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Safety in Mobility Mobility Experience
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Autonomous Vehicles
Why Autonomous Vehicles?

In 2020, despite COVID-19 restrictions, fatalities increased in the US
4000

NINTENYAVLGTY
Y

Monthly Fatalities

2000
N\ J ‘) D e © A Qo) 9] Q N
O A\ N N \ N N \ N v
v > > > > > > o 3 A s
3 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
@ IV 2023 Tefft, B.C. & Wang, M. (2022). Traffic Safety Impact of the COVID-19 Pandemic: Fatal Crashes Relative to Pre-

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ! Pandemic Trends, United States, May—December 2020 (Research Brief). Washington, D.C.: AAA Foundation for
Traffic Safety.



Autonomous Vehicles
Why Autonomous Vehicles?

Next Revolution in Mobility Safety: Al
949% of all car accidents are due to human error
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Al identifies and overcomes human limitations in sensing and simulates complex
environments for testing

Human vision can only see what is AVs use lidar and radar to see what's around
illuminated by light. them even in the dark.
Active sensors like LIDAR overcome the limitations of Incredibly complex driving scenarios can be
passive vision sensing simulated using Al to test itself
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Al provides technologies to handle large data modalities in real time environments

Real-time connection to other
vehicles, pedestrians,
infrastructure and networks is
facilitated by Al
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Objectives
Obijectives of the Tutorial

Part |. Challenges in Perception and Autonomy

Part |I: Deep Learning for Perception

Part lll: Existing Deep Learning solutions to Challenges in Perception

Part IV: Remaining Challenges and Future Directions
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A Holistic View of Perception in Intel. Vehicles
Part I: Perception and Autonomy
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Objectives
Obijectives in Part |

Summarize the progress of AVs over the years

Discuss the role of perception in AVs and where it fits within the AV workflow

Review well-known failures of AVs in providing safety to drivers and to others

Discuss major technical challenges currently facing AV

Motivate deep learning as a holistic solution to perception challenges
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Perception
What is Perception?

What is perception?

See, process, understand.
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Perception
Perception in AVs
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Perception in AVs
Tsubaka Mechanical Engineering Laboratory (1977)

First standalone “autonomous” vehicle

Technology demonstrated:

Two video cameras and an analog computer onboard for
image processing, Detect street markings

Automatically Operated Car
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Perception in AVs
Eureka PROMETHEUS Project (1987 - 1995)

= PROMETHEUS

New technologies
demonstrated:

Vision enhancement, Lane
keeping support, visibility
range monitoring, Driver status
monitoring, Collision
avoidance, Cooperative
driving, Autonomous intelligent
cruise control

Gr Georgia
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Perception in AVs
DARPA Grand Challenge (2004 - 2005)

New technologies demonstrated:

Wide sensor suite including stereo vision, LIDAR,
radar, and ultrasound sensors, sensor fusion,
obstacle detection, off-road path following, path

finding
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Georgia Tech in DARPA Challenge
Need for Failsafe in AVs

Video/News Articles

15 of 184 IEEE [PhD] | [Ghassan AlRegib] | [May 16, 2023]
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New technologies
demonstrated:

Low latency failsafe
mechanisms in
connected cars
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Perception in AVs
A Leap in Progress

AV statistics in California (Dec 2019 — Nov 2020)

Miles Miles per disengagement
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Tesla driver dies in first fatal crash while
using autopilot mode —

07/May/2016 04:40 PM

~.-\US\-27A {SR-500) -
— ~ Ny—_The Model The truck
The autopilot sensors on the Model S failed to distinguish a white a;?\\\‘::“ - — o
tractor-trailer crossing the highway against a bright sky =5 S T “ -
e T = e
Autopilot didn’t detect the trailer as an obstacle (NHTSA Vot Tuming et ﬂ-/7§i§/ By, e
investigation and Tesla statements) /; j ,f\%it‘f\:\\1\1 ]
//7 / ey ] &
1. The National Highway Traffic Safety Administration (NHTSA) Vot atFR —_ g / * it @é o
determined that a “lack of safeguards” contributed to the NE 140t Court | /| s~ %y B

death
2. "Neither Autopilot nor the driver noticed the white side of the

tractor trailer against a brightly lit sky, so the brake was not
applied,” Tesla said.
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Challenges in Perception in Autonomous Vehicles

Date ol Crash Date of Report Invest Agency Report Number H%MV Crash Report Number

07/May/2016 04:40 PM 07/May/2016 04:40 PM FHPB160FF012208 85234095
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2. "Neither Autopilot nor the driver %N&m,sog _ ~ \\\ -
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- : / el ]
brake was not applied,” Tesla said. it T T 1 Vo2 stries &,' |
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Uber’s self-driving SUV saw the
pedestrian in fatal accident but didn’t
brake, officials say

PUBLISHED THU, MAY 24 2018.9:52 AM EDT | UPDATED THU, MAY 24 2018.10:43 AM EDT

Sensors on the fully autonomous Volvo XC-90 SUV spotted-while the

car was traveling 4 3 miles per hour and determined that braking was needed

1.3 seconds before impact, according to the report.

| TEMPE |
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Challenging weather
Challenging sensing
Challenging environments
Context awareness
Embedded perception
V2X perception

@IV 2023

[Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

\OLIVES),

Cr

Georgia
Tech.



Technical Challenges in Perception for AVs
Challenging Sensing and Weather

22 of 184

Challenging weather
Challenging sensing
Challenging environments
Context awareness
Embedded perception
V2X perception
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Technical Challenges in Perception for AVs
Challenging Environments
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Challenging weather
Challenging sensing
Challenging environments
Context awareness
Embedded perception
V2X perception
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Challenging weather
Challenging sensing
Challenging environments
Context awareness
Embedded perception
V2X perception

@IV 2023

Does the fire impede mobility?
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Technical Challenges in Perception for AVs

Embedded Perception

On-board computational capabilities of modern deep learning algorithms is a challenge

» Challenging weather

» Challenging sensing

« Challenging environments
» Context awareness
 Embedded perception

« V2X perception

25 of 184 IIEV 2023
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15,000x increase in 5 years

GPT-317
1 trillion

Megatron-Turing

Model size
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Challenging weather
Challenging sensing
Challenging environments
Context awareness
Embedded perception
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Role of Perception
Role of Perception within AVs

Receive sensor Interpret sensor
data data

Choose Actions Take Action

Role of Perception:

Perceive Decide
. Filter,

* process, and

ObjectRecognition

e understand

SLAM/ Localize

sensor data DetectLane/Signal || Collision Avoidance

Operating System

Hardware

Gr Georgia
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Sensors
Role of Sensors for Perception
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Sensors
How can we choose the “appropriate” Sensors?
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Sensors
Choosing the Appropriate Sensors

« Sensors need to work under challenging weather
conditions

« Sensors need to have sensing capacity and resolution in
meeting challenging sensing environments

 Sensors must be cost effective

« Sensor fusion and sensor registration must be
computationally effective

Encoder

« Sensors must output minimum noise or their working
ranges must be known in advance

» Sensor data must be resistant to cyber and adversarial
attacks
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Sensors

Choosing the Appropriate Sensors

Factors Camera LiDAR Radar Fusion
Range ~ ~ v v
Resolution v ~ X v
Distance Accuracy ~ v v v
Velocity ~ x v v
COIOL l;?éccel};;}?;, e.g., y s v Y
Object Detection ~ v v v
Object Classification v ~ x v
Lane Detection v x x v
Obstacle Edge Detection v v x v
[llumination Conditions x v v v
Weather Conditions x ~ v v

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]
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Sensors

Choosina the Appropriate Sensors
TABLE I
DIFFERENT SENSORS USED IN AV DEVELOPMENT

>

H
v}
@]

Vehicle
Audri’s Research Vehicle [48]
Ford: Hybrid Fusion [49]
Google: Toyota Prius [50]

<Ko < | m™
<o

Nagoya and Nagasaki University’s Open ZMP Robocar HV (Toyota Prius) [51]
Volvo: (Stoklosa, Cars) [52]
Apple: Lexus RX450h SUVs [53]
DIDI’s research vehicle [54]
Infiniti Q508 [55]
Lexus RX [56]
Volvo XC90 [57]
BMW750i xDrive [58]
Mercedes-Benz E & S-Class [55]
Otto Semi-Trucks [59]
Renault GT Nav [60]
Tesla Model S [61]
Baidu Apollo [62]
*Note: A:Vision: B:Stereovision; C:IR Camera; D:LIDAR: E:Radar; and F:Sonar.
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Levels of Autonom)
Taxonomy

INTERNATIONAL.

What does the
human in the
driver’s seat
have to do?

Current technology:

 Levels 1 and 2 are in the

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

Learn more here: sae.org/standards/content/j3016_202104

right © 2021 SA rnat i summary table may be freely

SAE SAE SAE
LEVEL 0"

LEVEL T

You are driving whenever these driver support features

are engaged - even if your feet are off the pedals and
you are not steering

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to
maintain safety

These are driver support features

These features These features

These features

LEVEL 2"

ded that SA nal is acknowledged as the source of t tent

SAE SAE SAE
LEVEL 3" § LEVEL 4" LEVEL 5"

You are not driving when these automated driving
features are engaged - even if you are seated in
“the driver's seat”

When the feature
requests,

These automated driving features
will not require you to take

you must drive over driving

These are automated driving features

These features can drive the vehicle This feature

market are |limited provide provide under limited conditions and will can drive the
to providing steering steering not operate unless all required vehicle under
. . What do these . e e
° Extenswe testmg on taxhires do2 warnings and OR brakg/ AND brake/ conditions are met all conditions
) momentary acceleration acceleration
Level 3 assistance support to support to
the driver the driver
 automatic *|lane centering *|ane centering « traffic jam *|ocal driverless *same as
emergency OR AND chauffeur taxi level 4,
braking ' . ' : « pedals/ but feature
Example . blind spot *adaptive cruise @ *adaptive cruise pt g can drive
Features eI control control at the SLec i everywhere
warning same time wheel may or b
*lane departure irggtyaﬂgfj be conditions
warning
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Levels of Autonomy
Levels 1 and 2 Autonomy

The vehicle is self-sufficient
B Long-Range Radar in terms of onboard sensors and
B short-/Medium-Range Radar e Environment .
. Surround Mapping pe rce pt|0n !

. Camera Mapping
B LiDAR

View

Blind Spot
Detection

Digital Side
Mirror

Traffic Sign
Recognition
Cross
Traffic
Emergency Braking 1 Aler = . i
" I){.-dcstrian Detection™ Environment I{arl\ “\“ht‘?,mc
Collision Avoidance s . Mapping Surround View

Rear View Mirror

Adaptive
Cruise
Control

Rear
Collision
Warning

Digital Side

Mirror
Surround

. lew
Environment View

Mapping Environment

Mapping

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]
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Levels of Autonomy
Levels 3 and Beyond

Vehicle-to-
Infrastructure

Vehicle-to-
Network (V2N)

Infrastructure

Network

9, — The vehicle needs help
C/ @ — from other sensors,

Vehicle-to- ":ﬁéﬁ i g :
el Fads sources, and processors!

Vehicle

<5170 ~ ¥

T

Vehicle Pedestrian
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Levels of Autonomy
Achieving Perception

. Long-Range Radar
. Short-/Medium-Range Radar

. Environment . [n)\\;iron-menl (( ))
Camera Mapping Surround Mapping ‘

Vehicle-to-
Infrastructure
(V2l1)

B LipAr View
Blind Spot

Yigital Side )
| lslt.]] Side Detection
Mirror

Vehicle-to-
Network (V2N)

Traffic Sign
Recognition

Infrastructure

Network
Cross
Traffic
Emergency Braking \

P, A > !
Pedestrian Detection TR e Park Assistance /——’/ =
Collision Avoidance A Mapping Surround View
. [ Rear View Mirror Sl ¥
Vehicle (V2V)

A

Vehicle-to-
Pedestrian
(V2P)

M appi® 1 P Rear

A\ . .
¥ \\\"\“‘““‘L - Collision
: Warning

Vehicle

Digital Side
Mirror

Sl
Surround ///,——-/ ?\\
Environment View i -—/ - 11
Mapping Envnonrnen( J—
Mapping g

Vehicle Pedestrian

How to filter, process, and understand sensor data?

36 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Levels of Autonomy
Achieving Perception

Before: Perception is decomposed into a number of manageable applications

37 of 184
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System Supervision

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

Yeong, De Jong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. "Sensor and sensor fusion
technology in autonomous vehicles: A review." Sensors 21, no. 6 (2021): 2140.

How to filter,
process, and
understand sensor
data?
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Levels of Autonomy

Goal of the Tutorial

38 of 184 EEE
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Deep Learning: Provides a holistic solution to perception

.....
.....
-----
.....
.....
.....
.....

Deep

Planning
and
Decision

!

System Supervision

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

Yeong, De Jong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. "Sensor and sensor fusion
technology in autonomous vehicles: A review." Sensors 21, no. 6 (2021): 2140.

How to filter,
process, and
understand sensor
data?
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Objectives
Takeaways from Part |

Part I: Challenges in Perception and Autonomy

* Robustness under challenging conditions, environments, context and surroundings-awareness are
challenges in AV perception

» Deep Learning promises a holistic solution to a number of the above challenges

Part Il: Deep Learning for Perception

Part Ill: Existing Deep Learning solutions to Challenges in Perception

Part IV: Remaining Challenges and Future Directions
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A Holistic View of Perception in Intel. Vehicles
Part ll: Deep Learning for Perception

@il 2023 SV Gap g
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Objectives
Obijectives in Part Il

» Discuss myths surrounding deep learning

 Brief history of deep learning

* Review deep learning models for vision

« Deep learning extensions into sensor domain

» Transfer Learning and foundation models

« Self-supervised learning

« Case study: Self-supervised learning for fisheye images

41 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Deep Learning
Meme to start off with

People’s expectation of Al and Deep Learning

oS "

'9".‘
» |

S menterer
EXPECTATION US REALITY
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Deep Learning
Model Decomposition

Low-Level
Feature

| Ex. LeCun, 2015 \

Mid-Level
_—

Feature

High-Level
—— —

Feature
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Convolution Layers

nn

nn.

nn

nn

nn.

45 of 184 IIEV 2023

“Deep learning is hard to train”

O PyTorch 2.0

.Convid

Conv2d

.Conv3d

.ConvTransposeld

ConvTranspose2d

Applies a 1D convolution over an input signal composed
of several input planes.

Applies a 2D convolution over an input signal composed
of several input planes.

Applies a 3D convolution over an input signal composed
of several input planes.

Applies a 1D transposed convolution operator over an
input image composed of several input planes.

Applies a 2D transposed convolution operator over an

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

109,392 repository results PyTorch Conference

“~-tober 16 - 17 | San Francisco, CA |
I>-- Containers ,

e Convolution Layers
e Pooling layers
e Padding Layers

e Non-linear Activations (weighted

* Non-linear Activations (other) i PyTorch

CRASH COURSE

— e Linear Layers ZERO TO HERO IN 50 MINUTES

GI. Georgia
Tech.

e Recurrent Layers

o Transformer Layers




Deep Learning
Some Common Myths about Deep Learning

“Deep learning requires lots of data”

I VI

Rt DR

£ . 2
S Weakly-Supervised Learning
"Stripes” “Horse’
‘ A "zebra" is a striped horse. ‘
. "Zebra"
ke | Zero-Shot Learning

Source Domain
Target Domain

Domain Adéion
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Deep Learning
Some Common Myths about Deep Learning

“Deep learning has poor interpretability

Observed Correlation Observed Counterfactual Observed Contrastive
2

Weights: Q‘
BENCENENSNE RS ’

A 3 What if Bullmastiff was not in Why Bullmastiff, rather than a
Bullmastiff Why Bullmastiff? the image? Boxer?

5+ XIS

Dimensionalitym - RN

Reduction - EEEEE Eggﬁggr
L>dag &F
T
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T

“More the data, better the model”
Example of balanced and imblanced data b

male

female normal gene

oncogene
Negatives = Positives

Negatives > Positives
Balanced

Imbalanced

Data imbalance issues

&‘@

& (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty
Human labeling

Dataset uncertainties
issues

(a) Input Image

(e) Epistemic Uncertainty
48 of 184
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Deep Learning
Some Common Myths about Deep Learning

“Deep learning is State-of-the-Art in every field”

“ 241 - (-241) +1

Object detection

e e
241 - (-241) + 1is equivalent to 241 + 241 + 1, which simplifies to 483 + 1. So
241 - (-241) + 1is equal to 484.

Semantic segmentation

Lirve
maving 2
fiaking d

Y
-
=tn ‘"l =
AS n \
ca—= - P P
:

| S
G E"f\

\

ATTALX PATTERN IS VISILE
10 B HUMY EYE

Depth estimation

 Clear weather Rain (200 mm/hr)
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Deep Learning
The Building Block

The underlying computational unit is the artificial neuron

LN Artificial Neuron
. ?‘QL
P . b %-\%1’1/ 3
Artificial neurons consist of: o L
« A single output TNZeiere N | o
. Multiole in uts _g “*ﬂw»\{ summation activation
P : P = output
* Input weights ) Z >
* A bias input %
» An activation function ” J/
‘"ﬁ& L bias
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Deep Learning
Artificial Neural Networks

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
* An input layer (Layer 0)
* An output layer (Layer K)
« Zero or more hidden (middle) layers (Layers 1...K — 1)

5107184 'ﬁi 2023 [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Deep Learning
Convolutional Neural Networks

-
S

output layer

hidden layers (optional) } /

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Featul'e Classifier

Ex. LeCun, 2015
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%999 2000 2001

o
LeNet-5

@IV 2023

2003

LeNet
AlexNet
e VGG

« GooglLeNet (Inception-V1)

« ResNet

2004 2005 2006 2007 2008

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

2011

Inception-v3 !
™ ® Inception-ResNe

Network In Network @ ® Inception-v4

2012 * 2013 2014° 2016 2017 2018

) : ®
AlexNet VGG :
I

[ ]
Xception ResNeXts
Inception-v1 ®

ResNets ®
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CNN Architectures
LeNet5 (1998)

avg-pool avg-pool
2x2 2x2

32x32x1

120 84 10

Novelty:
 Reduced number of learnable parameters and learned from raw pixels automatically

 The 1%t popular CNN that became the “standard” template of CNNs
e Stacking convolutional, activation, pooling layers
* Ending with fully connected layers

* Good results on small datasets
* Top-5 error rate on MNIST is 0.95%
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* Working to improve computational power
 Existing accelerators were not yet sufficiently powerful to make deep multichannel, multilayer CNNs
with a large number of parameters.
* Existing datasets were relatively small
» Limited storage capacity of computers

* Tricks for neural network training were not established yet
* Parameter initialization
 Variants of stochastic gradient descent
* Non-squashing activation functions
 Effective regularization techniques
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CNN Architectures
AlexNet (2011)

: Q max-pool max-pool max-pool

224%224x%3 x3

4096 4096 1000

Novelty:

* First to implement Rectified Linear Units (ReLUs) as activation, solving the
vanishing gradient problem

* Applied dropout regularization to fully connected layer to control complexity
 Deep CNN that runs on GPU hardware

 Deeper and wider than LeNet

* More robust than LeNet (data augmentation)

 Won ImageNet Challenge and significantly outperformed traditional methods
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AlexNet (2012)

ImageNet Classification Error (Top 5)

25,0 '/{G_@
20,0
15,0 £
100 T—F
) | I I .
2011 (XRCE) || 2012 (AlexNet) 2013 (zZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) (GooglLeNet-v4)
Imagenet:
1000 classes, 1.2M training images, 150K for testing
16.4% top 5 error in ILSVRC 2012
Figure Credit: Zitzewitz, Gustav. "Survey of neural networks in autonomous driving." (2017)
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ResNet (2015)

ImageNet Classification Error (Top 5)

30,0
20,0
15,0 - -
10,0 T8 -
) | I I .
2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) |(Googl.eNet-v4)
Imagenet:
~3.6% t rror in ILSVRC 201 .
3.6% top 5 erro S _ _C 015, 1000 classes, 1.2M training images, 150K for testing
lower than human recognition error!
Figure Credit: Zitzewitz, Gustav. "Survey of neural networks in autonomous driving." (2017)
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CNN Architectures
ResNet (2015)

of

%
|
I
i
i
= |

input

224x%224%3

2 e e

1000

(5)

(R)
(8)
(R)

. ) = (&) ) (6) ®
N Ove I ty : Conv block Identity block
 Introduced residual learning (Residual blocks) X
« Shortcut connections with identity mapping weight layer
: : : F(x relu
* Popularized skip connections (x) Weighjzlayer X
: identity
» 20 and 8 times deeper than AlexNet and VGG,
respectively with less computational complexity and F(x) +x
without compromising generalization power
590184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] JOLIVES ), Georgia
IV2“23 He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on %\Q\%g Gr Tech.

computer vision and pattern recognition. 2016.



Object Detection Architectures
YOLO (2016 - Ongoing)

All previous object detection techniques required multiple stages of detection

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 X 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

Novelty:

« Object detection is reformulated as a

regression problem from image space
to bounding-box coordinate space

« Single stage object detectors

« Feature extraction, detection,
classification performed in one go

 Contextual information is encoded

within each prediction
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Deep Learning for LIDAR data
PointNet (2017)

The challenge in utilizing LIDAR data is the volume of point cloud data and the permutation of
their processing

Classification Network

input mlp (64,64) feature mlp (64,128,1024) Tk mlp
g transform > - transform . . pool 1024 (512,256,k)
2 o (ag]
B e = shalred % ¢ y E sha!red nx1024 ' |
2 global feature K
= | -
——_ /AN SR RSO S £ output scores -
1 PR S ',—"”""“""“"’bbih'tﬂfevé‘tutés ' s R,
> (=]
1088 & | g |e
0 shared e shared = =
= e
e S [ Y 3
mlp (512,256,128) mlp (128,m)

* Performed classification and segmentation on n points of LIDAR data. Input nx3 refers to n points with {x, y, z}
coordinate dimensions
 Used RNNSs to overcome the permutation issues within LIDAR data
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Deep Learning for Sensor Fusion

Vision and LIDAR

bb. e,

(—_\
J Depth Map(D)
He = (X0 Y0)

~—
; ARSI,
’ Reflectance

—q Map(R)

H, = (-\‘m Yl )
LA s A

C-YOoLo

Independant

traming
strotegy

bv bl-r‘
— —of
Senzor

Fusion

mean)

o Final Result
(b.b, . <)

YOLO Framework is used to independently
extract features from cameras and LIDAR
sensors and fused to detect missed boxes

This is ‘late fusion’, in the sense that each sensor modality is independently evaluated
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15,000x increase in 5 years

GPT-31T
1 trillion
The number of parameters in models has
increased exponentially
g Megatron-Turing
e 5308
@ N
- ~@b
o _,
=
Inception-v3 . GPT-3 /
® ® Inception-ResNg 1758/
Network In Network ® ® inception-v4 Transformers BERT GPT-2 GPT-288 T5 Turing-NLG G
- 65M 340M 1.58B 8.3B 118 178
S 2 O i MID 2018 2019 MID LATE 2020 MID LATE 2022
® ® @ 2017 2019 2019 2020 2021
VGG Xception ResNeXts Time

Inception-v1 @

RENE
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Deep Deep Deep ... Deep Deep Learning
Motivation

Underlying features among different vision tasks are similar

Traditional Vision Tasks

Image Recognition
Object Detection
Segmentation

Edge Detection
Keypoints Detection
Surface Normals
Reshading
Curvature
Uncertainty

Depth

This similarity leads to Transfer Learning

64 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).



» Deep networks tend to learn common representations for various tasks in their earlier layers

« Can be exploited to transfer representations from networks trained on large datasets on one task (i.e.,
Image Classification on ImageNet) called the source to a different task called the target task

« Usually done by taking large pretrained network and then finetuning last layer (with all other layers
frozen) on target dataset

* Pre-trained frozen backbone acts as a feature extractor while finetuned last layer acts to project the
representations into the decision boundary for the target task

« Utility depends on how closely related the source and target datasets and/or tasks are

{ = Georgia
~*4 Tech
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Transfer Learning
Foundation Models

Source: https://gluon-cv.mxnet.io/ Source: https://www.move-lab.com/blog/tracking-
things-in-object-detection-videos

Foundation Model

Pretraining

Finetuning

Georgia
GI‘ Techgl
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Foundation models are like any other deep network that have employed transfer learning, except at scale

Scale brings about emergent properties that are common between tasks

Before 2019: Base architectures that powered multiple neural networks were ResNets, VGG etc.
Since 2019: BERT, DALL-E, GPT, Flamingo
Changes since 2019: Transformer architectures and Self-Supervision

Gr Georgia
Tech.
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Data Sources

Perceptual Sources

o MR o |
= -4 3 '
¢ i ) i< s ) 3
g 2 $a -
J -_ v
Cameras & Autonomous Ambient
Devices Agents Sensors
Training
Data Types
RGB Depth Thermal

= a3
o] o

Text Radio Audio
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@\i Traditional Vision Tasks
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“’ Adaptation
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% % Higher-Order Skills
e Physics & Theory of
Dynamics Mind
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Commonsense Temporality
Reasoning & Causality
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Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

‘By harnessing self-supervision at scale,
foundation models for vision have the potential
to distill raw, multimodal sensory information
into visual knowledge, which may effectively
support traditional perception tasks and
possibly enable new progress on challenging
higher-order skills like temporal and
commonsense reasoning These inputs can come
from a diverse range of data sources and
application domains, suggesting promise for
applications in healthcare and embodied,

interactive perception settings’
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Foundation Models
Segment Anything Model

Segment Anything Model (SAM) released by Meta on April 5, 2023 was trained on Segment Anything 1 Billion
dataset with 1.1 billion high-quality segmentation masks from 11 million images
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Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al.
"Segment anything." arXiv preprint arXiv:2304.02643 (2023).

Cityscapes dataset
semantic segmentation
annotation took ~90
mins per image
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Foundation Models
Training Foundation Models

Foundation models are trained via Self-Supervision

Supervised Unsupervised Self-Supervised
Self'SU perVISIOn: Labelled Dataset Unlabelled Dataset Unlabelled Dataset
x; y ] x ] x
» Type of unsupervised learning D
 Primary difference is the introduction of a “pre-text X, Z-

task.”

\/

* The pre-text task generates pseudo-labels that are
used to train a network.

s (I -
T

[\ “\ﬁ) -
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Self-Supervision
Overall Training Process

Unlabeled Data

(1 ... Xy)

1. Ildentify Labeled and Unlabeled
Data

Labeled Data

(X1 o), (V1Y)

2. Generate pseudo-labels with some pre-text

task P

Pseudo - Labeled

Unlabeled Data :> p Data

(%1 ... Xp)

72 of 184 IIEV 2023
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Self-Supervision
Example Training Process

Step 1: Generate pseudo-labels via image Step 2: Network learns to predict angle image
rotations is rotated
I Update
* Rotate 90 ConvNet z2 ——L(Z,2¢)
| Rotate 180 Step 3: Attach linear layer and train to classify
labels (y) on labeled dataset
Update [«
Unlabeled * Rotate 270 T
image » gEagiuuels
mage x E. 387 @ W
G v 3 ConvNet
| S e Trained
I -
ST
dEGREESESEN
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Self-Supervision
Motivation

Step 1: Generate pseudo-labels via image
rotations

* Rotate 90
*| Rotate 1380 s x3,2, = 180 Learning pre-text task will allow network to learn
relevant features without needing explicit labels!
*| Rotate 270 X3,23 = 270
Unlabeled
Image x
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Self-Supervision
Types of Pre-text Tasks

Differences in self-supervision are based on the type of pre-text task that is defined

Transformation Prediction

» Pre-text task performs some transformation on data and tasks model with trying to learn nature of
transformation.

Masked Prediction

» Pre-text task removes some part of the data and the model is tasked with trying to predict what was
removed.

Deep Clustering
* ldentify clusters of features and iteratively assign pseudo-labels to train model.
Contrastive Learning

» Pre-text task identifies positive and negative pairs of data and the model is tasked with learning similarities to
discriminate between positive and negatives.

750f 184 Iﬁi 2 ﬂ 2 3 [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]
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Contrastive Learning
Sim-CLR Framework

The Pseudo-labels are used to create positive-negative pairs within each batch

Calculated Embeddings

Z . .
1 Contrastive loss on embeddings
Z 7
Batch 2 )
Augmented > k=1 l=ijexp(si )
Images Z3
similarity( m r )
2 ([ ) =-log( : )
) imilari ‘ +  similari 2 similarity( 4
e5|m| anty(m ) esmﬂanty(E) e .)
Note: The positive pairs are only the augmentations and negative
pairs are all other images in the batch
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Contrastive Learning
Contrastive Learning vs Supervised Learning

Performance vs Models Performance vs Parameters
80 =

% Supervised B #SimCLR (4x) | ®sup. R50(2x) ' Sup. R50(4x)
o 1D BSUD. RS0 MRS A
° _#SimCLR (2x p L I i R OO =
£ o (2x) FR50(2x)* .
%) eCPCv2-L o R101SR152(2%) R50(4x)
© s
5 70 *SimCLR MOCO (4X) 70 *.RSO* .RSO(ZX)
O ePIRL-c2x - o SRIS2 (4x)
< AMDIM o R101 ®R1s(4
— 65 2 eMoCo (2x) 65| o (4x)
! PIRL-ens. &= R50
8' QCPCV2 ®R34(2x)
» e s oBigBiGAN 60
B 60 ‘MOCO g ®R18(2x)
< LA
[}
(@)
“’ . iy ®R34
E 55 : eRotation

e|nstDisc i
50
25 50 100 200 400 626 0 50 100 150 200 250 300 350 400 450
- Number of P t Milli
Number of Parameters (Millions) umber of Parameters (Millions)
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Contrastive Learning

Contrastive Learning other than SIM-CLR

What differentiates other Contrastive Learning methods from Sim-CLR?

The way that similar pairs (positives)
and dissimilar pairs (negatives) are
generated.
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Paper

Short description

Topics of contribution

Becker and Hinton [8]

Maximise MI between two views

Foundation

Bromley et al. [11]

Siamese network in metric learning setting

Foundation

Chopra, Hadsell. and LeCun [20]

Learn similarity metric with contrastive pair loss

Energy-based loss, Application

Hadsell, Chopra, and LeCun [39]

Learn invariant representation from pair loss

Energy-based loss, Application

Weinberger, Blitzer, and Saul [108]

Learn distance metric with triplet loss

Energy-based loss

Collobert and Weston [21] Learn language model with triplet loss Application
Chechik et al. [15] Learn image retrieval model with triplet loss Application
Noise Contrastive Estimation [38] Introduce NCE, a general methods to learn unnormalised probabilistic model Probabilistic loss
Mnih and Teh [71] Learn language model with NCE-based loss Application

Mikolov et al. [68]

Learn word embedding with Negative Sampling (NEG), a modified version of
NCE

Probabilistic loss, Application

Wang et al. [105]

Learn fine-grained image similarity using deep network and triplet loss

Application

Wang and Gupta [107]

Use video's sequential coherence to learn unsupervised video representation

Similarity, Application

Lifted-structure loss [75]

Extend triplet loss to multiple positive and negative pairs per query

Energy-based loss

N-pair loss [92]

Proposed non-parametric classification loss with multiple negative pairs per
query

Probabilistic loss

Wu et al. [109]

Focus on the quality of negative samples through a distance-weighted margin
loss

Similarity, Energy-based loss

Hermans, Beyer. and Leibe [45] State the important of mining hard samples in triplet loss Similarity
Wu et al. [110] Self-supervised representation with instance discrimination Application
; Memory bank to holds keys for next epoch Encoder
CPC [77] Mutual l.nf(')n'n'ation‘ with the contrastive lqss ) Mutual Information loss
: Define similarity with past-future context-instance relationship Similarity
Evaluate multiple mutual information bound for the contrastive loss Mutual Information Loss
DIM [46] s 3 2 Pe
Global-local context-instance relationship Similarity
MoCo [43] Use momentum encoder to store features to memory queue Encoder
SimCLR [16] 2:::;::‘1: })\1 and demonstrate large empirical improvement in instance discrimina- | Application
Focus on the use of separate heads Transform heads
BYOL [34] Learning similarity without negative samples Loss

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]
Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." arXiv

preprint arXiv:2002.05709 (2020).
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Exploiting the Distortion-Semantic
Interaction in Fisheye Data
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SCAN ME

Intuition: Regions within a fisheye image are their own class. Hence, any object within them
are positives

Intuition for Loss 1:

All objects from the edge (be it a car, bike,
pedestrian) are positives and objects from the centre
(be it a car, bike, pedestrian) are negatives

50 100 150 200

Object from Edge
Intuition for Loss 1:

All objects from labeled car (be it in the center or the
edge) are positives and all other objects (be it in the
center or the edge) are negatives

0 50 100 150 200

Object from Center
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SCAN ME

Intuition: Regions within a fisheye image are their own class. Hence, any object within them
are positives

aLejgss + (1 — a)LRegionClass

a controls the level of unsupervised
contrastive learning

Performance as alpha parameter varies

0.4650 A

0.4625 A

0.4600 A

5

 0.4575 A

mAP

0.4550 ~

0.4525 / [
0.4500 {4

—$— OD with alpha contrastive pre-training

—$— Standard OD

0.4475 1 I I 1 I I :
. 0.0 0.2 0.4 0.6 0.8 1.0
Objed from Center Alpha Parameter Variation
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Defining the positive-negative pairs is application dependent
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Objectives
Takeaways from Part Il

Part |. Challenges in Perception and Autonomy

Part ll: Deep Learning for Perception
» Transfer Learning and training at scale are essential for foundation model development
» Self-supervised Learning provides a framework for large scale learning on unannotated data

Part Ill: Existing Deep Learning solutions to Challenges in Perception

Part [V: Remaining Challenges and Future Directions

sssssssssssssssssssssssssssssss
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A Holistic View of Perception in Intel. Vehicles
Part lll: Deep Learning at Inference
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Objectives
Obijectives in Part Il

Challenging conditions at training

Inference
» Deficiencies at Inference

Overcoming deficiencies at Inference
* Anomaly Detection
« Uncertainty
« Explainability

Case study 1: Robustness to challenging conditions

Case study 2: Aberrant Object Detection

ssssssssssssssssssssssssssssssss
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Challenging weather

Challenging sensing

Challenging environments

Context awareness

Embedded perception

V2X perception
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Challenging Conditions in Deep Learning
Integrating Challenging Conditions in Training

The most novel/aberrant samples should not be used in early training

> Model Representation

A
O
Low Information ®0 - : . :
) (X X » The first instance of training must occur with
® ® less informative samples
() g © @ ®
= o @ « Less informative:
g « Highway scenarios
= .
- « Parking
* No accidents
High Information  No aberrant events
Samples @ Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
87 of 184 IEEE [Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023] Gr Georgia
IV2023 Benkert, R., Prabushankar, M., AIRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: TECh.

A Second Order Approach to Active Learning. IEEE Transactions on Artificial Intelligence.



Challenging Conditions in Deep Learning
Integrating Challenging Conditions in Training

Subsequent training must not focus only on novel data

1”” - LTl TR AR T - i =y e R T |
~ Catastrophic :‘ ————— « The model performs well on the new
0 st Forgetting \ scenarios, while forgetting the old scenarios
E" 60 \ ‘\ e MNIST  A. number of techniques exist to overcome
§ 4) \ \ = FMNIST this trend
\

f ! » However, they affect the overall performance
'_§ ) in large-scale settings

0! ALl e e, NIV TR MNE O S  |tis not always clear if and when to

1) 20 ) (1) 10() incorporate novel scenarios in training
Epochs
Catastrophic Forgetting Handle Cha"enging

conditions at Inference!
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Inference
What is Inference?

Ability of a system to predict correctly on novel data

Model Train At Deployment

Novel data sources:

» Test distributions

* Anomalous data

« Out-Of-Distribution data
« Adversarial data

» Corrupted data

* Noisy data

* New classes
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Inference
What is Inference?

Ability of a system to predict correctly on novel data

Novel data sources

90 of 184

Test distributions
Anomalous data
Out-Of-Distribution data
Adversarial data
Corrupted data

Noisy data

New classes

ssssssssssssssssssssssssssssssss
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Ve Lei..ti
“The best-laid plans of sensors and networks
often go awry”
- Engineers, probably
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?
To overcome deficiencies, predictions from neural networks must be equipped with:
« Anomaly scores: How close to the training data is the novel data at inference?

» Uncertainty scores: How close to the best possible network is the trained network?
» Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous

Grad-CAM : Why No-

Why No-Left, rather

» Left? than Stop?
data . . . . ; ) ; .
data Certain objects  Uncertain objects Why P Why P, rather
than Q?’
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?
To overcome deficiencies, predictions from neural networks must be equipped with:
- Anomaly scores: How close to the training data is the novel data at inference?

» Uncertainty scores: How close to the best possible network is the trained network?
» Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous

Grad-CAM : Why No- Why No-Left, rather

Left? than Stop?
data data Certain objects Uncertain objects ‘Why P’ ‘Why P, rather
than Q7?’
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Backpropagated Gradient Representations for
Anomaly Detection

[m] 2P [m]
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SCAN ME



. O30
AnOmalleS : Backpropagated Gradient

[=] Representations for Anomaly Detection

Finding Rare Events in Normal Patterns SCAN ME

‘Anomalies are patterns in data that do not conform to a well defined notion of normal behavior’ ]

@ r Statistical Definition:
H  Normal data are generated from a stationary process Py

a . * Anomalies are generated from a different process P, + Py

'l" Goal: Detect ¢,

() = ®o Normal data
$1 Anomalies

bo b1 Do
[ . \F.L\f_l_\
%. & L . o N . @ . °
=== t
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SCAN ME

Step 1: Constrain manifolds, Step 2: Detect statistically implausible projections

« Step 1 ensures that patches from natural
images live close to a low dimensional
manifold

» Step 2 designs distance functions that
detect implausibility based on
constraints

Anomaly
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[m] 3%+ [a]

L
=
SCAN ME
2004 2016 2018 2019
Tax et.al ! Fan et.al 2 Pidhorksyi et.al 3 Abati et.al4

Encoder Decoder
- .
Training . % @ .
Activations are

constrained Statistical deviation (Latent Loss)

using GANSs, Anomal
VAEsS, etc. '
Testing

[1] David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54(1):45-66, 2004.

[2] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. arXiv preprint
arXiv:1805.11223, 2018. 1, 2

[3] S. Pidhorskyi, R. AlImohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in Neural Information Processing Systems, 2018, pp. 6822-6833.

[4] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 481-490.
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SCAN ME

Activation Constraints

Activation-based representation

Forward propagation (Data perspective) How much of the input

] e.g. Reconstruction error ( does not correspond to
Trained with ‘0

Anomaly

. . the learned information?

; | Gradient Constraints
Input | | | / Reconstruction  Gradient-based Representation
Encoder  Decoder (Model perspective)
Backpropagation w £y w’ How much model update is
ow required by the input?

—>

I\ OLIVES P
@i 2023 G- Seorsia

G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection,” 2020



Backpropagated Gradient

Constraining Manifolds Zo7g | Backoropagated Gradient
Advantages of Gradient-based Constraints e I '

» Gradients provide directional information to characterize anomalies
« Gradients from different layers capture abnormality at different levels of data abstraction

Abnormal data distribution Abnormal data distribution

Backpropagated

econstruction Gradients

Error (L)

9o (fo ())

=

9o (fo ('))"‘\‘

.

.

.
%(

Xout

Reconstructed image manifold
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GradCON: Gradient COnStraint Z EI} Backpropagated Gradient
Gradient-based Constraints

Representations for Anomaly Detection
SCAN ME

Constrain gradient-based representations during training to obtain clear separation between

normal data and abnormal data

Gradient loss
0L

/\
/

] At k-th step of training,
|

| a¢out

|

|

- ™

e o e - in,1

< SRR ’ ]=£—IE-[COSSIM< , )]
S l 0bigypy 00

Avg. training Gradients at
gradients until (k-1) th iter. k-th iter.

k-1 k-1 t
where Z E 2
0bigug d¢;

t=1
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SCAN ME

AUROC Results

Abnormal “class” Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
detection (ClFAR_10) CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 O.?ll 0.390 0.564
CAE Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554

e.g. + Grad Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661

VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583
econ 0.55 : ; D : 0 : .0 DO ! O
Latent 0.586 0.396 0.618 0.476 0.719 0.474 0.698 0.537 0.586 0.413 0.550
Grad 0.736 0.625 0.5901 0.596 0.707 0.570 0.740 0.543 0.73% 0.629 0.647 |

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

e

VAE
+ Grad

Normal Abnormal

« (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
« (CAE vs. VAE) Performance sacrifice from the latent constraint

« (VAE vs. VAE + Grad) Complementary features from the gradient constraint
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GradCON: Gradient Constraint ¥ | Backpropagated Gradient

[=] Representations for Anomaly Detection

Aberrant Condition Detection SCAN ME

AUROC Results

Decolorization Lens Blur Dirty Lens Exposure

Abnormal “condition”
detection (CURE-TSR)

Levels Levels
. . Gaussian Blur Rain

Normal Abnormal

Levels Levels

|->&- Recon (CAE) —<— Recon (CAE+Grad) |—e— Grad (CAE+Grad)i|

Recon: Reconstruction error, Grad: Gradient loss
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:

« Anomaly scores: How close to the training data is the novel data at inference?
* Uncertainty scores: How close to the best possible network is the trained network?
» Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous
data data

Grad-CAM : Why No- Why No-Left, rather
Left? than Stop?

Certain objects  Uncertain objects ‘Why P’ ‘Why P, rather
than Q?’
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Uncertainty
What is Uncertainty?

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Uncertainty is a model knowing that it does not know

Prediction
20 - - Predictive mean
+ Taining data
15 Epistemic uncertainty
10
g 98 A simple example: More the training data, lesser the

0.0 - . uncertainty
-0.5
-1.0 1 ¥
—1.5 ' 1 Ll L ] Ll ]

-15 -1.0 -0.5 0.0 0.5 10 15
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SCAN ME

Uncertainty is a model knowing that it does not know

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100

1.0 AT TEX
5 08 glg @l gl
3 %’”g §| é')l

0. S S : . ,
§ ’ 8:: “: g Larger the model, more misplaced is a network'’s
s O i I3 confidence
o < 1 <
S 0.2 -

1| (. o
0.0 On ResNet, the gap between prediction accuracy
fi et S DO S SRS S L 2 and its corresponding confidence is significantly
B Outputs B Outputs .

0.8 ||z Gap 7 Gap hlgh
)
206 : . :
§ On OOD data, uncertainty is not easy to quantify
304

0.2

- Error=44.9 Error=30.6

0.0 0.2 04 06 0.8 1.0 0.0 02 04 0.6 0.8 1.0

Confidence
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machine learning. PMLR, 2017.



Uncertainty
Types of Uncertainty

Two major types of uncertainty: Uncertainty in data and uncertainty in model

@ Training data
—— Underlying Data
Generator

High data

uncertainty

@ Training data

___ Underlying Data
° Generator

- Model 1
— Model 2

Low data
uncertainty

High model

uncertainty .~ +

Low model
uncertainty

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A

survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.

SCAN ME

@ Training data
___ Underlying Data
Generator

Out of
distribution

Probing the Purview of Neural Networks
via Gradient Analysis

Out of
distribution
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Uncertainty
Types of Uncertainty

SCAN ME

Probing the Purview of Neural Networks
via Gradient Analysis

For the purpose of predictions: Both uncertainties are combined as Predictive Uncertainty

@ Training data
-~ Underlying Data High data
Generator uncertainty _,

Low data
uncertainty

ssssssssssssssssssssssssssssssss

@ Training data

___ Underlying Data
Generator

— Model 1

- Model 2

High model

uncertainty .~ +

Low model
uncertainty

[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A

survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.

@ Training data
___ Underlying Data
Generator

Out of
distribution

Out of
distribution

Gr Georgia
Tech.



Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Principle

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data

However, what is L?

Abnormal data distribution

* In anomaly detection, the loss was between the input and

its reconstruction
* |In prediction tasks, there is neither the reconstructed input

or ground truth

Backpropagated
Gradients

9 (fo ()™,

a0 0
! ¢ X=Xout
Learned Representation
109 of 184 IEEE i i ' g
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Uncertainty in Neural Networks
Principle

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Principle: Gradients provide a distance measure between the learned representations space
and novel data
P = Predicted class
Q, = Contrast class 1

Q, = Contrast class 2 However, what is L?
Backpropagated * In anomaly detection, the loss was between the
Gradients input and its reconstruction
dL(P,Q1) - In prediction tasks, there is neither the

00 reconstructed input or ground truth

 We backpropagate all possible classes -
Q1,Q, ...Qy by backpropagating N one-hot

vectors
Backpropagated * Higher the distance to all classes, higher the
Gradients uncertainty score
Learned Representation 0L(P,Q>)
a0
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Deriving Gradient Features

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

Introspective Features
Gradients =« = = —

Weights, W, d] (¥, . .
b i L M y Normalized and vectorized
aw, yi=1 gradients are introspective
' features
X —» Sensing Vwl (3,51
Network
£0) 2P

\ )
! $=3 Why vector of all 1s? The theory is
fi-1(x - presented in [1]
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Probing the Purview of Neural Networks
via Gradient Analysis

Uncertainty in Neural Networks
Deriving Gradient Features

SCAN ME

Step 2: Take L2 norm of all generated gradients

Dataset
HEE mnist

Collection of cslquared L2 norm IV, J(B0; x, yc)”; Ve, J(Bx; x, J’c)”z s
)

.

20

.
15 <
.
.
10 2
.
¢ L]
Ll
L]
.
‘.
5 ” & *
° 0 ‘
5 . R " ; ‘ &
X ' . . /i ‘m & T B %
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Network Parameters

MNIST: In-distribution, SUN: Out-of-Distribution
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Gradient-based Uncertainty
Uncertainty Results in OOD setting

Probing the Purview of Neural Networks
via Gradient Analysis

— — —_— — 7 — —
17.5 T - . _
5 10 6
15.0 = T 5 & _ T
" . 5 T_
12.5 0.3 B Datasets
= 2.0
— _ 4 BN MNIST
:.: 10.0 3 N 6 SN SVHN
— 1.5
> -~ 3 EEE TinylmageNet
2 4 - B LSUN
5.0 ' 2 B CIFAR-10
1 2
2.5 0.5 1
00 &= 0 = o = 0.0 = o =

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets
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Gradient-based Uncertainty
Uncertainty Results in Adversarial Setting

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“vanda” noise “cibbon”

57.7% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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[=] o
SCAN ME

MODEL ATTACKS BASELINE  LID M(V) MP) MFE) M(P+FE) OURS

FGSM 51.20 90.06 81.69 84.25 99.95 99.95 93.45
BIM 49.94 99.21 &87.09 89.20 100.0 100.0 96.19
RESNT C&W 53.40 76.47 74.51 75.71 92.78 92.79 97.07
PGD 50.03 67.48 56.27 57.57 65.23 75.98 95.82
ITERLL 60.40 85.17 62.32 64.10 85.10 92.10 98.17
SEMANTIC 52.29 86.25 64.18 65.79 83.95 84.38 90.15
FGSM 52.76 08.23 86.88 87.24 99.98 99.97 96.83
BIM 49.67 100.0 89.19 89.17 100.0 100.0 96.85
C&W 54.53 80.58 75.77 76.16 90.83 90.76 97.05
UENSENET  pen 49.87  83.01 7039 6652 8694  83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84 98.53
SEMANTIC 53.54 81.41 62.16 62.15 67.98 67.29 89.55
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Gradient-based Uncertainty
Uncertainty Results to Detect Challenging Conditions

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Gaussian Noise Defocus Blur  Gaussian Blur Spatter

PR Tl

No
Challenge  ization

Haze
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Gradient-based Uncertainty

Uncertainty Results to Detect Challenging Conditions

2 Method Mahalanobis [12] / Ours

g Corruption Level | Level 2 Level 3 Level 4 Level 5
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur | 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
” GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
c—? DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 95.37/99.92 97.43/99.96
E Exposure | 91.39/99.87 91.00/99.85 90.71/99.88 90.58/99.85 90.68/99.87
~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
| Noise | 2546/5020 4754/6387 4732/8120 66.19/91.16 8314/9481
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
{E DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
%J Exposure | 74.90/88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/9542 89.68/96.91
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via Gradient Analysis

SCAN ME

Gaussian Noise Defocus Blur  Gaussian Blur Spatter
2 . = J

No Decolor- Lens Dirty
Challenge Blur Lens
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Gradient-based Uncertainty

Uncertainty Results to Detect Challenging Conditions

2 Method Mahalanobis [12] / Ours

g Corruption Level | Level 2 Level 3 Level 4 Level 5
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur | 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
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~ Snow 93.64/99.94 96.50/99.94 94.44/99.95 94.22/99.95 95.25/99.92
Haze 95.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
| Noise | 2546/5020 4754/6387 4732/8120 66.19/91.16 8314/9481
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
{E DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
%J Exposure | 74.90/88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51/95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

Train set - B | MNIST

CIFAR10 TinyImageNet
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

SCAN ME

Dataset Distribution Detection Accuracy AUROC AUPR
In Out Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

SVHN 83.36/88.81/79.39/91.95/98.04 88.30/94.93/85.03/97.10/99.84 88.26/95.45/86.15/96.12/99.98

CIFAR-10  TinylmageNet 84.01/85.21/83.60/97.45/86.17 90.06/91.86/88.93/99.68/93.18 89.26/91.60/ 88.59 /99.60 / 92.66
LSUN 87.34/88.42/85.02/98.60/98.37 92.79/94.48/90.11/99.86/99.86 92.30/94.22/89.80/99.82/99.87

CIFAR-10 79.98/80.12/74.10/88.84/97.90 81.50/81.49/79.31/95.05/99.79 81.01/80.95/80.83/90.25/98.11

SVHN TinylmageNet 81.70/81.92/79.35/96.17/97.74 83.69/83.82/83.85/99.23/99.77 82.54/82.60/85.50/98.17/97.93
LSUN 80.96/81.15/79.52/97.50/99.04 82.85/82.98/83.02/99.54/99.93 81.97/82.01/84.67/98.84/99.21

Gr Georgia
Tech.
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Out-of-Distribution Detection

Dataset Distribution Detection Accuracy

AUROC

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68/93.18

via Gradient Analysis

SCAN ME

Probing the Purview of Neural Networks

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 7/ 99.60 / 92.66

In Out
SVHN ' 83.36/88.81/79.39/91.95 / 98.04
CIFAR-10  TinyImageNet | 84.01/85.21/83.60/97.45/86.17
LSUN 87.34/88.42/85.02/98.60 / 98.37
CIFAR-10  79.98/80.12/74.10/88.84 /97.90

SVHN TinyImageNet = 81.70/81.92/79.35/96.17/97.74
LSUN

80.96 /81.15/79.52/97.50/99.04

92.797/94.48 /90.11/99.86 / 99.86
81.50/81.49/79.31/95.05/99.79
83.69/83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

ssssssssssssssssssssssssssssssss
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution Detection Accuracy

In Out

SVHN 83.36/88.81/79.39/91.95/98.04

84.01/85.21/83.60/97.45/86.17

CIFAR-10  TinyImageNet

AUROC

88.30/94.93/85.03/97.10/99.84
90.06/91.86/88.93/99.68/93.18

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 7/ 99.60 / 92.66

LSUN

87.34/88.42/85.02/98.60 / 98.37

92.79/94.48 /90.11/99.86 / 99.86

92.30/94.22/89.80/99.82/99.87

81.50/81.49/79.31/95.05/99.79

81.01/80.95/80.83/90.25/98.11

CIFAR-10 79.98 /80.12/74.10/ 88.84 / 97.90
SVHN TinylmageNet = 81.70/81.92/79.35/96.17/97.74
LSUN 80.96 /81.15/79.52/97.50/99.04

83.69 /83.82/83.85/99.23/99.77
82.85/82.98/83.02/99.54/99.93

More similar
datasets
(objects)

TinyImageNet CIFAR10

ssssssssssssssssssssssssssssssss
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Inference
Overcoming Deficiencies at Inference

What is required when networks are met with challenging data at inference?

To overcome deficiencies, predictions from neural networks must be equipped with:
« Anomaly scores: How close to the training data is the novel data at inference?

» Uncertainty scores: How close to the best possible network is the trained network?
- Contextual Explainability: How relevant are the network explanations for its prediction?

Training Anomalous

Grad-CAM : Why No- Why No-Left, rather

Left? than Stop?
data data Certain objects Uncertain objects ‘Why P’ ‘Why P, rather
than Q7?’
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EXPLAINABILITY %y

v
Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor SCAN ME
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
What are Visual Explanations?

SCAN ME
 Explanations are defined as a set of rationales used to understand the reasons behind a
decision

» If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed
Corralations Contrasti‘)‘/e

N

What if Bullmastiff was not in | Why Bullmastiff, rather than a

. c0ry .
Bullmastiff Why Bullmastiff the image? Boxar?
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SCAN ME

Explainability matters establishes trust in deep learning systems by developing transparent
models that can explain why they predict what they predict to humans

Algorithm
: —— : S T Output
Explainability is useful in: === | ﬂ
. _ W Y= o {] class scores
* Medical: help doctors diagnose = == Mjﬁ
« Seismic: help interpreters label seismic LR s =
data -~ G
* Autonomous Systems: build appropriate Deep models act as algorithms that take
trust and confidence data and output something without

being able to explain their methodology
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SCAN ME

Role of
> > It is a Spoonbill Explainability
o Pink and i ;
s f A _ & round body, € networ i !
=z hf Why Spoonbill? —* %~ — straight Y taught me Elea"“ f ()'s
- - : ecision
% = beak about spoonbills
7 % The network
= Why Spoonbill, z Lack of S- does not know
2 ratherthana — @ shaped about the Assess f(-)
. > . .
-‘g‘ Flamingo? 3 neck _ difference in
o legs
: Neck, beak,
§ Whhy Spgonblll, _ body, legs n | trust the Garners
S £ rather than a are all g > network trustin f(+)
= Fox? [ different |
127 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] NOLIVES ), = __ Georgia
IV2023 AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and / ” Tech.

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.



Explanations
Input Saliency via Occlusion

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted

probabilities change

\ 58
2 3 K :
) 1 r'\‘ 1 \
£ . 1 | [
S \ % G 13 | l 1 B _—
2y Rl A % B e S
\ ’ o\ 3 . N /LN /L) SN
\ A\ - 192 192 128 /2048 \/ 2oas
oo \27 123 \ .',( - — ¥ = J
— w4 N 13 N [\ 13 I\ 1
24 \ \ I/ \
| |+ z + 9 9 e
| 113 i } 1 o o] |Dense
] v 11} \ 1 | Derce| |Dense
\\T s b, Ere— - | |
L } v 192 12 18 .
Gors NI e " Pocting 0% 0
3 & Pooing  Pooliny "]
Local Response OC espon:

A gray patch or patch of average pixel value of the dataset
Note: not a black patch because the input images are
centered to zero in the preprocessing.
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Explanations
Input Saliency via Occlusion

probabilities change
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Intervention: Mask part of the image before feeding to CNN, check how much predicted

P(elephant) =0.95
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusion

SCAN ME

The network is trained with image- labels, but it is sensitive to the common visual regions in
images

African elephant, Loxodonta africana
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Gradients

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output

Vanilla Gradients Deconvolution Gradients  Guided Backpropagation

However, localization remains an issue
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
GradCAM

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

- To find the important activations that are K\
responsible for a particular class NN RN

\27

¢ \ =0 \ 13
{ 55 : i
L - . Y -
; \ R \ =
% \ \ 7 3

 \WWe want the activations:

- Class-discriminative to reflect decision-
making
* Preserve spatial information to ensure o

spatial coverage of important regions

Local Response
Normalization
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Gradient and Activation-based Explanations
GradCAM

Contextual Explanations

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» Given an image, feed forward through CNN

image
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
GradCAM

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» Given an image, feed forward through CNN

» Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

d§—> % Soxes }Image Classification
M_—>

Ima g e Rectified Conv )

Feature Maps

A y
— TagK-specific
Network
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Contextual Explanations

Gradient and Activation-based Explanations
GradCAM

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» Given an image, feed forward through CNN

« Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

IS %}ﬁ il }Image Classification

| y
Image Rectified Conv )

Feature Maps

A perturb neuron activations in the last conv
— T?Ze:gaciﬁc layer and see how it affects the decision

Network
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
GradCAM

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» Given an image, feed forward through CNN

« Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

« Backward pass to last conv layer

'S %% i }Image Classification

| y
Image Rectified Conv )

Feature Maps

--------------------

<«<—— Gradients

A perturb neuron activations in the last conv
— Tyz;gaciﬁc layer and see how it affects the decision

—> Activations i sy
' etwo
ff ,
11
11 i . . .
[ | Bekeoptlon Backprop prediction for c-th class with respect to
11 . . .
" feature map activations in the last conv layer
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SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» Given an image, feed forward through CNN

» Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

« Backward pass to last conv layer

+ Compute gradients w.r.t. last conv activations A,:é M £l Bosar }Image Classification
image J

Rectified Conv
Feature Maps

<[ io] |

y oy¢ . .y
T?fs{ecmc >_: gradients of prediction for c-th
____________________ Network 0A .
| <—— Gradients class with respect to k-th feature map
{ T >Advalons | ; activations A* in the last conv layer
(1 af is the scalar importance of k-th
global average pooling i Backproptlll conv featu re map Obtalned by averaglng
 Toe o | 97" spatiall
€= 722 oap A 5% Spatially
Z J di \’-b/ k
gradients via backprop
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Gradients provide a one-shot means of perturbing the input that changes the output.
Activations provide the localization.

» Given an image, feed forward through CNN

» Final convolutional layer output feature maps for later task-specific layers, i.e., fc layer for classification

« Backward pass to last conv layer

+ Compute gradients w.r.t. last conv activations Ad; M £l Bosar }.umage Classification

Im ag e Rectified Conv —

Feature Maps

ay° . -
T725,gaciﬁc 2_: gradients of prediction for c-th
____________________ Network 0A .
| <€—— Gradients class with respect to k-th feature map
L T s activations A* in the last conv layer
7 af is the scalar importance of k-th
Backprop tl cor feature map obtained by averaging
ay°¢ .
% Spatially

Grad-CAM (up-sampled to original image dimension)
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SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

Ad;_M % Boxer }Image Classification
>

y

Rectified Conv

Feature Maps global average pooling

e oim 3YY o
TaNétsvesﬁ(lflc Z - ' 0 A f:]
N

0
|

--------------------

E <«—— Gradients E
i —— Activations | ; 5
. | gradients via backprop

<—J ¢ L § : e Ak

Backprop till conv LGrad-C AM — ReLU . A

04 0 k:
Grad-CAM (up-sampled to original image dimension) .
linear combination
139 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] ANOLIVES ), 7= __ Georgia
IV2023 Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient- -4l Tech

based localization." Proceedings of the IEEE international conference on computer vision. 2017.



SCAN ME

Grad-CAM generalizes to any task:
» Image classification

* Image captioning

* Visual question answering

* efc.

<[ io] |

e | Boxer Image Classification
M——)

<

Rectified Conv
Feature Maps
T T N T (or)

c &
y > :
—> Tagkgpecific A cat lying on Image Captioning
................... Network » the ground
E <—— GCradients E o
E —> Activations E
S ' A (or)
— I:D Visual
Backprop ) ANNILSTM e Question Answering
till conv )
Grad-CAM
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Extensions of GradCAM

SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Counterfactual Observed
Corralations Contrasti‘\_/e

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?

Bullmastiff
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if P is not there in the Image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain ¢ for each kernel k

1€ M % Senxer }Image Classification
> /S

y

Rectified Conv
Feature Maps global average pooling

55 s N
Al s | e = lzz y°
ask-specific = —
__________________ Network k Z “ . OAF.
¢ ) % 7 7 ]
| <€—— Gradients ! 144
A i T:“fjl"f] C(]i gradients via backprop

....................

<—J c § : c Ak

Backprop til conv LGrad-C AM — RelLU . A

oy°¢ 2

What if Bullmastiff was not in Y 5Ak N P
the image? . Mo e

linear combination

Negating the gradients effectively removes these regions from analysis
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

'S %% R }Image Classification

y

Rectified Conv
Feature Maps global average pooling

% -~ 7N ~
Al g g, & Z S 8J(P,Q)
— TagK-specific & kE — — M. A
.................... Network Z et £ oA,
i <€—— Gradients : t J
Aot 1 afa | ]i gradients via backprop

____________________

N |

2N [

— Z k
Backprop til conv Lérad-C AM — RelLU sz A
dJ(P,Q) 2

Qe e s

Why Bullmastiff, rather than a ’ Ak “ <
Boxer? i bt
1near combination
Contrast-CAM

Backpropagating the loss highlights the differences between classes P and Q.
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Gradient and Activation-based Explanations
Results of GardCAM, CounterfactualCAM, and ContrastCAM
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SCAN ME

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

-

= -:, . —- G <
Representative Why Spoonbill, rather Representative Pig Why Spoonbill, rather Why not Spoonbill,
Flamingo image than Flamingo? | image i than Pig? with 100% confidence?
| i 3

ImageNet dataset : | Grad-CAM : Why : Bull ‘Represe i Why Bull Mastiff, Representative Blueja Why Bull Mastiff,

Bull Mastiff Mastiff? i mag rather than Boxer image rather than Blue jay?

>

CURE-TSR dataset : Grad-CAM : Why No- Representative No- | Why No-Left, rather Represemauve Stop hy o-Left, rather | Why not No-Left with
No-Left Image Left? Right image than No-Right? _Sign than Stop? 100% confidence?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations
Results of GardCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

SCAN ME

Human
Interpretable

lmageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather |  Representative Pig Why Spoonbill, rather | Why not Spoonbill,
Spoonbill Spoonbill? Flamingo image than Flamingo? 'l image . than Pig? with 100% confidence?
) 3 ' F "

ga

'
ol
.3
Why Bull Mastiff, | Representative Blue jay [ Why Bull Mastiff,
rather than Boxer image rather than Blue jay? [ with 100% confidence?

»

CURE-TSR dataset : Grad-CAM : Why No- Representative No Why No-Left, rather Representatcve Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Rrght image than No-Right? _Sign than Stop? 100% confidence?
\ N

Stanford Cars Dataset: Grad-CAM: Why

Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather

Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Results of GardCAM, Counterfactual CAM, and ContrastCAM
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Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2

lmageNet dataset : ’ Grad-CAM : Why Representative Why Spoonbill, rather ’ Why Spoonbill, rather || Why not Spoonbill,
S oonblll Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence?

s

ImageNet dataset : | Grad-CAM : Why : Bull Representauve Boxer Why Bull Mastiff, Representative Blue jay |  Why Bull Mastiff, Why not Bull Mastiff,
_Bull Mastiff Mastiff? rather than Boxer image rather than Blue jay? | with 100% confidence?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast 2 Explanation 2
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Only traffic sign with a straight
> bottom-left edge — enough to
say Not STOP Sign’

cJopsy | | AR 0-VIP
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop Dumb-bell
_’

Even natural images
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.

Racket

enature

Georgia
Tech.
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

How would humans resolve this challenge?

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bull mastiff?
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Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspectlon

Fr=rmr == e i =
. Visual Sensing | Reflection !
. - I
Sense pink feathers, Why Spoonbill, rather than Flamingo? -
straight beak x does not have an S-shaped neck !
|

Spoonbill Why Spoonbill, rather than Crane? : _

y x does not have white feathers : »Spoonblll

! y
Why Spoonbill, rather than Pig? |
i Feed-Forward x's leg and neck shapes are -
- Sensing different '
e i e e e |
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Introspection in Neural Networks

SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Counterfactual Observed
Corralations Contrasti‘)‘/e

N

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
Why Bullmastiff? the image? Boxer?
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form Why
P, rather than Q? where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the networks prediction
f(x) =9y, introspection in f () is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Gradients as Features

Why 5, rather than 0? Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Why 5, rather than 57 Why 5, rather than 67
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Gradients as Features

W = T - T T W e

| B ] =
Informative sparse features
I\
Why 5, rather than 0?7 Why 5, rather than 1?7
[ i : . i 1
l . » W
Why 5, rather than 2? \ Why 5, rather than 4?
| = " - . -
Input Image x | Why 5, rather than 5? | Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features

Gradients =« = = — 31 (%

e I 9]0, y1) Normalized and vectorized
gradients are introspective
features

X -+ Sensing \
Network .
£0) Vector of all ones: A confounding label!
\ )
|
fi-13(x)
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Introspection in Neural Networks
Utilizing Gradient Features

Approach for Inference in Neural
Networks

Gradients =« = = =
Weights, W,

Introspective Features

y; =1V

X -+ Sensing
Network

Vwl(3.y1)

)

Y
fi-13(x)

[

4————————0——.-———}(ﬂ

Txm

MLP
H()

M vectorized
and normalized
gradients

Introspecti\}e Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Generalization and Calibration
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Feed-Forward Networks ® ResNet-18 @ ResNet-34 @ ResNet-50 ResNet-101
After Introspection ® ResNet-18 ResNet-34 @ ResNet-50 ResNet-101
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Plug-in Nature of Introspection

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
INTROSPECTIVE 71.4% I . . =
ntrospection is a plug-in
DENOISING FEED-FORWARD 65.02% p p g
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% n etWO rkS a n d O n a ny
SIMCLR (19) FEED-FORWARD 70.28% down Stream task'
INTROSPECTIVE 73.32%
AUGMENT NOISE (23) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (2%) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Generalization and Calibration

SCAN ME

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active
Learning, and Image Quality Assessment!

. . Table 2: Recognition accuracy of Active Learn-
Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image  ing strategies.

Quality Estimators. Top 2 results in each row are highlighted.

Methods Architecture Original Testset Gaussian Noise
PSNR IW SR FSIMc Per CSV SUM Feed-Forward Introspective 1§ R RIS RN
Database HA SSIM SIM SIM MER UNIQUE UNIQUE Entropy &31) P;if“ﬁf: 822 g:gg :ﬁ 8;2:
Outiler Ratio (OR, J) Feed :::ward 0.;7.| ob;sg 0'252 0.25
MULTI 0.013 0.013 0.000 0.016 0.004 0.000 0.000 0.000 0.000 Least @31) lfurt;spec(ive 0373 0362 0264 026
TID13 0.615 0701 0632 0.728 0.655 0.687 0.620 0.640 0.620 Margin @2  Feed-Forward 038 0369 0251 0253
Root Mean Square Error (RMSE, |) NginIeE Introspective 0381 0373 0265 0263
MULTI 11320 10.049 8686 10794 9.898 9.895 8.212 9.258 7.943 BALDWN PR Gwe DS e a6
TID13 0.652 0.688 0.619 0.687 0.643 0.647 0.630 0.615 0.596 w, OB 0% 05 0w
Pearson Linear Correlation Coefficient (PLCC, 1) BADGE @3) | iospective 039 037 0265 0260
MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
| -1 0 -1 -1 -1 -1 -1 Table 3: Out-of-distribution Detection of exist-
i 0851 0832 0866 0832 0855 0853 0.861 0.869 0.877 ing techniques compared between feed-forward
ks 1 0 -1 q e 0 0 and introspective networks.
Spearman’s Rank Correlation Coefficient (SRCC, 1) T - e pre=—reen
MULTI 0715 0.884 0.867 0.867 0.818 0.849 0.884 0.867 0.887 " Datasets  (95%at TPR) Error
-1 0 0 0 S I 0 0 2 - $
TIDI3 0.847 0.778 0807 0.851 0.854 0.846 0.856 0.860 0.865 Feco-Toomunianosporiie
-1 -1 5| -1 0 5 | 0 0 ) Textures 58.74/19.66 18.04/7.49 88.56/97.79
MSP (25) SVHN 61.41/51.27 16.92/15.67 89.3991.2
Kendall’s Rank Correlation Coefficient (KRCC) Elé.lcjc’:sgs 52237.9:5/,5247.453 197‘.:)21’1105.70;1 sﬁ%’?&g
MULTI 0.532  0.702 0.678 0.677 0.624 0.655 0.698 0.679 0.702 : - 52' vu; 2'2 ”/6';2 8; 9”;' ;
-1 0 0 0 -1 0 0 0 ODIN@H) SVHN 66814852 23511586 83529107
0.666 0598 0641 0.667 0.678 0.654 0.667 0.667 0.677 Places365  42.21/51.87 16231571  91.06/90.95
TID13 0 1 1 0 0 0 0 0 LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87
164 of 184 IEEE [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023] Georgia
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural &' Tech.

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
2022.



Case Study 2: Leveraging anomaly scores, uncertainty scores, and explanations for
Anomalous object classification

Detecting and Classifying Anomalies in Artificial
Intelligence Systems

Gukyeong Kwon, PhD Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Amazon AWS Postdoc, Georgia Tech Professor, Georgia Tech
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Aberrant Object Detection
Deriving Gradient Features

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features

Gradients = = = — = \

i L 9]0, y1) Uncertainty: We took energy of
all gradients
Robustness: We trained a new
network

X —» Sensing Aberrant Objects: We take
re variance across gradients from

object detector

\ )

|
fir-13(x)
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Aberrant Object Detection
Aberrance Detection

Uncertainty using variance of introspective gradients rather than energy of gradients
| e | ——

1.0

0.8

- 0.6

] L 0.4

» Object detection algorithms would pick up on all the trained objects

« The gradient-based uncertainty approach picks up only the aberrant object — objects that bear a
resemblance to novel classes

167 of 184 Iﬁi 2 ﬂ 2 3 [Tutorial] | [Ghassan AlRegib and Mohit Prabhushankar] | [June 4, 2023]

ssssssssssssssssssssssssssssss AlRegib, Ghassan, et al. "Detecting and Classifying Anomalies in Artificial Intelligence Systems."
U.S. Patent Application No. 17/633,878.

Gr Georgia
Tech.




Uncertainty using variance of introspective gradients rather than energy of gradients

Faster-RC| Faster-RCNN
Faster-RCNN aster-RCNN

car 0.934

car 0.987 0.8 45 oo
p . car 0.999 ersan-0:942 88
person 0.946 car 1.000 s m

person O

-

person-0:997..998
ersoRersen;0.996

Proposed
Proposed
Proposed

oe
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Use the uncertain boxes for obtaining labels from annotators

Proposed
Proposed Proposed

Use new annotations for subsequent training in an active learning setting
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Objectives
Takeaways from Part Il

Part |. Challenges in Perception and Autonomy

Part II: Deep Learning for Perception

Part lll: Existing Deep Learning solutions to Challenges in Perception
* |tis not always clear if aberrant events and challenges must be incorporated in training
* Instead, they can and should be equipped with diagnostic tools at predictions

» These diagnostic tools are anomaly and uncertainty scores for decision making and contextual
explainability for post-hoc stakeholders

» Gradients provide the change induced by an aberrant event in the network and can be used to obtain
the required prediction diagnosis

Part |V: Key Takeaways and Future Directions
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A Holistic View of Perception in Intel. Vehicles
Part IV: Key Takeaways and Future
Directions

IEEE AOLIVES), :
A\ 10/ Grl Georgla
*\&\\” \\\ /] ‘{//{/

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



Objectives
Obijectives in Part IV

+ Takeaway Messages and Key Insights

» Unaddressed Challenges in Perception
« Context Awareness
 Embedded Perception
« V2X Perception

« Future Research Directions
Temporal Processing

Sensor Processing Architectures
Sensors research

Infrastructure + AV Datasets
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 Robustness under challenging conditions, environments, context and surroundings-awareness are
challenges in AV perception
 Deep Learning provides a holistic solution to a number of the above challenges

« Transfer Learning and training at scale help to create foundation models
« Self-supervised Learning provides a framework for large scale learning on unannotated data

* |tis not always clear if aberrant events and challenges must be incorporated in training
» Instead, model predictions must be equipped with diagnostic tools at inference
» These diagnostic tools are anomaly and uncertainty scores for decision making and contextual
explainability for post-hoc stakeholders
« Gradients provide the change induced by an aberrant event in the network and can be used to obtain
the required prediction diagnosis
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Perception in AVs

Unaddressed Technical Challenges for Level 3 Automation

» Challenging weather

» Challenging sensing

« Challenging environments
« Context awareness

« Embedded perception

« V2X perception
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Model size

Transformers BERT

15,000x increase in 5 years

GPT-31T7
1 trillion

Megatron-Turing

GPT-2 GPT-288 T5 Turing-NLG

65M 340M 1.58 8.3B 118 178

MID 2018 2019 MID LATE 2020 MID LATE 2022

2017 2019 2019 2020 2021
Time

Foundation models are great but the real-time feasibility

IS an issue

The inaccuracies from model outputs is dangerous in

urban settings
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Perception in AVs
Unaddressed Technical Challenges for Levels 4 and 5

Foundation models with multiple sensor modalities

15,000x increase in 5 years

GPT-31T
» Challenging weather v
* Challenging sensing //
‘g Megatron-Turing
- Challenging environments 3 "~
o
=
« Context awareness
« Embedded perception e e e B m T
H —I;IO 2018 2019 MID LATE 2{ MID LATE 2022
° ID 1
V2X perceptlon 2017 2019 2019 2020 2021
Time

« Levels 4 and 5 automation relies on roadside

- infrastructure to obtain high-resolution predictions
"'-_3:;‘ ey « 10x is the rough estimate of the increase in processing
power between levels of automation

, SR
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Perception in AVs
Unaddressed Technical Challenges for Levels 4 and 5

Foundation models with multiple sensor modalities and on temporal data

15,000x increase in 5 years

» Challenging weather
» Challenging sensing

GPT-31T
1 trillion

/O

.g Megatron-Turing
. . @ 5308
» Challenging environments 3 ~
=
 Context awareness cor3
H Transformers BERT x e T5 Turing-NLG
« Embedded perception il ey -l
. MID 2018 zgs ‘nz) ﬁz 2020 MID LATE 2022
o« V2X perceptlon 2017 2019 2019 2020 2021

Time

Stage2: Learning Region-based Relation

Relations

Temporal Dynamics

in time
[Tutorial] | [Ghassan AlIRegib and Mohit Prabhushankar] | [June 4, 2023]

C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based
Relation Learning," IEEE Transactions on Intelligent Transportation Systems, submitted on Dec. 28 2022
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« Levels 4 and 5 automation relies on roadside
infrastructure to obtain high-resolution predictions

Spatial Encoding Temporal Encoding Regional Relation Extracti
. e my « 10x is the rough estimate of the increase in processing
-/, 7, = power between levels of automation
=7 | P g Gy miregons « Current temporal processing = linear spatial processing
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Future Direction 1

Temporal processing of data

Temporal processing + Linear spatial processing

Spatial Encoding Temporal Encoding

Stage2: Learning Region-based Relation

Regional Relation Extraction
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Early temporal fusion: Encode both spatial and
temporal information together and fuse them
within the network
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Late temporal fusion: Encode all spatial data in a
time-wise fashion and determine temporal
relationships

sampled RGB / Spatial-steam Network \ Temporal
mee concatenation
\
\ . X1X2 XN

\ ResNet-101 /
Sampled Stacked es e
Optical Flow el
/Temporal-stream Network\ e
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Future Direction 2
Sensor processing architectures

Vision data processing was revolutionized by CNNs

Language data processing was revolutionized by
Transformers

Deep Learnlng .

L - R
LIDAR, RADAR Commurnity LIDAR data processing is revolutionized by *

V2X, Infrastructure RADAR data processing is revolutionized by ?
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Future Direction 3
More data with less sensors!

4 Fisheye cameras provide a 360 degree surround view of the car

Results from Zero-shot (i.e. using the trained model out of the box) Segment Anything Model on Woodscape
dataset

Important context and
objects are not
segmented
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Future Direction 4
Infrastructure + AV Datasets

Abundance of egocentric AV datasets! Dearth of Infrastructure + AV datasets

-— -

v ;\1 e sy 2 - Infrastructure datasets: Stationary
o G TR R > sensors at traffic junctures, streets,
S : heavy pedestrian traffic areas etc.

i

Argoverse 4\4 ‘a D * Infrastructure + AV datasets: Egocentric

sensors on vehicles + stationary
sensors for the same scenes

N

Radar Lidar Map

icycle, car makes a u-turn, lane change, peds crossing crosswalk"

NuScenes
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Some Memes to Wrap it Up

Monocular,_ « Fisheye

s D'eép Learning
. Community
LIDAR, RADAR

V2X, Infrastructure

2

y

y

rning AVs
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Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection

Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International Conference
on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

gg}g)lelllltisE %)rz(a 1en set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image Processing

GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. In European
Conference on Computer Vision (pp. 206-226). Springer, Cham.

gradienﬁ for2 ?%%E?arial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," in [EEE
ccess, Mar. .

Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural networks. In 2020
IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

Gradient-based Imalge Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated Gradients,"
in /[EEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks
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%/[xplan_ato?é 42)1rg(91ig12ns: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. /EEE Signal Processing
agazine, , 59-72.

Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference on
Image Processing (ICIP) (pp. 3289-3293). [EEE.

Explainabilt% in Limited Label Settings: M. Prabhushankar, and G. AlRegib, Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference on Image
Processing (ICIP), Sept. 2021.

Explainabilty through E)épectanc -Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers in
Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Self Supervised Learning

*  Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023.

* Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye Data,"
in Open Journal of Signals Processing, Apr. 28 2023.

* Contrastive Learning for Severity Detection: K. Kokilegersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in OCT,"
in /[EEFE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

* Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation,"
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction

*  Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on Intelligent
Transportation Systems, submitted on Dec. 28 2022.

*  Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

. ﬁulléll-lalli 1I;gna e %l(lﬁléty Assessment: D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 10, pp.
- , Oct .

Open-source Datasets to assess Robustness

*  CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics," in /EEE
Transactions on Intelligent Transportation Systems, Jul. 2019

*  CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

*  CURE-OR: D. Temel*, J. Lee*, and G. AlReéib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in /EEE International Conference on Machine Learning and
Applications (ICMLA), Orlando, FL, Dec. 201
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Active Learning

* Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AIRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A Second
Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

* Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. Parchami,
"FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

* Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-Distribution
Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

* Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," in /EEE
International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

* Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in /EEE International Conference on Image Processing (ICIP),
Abu Dhabi, United Arab Emirates, Oct. 2020

* Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With Prediction
Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

* Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurlPS 2022
Workshop on Human in the Loop Learning, Oct. 27 2022

* Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection,"
in [EEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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