Apr. 28 2023.

• Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT," 
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation," 
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction 

• Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on Intelligent 
Transportation Systems, submitted on Dec. 28 2022.

• Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

• Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 10, pp. 
1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

• CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics," in IEEE 
Transactions on Intelligent Transportation Systems, Jul. 2019

• CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural 
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

• CURE-OR: D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning and 
Applications (ICMLA), Orlando, FL, Dec. 2018 
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Active Learning

• Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A Second 
Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

• Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. Parchami, 
"FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

• Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-Distribution 
Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," in IEEE 
International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

• Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image Processing (ICIP), 
Abu Dhabi, United Arab Emirates, Oct. 2020

• Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With Prediction 
Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

• Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurIPS 2022 
Workshop on Human in the Loop Learning, Oct. 27 2022

• Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection," 
in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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